
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 1962–1979,
Hong Kong, China, November 3–7, 2019. c©2019 Association for Computational Linguistics

1962

CoSQL: A Conversational Text-to-SQL Challenge Towards
Cross-Domain Natural Language Interfaces to Databases

Tao Yu† Rui Zhang† He Yang Er† Suyi Li† Eric Xue† Bo Pang†
Xi Victoria Lin¶ Yi Chern Tan† Tianze Shi§ Zihan Li‡ Youxuan Jiang‡

Michihiro Yasunaga† Sungrok Shim† Tao Chen† Alexander Fabbri†
Zifan Li† Luyao Chen‡ Yuwen Zhang‡ Shreya Dixit† Vincent Zhang†
Caiming Xiong¶ Richard Socher¶ Walter S. Lasecki‡ Dragomir Radev†

†Yale University ¶Salesforce Research
‡University of Michigan §Cornell University

{tao.yu,r.zhang,dragomir.radev}@yale.edu
{xilin,cxiong,rsocher}@salesforce.com

Abstract

We present CoSQL, a corpus for building
cross-domain, general-purpose database (DB)
querying dialogue systems. It consists of 30k+
turns plus 10k+ annotated SQL queries, ob-
tained from a Wizard-of-Oz (WOZ) collection
of 3k dialogues querying 200 complex DBs
spanning 138 domains. Each dialogue simu-
lates a real-world DB query scenario with a
crowd worker as a user exploring the DB and
a SQL expert retrieving answers with SQL,
clarifying ambiguous questions, or otherwise
informing of unanswerable questions. When
user questions are answerable by SQL, the ex-
pert describes the SQL and execution results to
the user, hence maintaining a natural interac-
tion flow. CoSQL introduces new challenges
compared to existing task-oriented dialogue
datasets: (1) the dialogue states are grounded
in SQL, a domain-independent executable rep-
resentation, instead of domain-specific slot-
value pairs, and (2) because testing is done on
unseen databases, success requires generaliz-
ing to new domains. CoSQL includes three
tasks: SQL-grounded dialogue state tracking,
response generation from query results, and
user dialogue act prediction. We evaluate a
set of strong baselines for each task and show
that CoSQL presents significant challenges for
future research. The dataset, baselines, and
leaderboard will be released at https://
yale-lily.github.io/cosql.

1 Introduction

Natural language interfaces to databases (NLIDB)
have been studied extensively, with a multitude of
different approaches introduced over the past few
decades. To this end, considerable progress has
been made in querying data via natural language
(NL). However, most NL query systems expect the

D1 : Database about student dormitories containing 5 tables

Q1 :

S1 :
A1 : (Result table with many entries)
R1 :

Q2 :

S2 :

A2 : (Result table with many entries)
R2 :

Q3 :

R3 :

Q4 :

S4 :

A4 : Fawlty Towers
R4 :

Q8 :

R8 :

SELECT T1.dorm_name FROM dorm AS T1 JOIN has_amenity
AS T2 ON T1.dormid = T2.dormid JOIN dorm_amenity AS T3
ON T2.amenid = T3.amenid WHERE T3.amenity_name = ‘TV
Lounge’ EXCEPT SELECT T1.dorm_name FROM dorm AS T1
JOIN has_amenity AS T2 ON T1.dormid = T2.dormid JOIN
dorm_amenity AS T3 ON T2.amenid = T3.amenid WHERE
T3.amenity_name = ‘Study Room’

What are the names of all the dorms? INFORM_SQL

This is the list of the names
of all the dorms.

CONFIRM_SQL

SELECT dorm_name FROM dorm

Which of those dorms have a TV lounge? INFORM_SQL

This shows the names of dorms
with TV lounges.

CONFIRM_SQL

SELECT T1.dorm_name FROM dorm AS T1 JOIN has_amenity AS
T2 ON T1.dormid = T2.dormid JOIN dorm_amenity AS T3 ON
T2.amenid = T3.amenid WHERE T3.amenity_name = ‘TV
Lounge’

What dorms have no study
rooms as amenities?

AMBIGUOUS

Do you mean among those
with TV Lounges?

CLARIFY

Yes. AFFIRM

Fawlty Towers is the name of the dorm
that has a TV lounge but not a study
room as an amenity.

CONFIRM_SQL

...
Thanks! THANK_YOU

You are welcome. WELCOME

Figure 1: A dialog from the CoSQL dataset. Gray
boxes separate the user inputs (Qi) querying the
database (Di) from the SQL queries (Si), returned an-
swers (Ai), and expert responses (Ri). Users send an
input to the expert, who writes the corresponding SQL
query (only seen by the expert) if possible and sends an
answer and response description back. Dialogue acts
are on the right-hand side (e.g., Q3 is “ambiguous” and
R3 is “clarify”).

query to be well-formed and stated in a single sen-
tence (Zelle and Mooney, 1996; Li and Jagadish,
2014; Yaghmazadeh et al., 2017; Iyer et al., 2017;
Zhong et al., 2017; Xu et al., 2017; Shi et al., 2018;

https://yale-lily.github.io/cosql
https://yale-lily.github.io/cosql

1963

Wang et al., 2018; Yu et al., 2018b,c). In reality,
complex questions are usually answered through
interactive exchanges (Figure 1). Even for sim-
ple queries, people tend to explore the database
by asking multiple basic, interrelated questions
(Hale, 2006; Levy, 2008; Frank, 2013; Iyyer et al.,
2017). This requires systems capable of sequen-
tially processing conversational requests to ac-
cess information in relational databases. To drive
the progress of building a context-dependent NL
query system, corpora such as ATIS (Hemphill
et al., 1990; Dahl et al., 1994) and SParC (Yu et al.,
2019)1 have been released. However, these cor-
pora assume all user questions can be mapped into
SQL queries and do not include system responses.

Furthermore, in many cases, multi-turn interac-
tion between users and NL systems is needed to
clarify ambiguous questions (e.g., Q3 and R3 in
Figure 1), verify returned results, and notify users
of unanswerable or unrelated questions. There-
fore, a robust dialogue-based NL query agent
that can engage with users by forming its own
responses has become an increasingly necessary
component for the query process. Such systems
have already been studied under task-oriented dia-
logue settings by virtue of continuous effort of cor-
pus creation (Seneff and Polifroni, 2000; Walker
et al., 2002; Raux et al., 2005; Mrksic et al.,
2015; Asri et al., 2017; Budzianowski et al., 2018)
and modelling innovation (Artzi and Zettlemoyer,
2011; Henderson et al., 2013; Lee and Dernon-
court, 2016; hao Su et al., 2016; Dhingra et al.,
2016; Li et al., 2016; Mrksic et al., 2017). The
goal of these systems is to help users accomplish
a specific task, such as flight or hotel booking
or transportation planning. However, to achieve
these goals, task-oriented dialogue systems rely
on pre-defined slots and values for request pro-
cessing (which can be represented using simple
SQL queries consisting of SELECT and WHERE
clauses). Thus, these systems only operate on a
small number of domains and have difficulty cap-
turing the diverse semantics of practical user ques-
tions.

In contrast, the goal of dialogue-based NLIDB
systems is to support general-purpose exploration
and querying of databases by end users. To do so,
these systems must possess the ability to (1) de-
tect questions answerable by SQL, (2) ground user

1SParC task is available at https://yale-lily.
github.io/sparc

questions into executable SQL queries if possible,
(3) return results to the user in a way that is eas-
ily understood and verifiable, and (4) handle unan-
swerable questions. The difficulty of constructing
dialogue-based NLIDB systems stems from these
requirements. To enable modeling advances in this
field, we introduce CoSQL, the first large-scale
cross-domain Conversational text-to-SQL corpus
collected under the WOZ setting (Budzianowski
et al., 2018). CoSQL contains 3,007 dialogues
(more than 30k turns with annotated dialogue acts
and 10k expert-labeled SQL queries) querying 200
complex DBs spanning across 138 different do-
mains. For each dialogue, we follow the WOZ set-
up that involves a crowd worker as a DB user and
a college computer science student who is familiar
with SQL as an expert (§3).

Like Spider2 (Yu et al., 2018c) and SParC (Yu
et al., 2019), the cross-domain setting in CoSQL
enables us to test the ability of systems to gener-
alize on querying different domains via dialogues.
We split the dataset in a way that each database
only appears in one of train, development, or test
set. This setting requires systems to generalize to
new domains without additional annotation.

More importantly, unlike most prior work
in text-to-SQL systems, CoSQL demonstrates
greater language diversity and more frequent user
focus changes. It also includes a significant
amount of questions that require user clarifica-
tion and questions that cannot be mapped to SQL
queries, introducing the potential to evaluate text-
to-SQL dialog act prediction. These features pose
new challenges for text-to-SQL systems. More-
over, CoSQL includes system responses that de-
scribe SQL queries and the returned results in a
way that is easy for users with different back-
grounds to understand and verify, as faithful and
comprehensible presentation of query results is a
crucial component of any NLIDB system.3

We introduce three challenge tasks on CoSQL:
(1) SQL-grounded dialogue state tracking to
map user utterances into SQL queries if possible
given the interaction history (§5.1), (2) natural
language response generation based on an ex-
ecuted SQL and its results for user verification

2Spider task is available at https://yale-lily.
github.io/spider

3The DB community has developed query visualiza-
tion (Li and Jagadish, 2014) and other techniques to provide
faithful explanation of a SQL query. These explanations are
complementary to the NL ones used in our work and future
NLIDB systems could integrate them.

https://yale-lily.github.io/sparc
https://yale-lily.github.io/sparc
https://yale-lily.github.io/spider
https://yale-lily.github.io/spider

1964

(§5.2) and (3) user dialogue act prediction to
detect and resolve ambiguous and unanswerable
questions (§5.3). We provide detailed data anal-
ysis and qualitative examples (§4). For each of
the three tasks, we benchmark several competitive
baseline models (§6). The performances of these
models indicate plenty of room for improvement.

2 Related Work

Text-to-SQL generation Text-to-SQL genera-
tion has been studied for decades in both DB and
NLP communities. (Warren and Pereira, 1982;
Zettlemoyer and Collins, 2005; Popescu et al.,
2003; Li et al., 2006; Li and Jagadish, 2014; Iyer
et al., 2017; Zhong et al., 2017; Xu et al., 2017;
Yu et al., 2018a; Dong and Lapata, 2018; Finegan-
Dollak et al., 2018; Guo et al., 2019; Bogin et al.,
2019). However, the majority of previous work fo-
cus on converting a single, complex question into
its corresponding SQL query. Only a few datasets
have been constructed for the purpose of mapping
context-dependent questions to structured queries.
Price (1990); Dahl et al. (1994) collected ATIS
that includes series of questions from users inter-
acting with a flight database. Yu et al. (2019) intro-
duced SParC, a large cross-domain semantic pars-
ing in context dataset, consisting of 4k question
sequences with 12k questions annotated with SQL
queries over 200 complex DBs. Similar to ATIS,
SParC includes sequences of questions instead of
conversational interactions. An NL question and
its corresponding SQL annotation in SParC are
constructed by the same expert. Recent works
(Suhr et al., 2018; Zhang et al., 2019) have built
context-dependent text-to-SQL systems on top of
these datasets.

In contrast, CoSQL was collected under a WOZ
setting involving interactions between two parties,
which contributes to its diverse semantics and dis-
course covering most types of conversational DB
querying interactions (e.g. the system will ask
for clarification of ambiguous questions, or inform
the user of unanswerable and irrelevant questions).
Also, CoSQL includes a natural language system
response for the user to understand and verify the
systems actions.

Task-oriented dialog systems Task-oriented di-
alog systems (Henderson et al., 2014; Wen et al.,
2016; Mrkšić et al., 2017; Budzianowski et al.,
2018) have attracted increasing attention espe-
cially due to their commercial values. The goal

is to help users accomplish a specific task such as
hotel reservation, flight booking, or travel infor-
mation. These systems (Bordes and Weston, 2017;
Zhong et al., 2018; Wu et al., 2019) often pre-
define slot templates grounded to domain-specific
ontology, limiting the ability to generalize to un-
seen domains. In comparison, our work is to build
a system for general-purpose DB exploration and
querying. The domain-independent intent repre-
sentation (SQL query) enables the trained system
to work on unseen domains (DB schemas).

While most task-oriented dialog systems need
to actively poke the user for information to fill in
pre-defined slot-value pairs, the primary goal of
system responses in CoSQL is to offer users a re-
liable way to understand and verify the returned
results. If a question can be converted into a SQL
query, the user is shown the execution result and
the system will describe the SQL query and the
result in natural language. In case sthe user ques-
tions are ambiguous or unanswerable by SQL, the
system either requests the user to rephrase or in-
forms them to ask other questions.

Data-to-Text generation Response generation
in CoSQL takes a structured SQL query and its
corresponding result table to generate an NL de-
scription of the system’s interpretation of the user
request. Compared to most dialogue-act-to-text
generation tasks, the richer semantics of SQL
queries makes our task more challenging – be-
sides generating natural and coherent descriptions,
faithfully preserving the logic of a SQL query in
an NL response is also crucial in our task. Further-
more, this component is related to previous work
on text generation from structured data (McK-
eown, 1985; Iyer et al., 2016; Wiseman et al.,
2017).

3 Data Collection

We follow the Wizard-of-Oz setup which facili-
tates dialogues between DB users and SQL ex-
perts to create CoSQL. We recruited Amazon Me-
chanical Turkers (AMT) to act as DB users and
trained 25 graduate- and undergraduate-level com-
puter science students proficient in SQL to act
as DB experts. The collection interface (Lasecki
et al., 2013) is designed to be easy-to-operate for
the experts and intuitive for the users. Detailed
explanations of the data collection process is pro-
vided below.

1965

Reference goal selection We pre-select a ref-
erence goal for each dialogue to ensure the in-
teraction is meaningful and to reduce redundancy
within the dataset. Users are asked to explore the
given DB content to come up with questions that
are likely to naturally arise in real-life scenarios
and reflect their query intentions as specified by
the reference goals. Following Yu et al. (2019),
we selected the complex questions classified as
medium, hard, and extra hard in Spider (Yu et al.,
2018c) as the reference goals.4 In total, 3,783
questions were selected on 200 databases. After
annotation and reviewing, 3,007 of them were fin-
ished and kept in the final dataset.

User setup We developed online chatting inter-
faces to pair the user with the expert (Figure 6 and
7 in Appendix). When a data collection session
starts, the user is first shown multiple tables from
a DB to which a reference goal is groundedand is
required to read through them. Once they have ex-
amined the data stored in the tables, the reference
goal question will be revealed on the same screen.
The user is encouraged to use the goal question
as a guide to ask interrelated questions, but is also
allowed to ask other questions exploring the DB.
We require the user to ask at least 3 questions.5

In each turn, if the user question can be answered
by a SQL query, they will be shown the result ta-
ble, and the expert will write an NL response in-
terpreting the executed SQL query based on their
understanding of the user’s query intent (Figure 8
Appendix). If the user question is ambiguous or
cannot be answered with SQL, they will receive
clarification questions or notice to rephrase from
the expert (detailed in expert setup).

Expert setup Within each session, the expert is
shown the same DB content and the reference goal
as the user (Figure 8 in Appendix). For each dia-
logue turn, the expert first checks the user ques-
tion and labels it using a set of pre-defined user
dialog action types (DATs, see Table 4). Then
the expert sets the DAT of his response accord-
ing to the user DAT. Both the user and the expert
can have multiple DATs labels in each turn. If

4Yu et al. (2019) also includes 12.9% of the easy questions
in Spider in order to increase dataset diversity. In this work
we prioritize the complex questions that trigger more inter-
esting interactions and do not include any easy questions.

5The worker is paid $1.20 USD for each dialog. To en-
courage interaction, we offer $0.50 USD bonus for each di-
alogue if the user asks more than 4 interesting, interrelated
questions.

the user question is answerable in SQL (labeled
as INFORM SQL, e.g. Q1 in Figure 1), the expert
writes down the SQL query6, executes it, checks
the result table, and sends the result table to the
user. The expert then describes the SQL query
and result table in natural language and sends the
response. If the user question is ambiguous, the
expert needs to write an appropriate response to
clarify the ambiguity (labeled as AMBIGUOUS,
e.g. Q3 in Figure 1). Some user questions re-
quire the expert to infer the answer based on
their world knowledge (labeled as INFER SQL,
e.g. Q3 in Figure 10). If the user question
cannot be answered by SQL, the expert will in-
form them to ask well-formed questions (labeled
as NOT RELATED, CANNOT UNDERSTAND, or
CANNOT ANSWER). In other cases (labeled as
GREETING, THANK YOU, etc.), the expert re-
sponds with general dialogue expressions (Q8 in
Figure 1).

User quality control Because of the real-time
dialogue setting and the expensive annotation pro-
cedures on the expert side, conducting quality con-
trol on user is crucial for our data collection. We
use LegionTools7 (Lasecki et al., 2014) to post our
tasks onto AMT and to recruit and route AMT
workers for synchronous real time crowd sourc-
ing tasks. We specify that only workers from the
U.S. with 95% approval rates are allowed to ac-
cept our task. Before proceeding to the chat room,
each AMT worker has to go through a tutorial and
pass two short questions8 to test their knowledge
about our task. Only the user who passes the quiz
proceeds to the chat room. Throughout the data
collection, if a user ignores our instructions in a
specific turn, we allow the experts to alert the user
through chat and label the corresponding turn as
DROP. If a user’s actions continue to deviate from
instructions, the expert can terminate the dialog
before it ends. After each dialogue session termi-
nates, we ask the expert to provide a score from
1 to 5 as an evaluation of the user’s performance.
Dialogues with a score below 3 are dropped and
the user will be blocked from future participation.

6We use the same SQL annotation protocol as Spider (Yu
et al., 2018c) to ensure the same SQL pattern was chosen
when multiple equivalent queries were available.

7https://www.cromalab.net/LegionTools/
8One is on how to ask interrelated questions and the other

is on how to read multiple tables with reference keys.

https://www.cromalab.net/LegionTools/

1966

5 10 15 20 25 30 35

Dialogue Length (Number of Turns)

0

5

10

15

20

25

30

35

D
ia
lo
gu

es
 (%

)

Figure 2: Distributions of dialogue lengths.

Data review and post-process We conduct a
multi-pass data reviewing process.9 Two student
conducted a first-round review. They focus on cor-
recting any errors in the DATs of the users and
the experts, checking if the SQL queries match
the user’s questions, and modifying or rewriting
the expert’s responses to contain necessary in-
formation in the SQL queries in case they miss
any of them. Also, they re-evaluate all dialogues
based on the diversity of user questions and re-
ject any dialogues that only contain repeated, sim-
ple, and thematically-independent user questions
(about 6% of the dialogs). After the first-round
review, another two student experts reviewed the
refined data to double check the correctness of
the DATs, the SQL queries, and the expert re-
sponses. They also corrected any grammar errors,
and rephrased the user’s questions and the expert’s
responses in a more natural way if necessary. Fi-
nally, we ran and parsed all annotated SQL queries
to make sure they were executable, following the
same annotation protocol as the Spider dataset.

4 Data Statistics and Analysis

We report the statistics of CoSQL and com-
pare it to other task-oriented dialog and context-
dependent text-to-SQL datasets. We also conduct
detailed analyses on its contextual, cross-domain
nature, and question diversity.

Data statistics Table 1 and 2 summarize the
statistics of CoSQL. CoSQL contains 3k+ dia-
logues in total (2,164 in training), which is compa-
rable to or bigger than most commonly used task-
oriented dialogue datasets. Figure 2 shows the

9The review interface is shown in Figure 9 (Appendix).

0 2000 4000 6000 8000 10000

Frequency of dialogue acts

NOT_RELATED

NEGATE

CANNOT_UNDERSTAND

GREETING

GOOD_BYE

CANNOT_ANSWER

INFER_SQL

AFFIRM

AMBIGUOUS

THANK_YOU

INFORM_SQL

Figure 3: Distributions of user dialog action types.

distribution of dialogue length in the corpus, ap-
proximately 80% of dialogues involve 8 or more
turns, with a total of 31,148 turns.10 The average
number of tokens in each turn is 11.21. Notice-
ably, the domain of CoSQL spans over 200 com-
plex databases, overshadowing most other task-
oriented dialogue datasets. Comparing to existing
context-dependent text-to-SQL datasets, CoSQL
contains significantly more turns, out of which
11,039 user utterances are convertible to SQL. In
contrast, all NL utterances in ATIS and SParC can
be mapped to SQL. CoSQL also has a much larger
NL vocabulary.

Dialogue act distribution As shown in Fig-
ure 3, CoSQL contains a fairly diverse set of user
dialogue action types (DATs). Unsurprisingly,
INFORM SQL and THANK YOU are the two most
commonly seen DATs. Among the rest of DATs,
approximately 40% are AMBIGUOUS, demon-
strating the paramount importance of system clar-
ification in the DB querying process in general.
Another 20% of this subgroup is INFER SQL,
which signifies questions that cannot be answered
without the aid of human inference.

Semantic complexity As shown in Table 1, if
we consider the column names of the 200 DBs
of CoSQL as slots and their entries as values, the
number of slot-value pairs far exceed those de-
fined in other task-oriented dialogues. Figure 4
shows the total number of occurrences of different
SQL keywords in the SQL queries corresponding
to these questions. The SQL queries in CoSQL
cover all common SQL keywords as well as com-
plicated syntactic structure such as nesting (Fig-

10Following Budzianowski et al. (2018), in the statistics
report we define the # turns in a dialogue to be the total #
messages in the dialogue.

1967

DSTC2 WOZ 2.0 KVRET MultiWOZ CoSQL
dialogs 1,612 600 2,425 8,438 2,164

Total # turns 23,354 4,472 12,732 115,424 22,422
Total # tokens 199,431 50,264 102.077 1,520,970 22.8197

Avg. # turns/dialog 14.49 7.45 5.25 13.68 10.36
Avg. # tokens/turn 8.54 11.24 8.02 13.18 11.34

Total # unique tokens 986 2,142 2,842 24,071 7,502
databases 1 1 1 7 140

Slots # 8 4 13 25 3,696
Values # 212 99 1,363 4,510 >1,000,000

Table 1: Comparison of CoSQL to some commonly used task-oriented dialogue datasets. The numbers are com-
puted for the training part of data in consistency with previous work (Budzianowski et al., 2018).

CoSQL SParC ATIS
Q sequence 3,007 4298 1658

user questions 15,598∗ 12,726 11,653
databases 200 200 1

tables 1020 1020 27
Avg. Q len 11.2 8.1 10.2

Vocab 9,585 3794 1582
Avg. # Q turns 5.2 3.0 7.0

Unanswerable Q X 7 7

User intent X 7 7

System response X 7 7

Table 2: Comparison of CoSQL with other context-
dependent text-to-SQL datasets. The number are com-
puted over the entire datasets. ∗For CoSQL we count
the total # user utterances.

� ���� ���� ���� ���� ���� ���� ����
���%""� ���!��������'&!"�#

���

	����

��#$��

�����

��
��

	��

����

�
���

Figure 4: SQL keyword counts.

ure 5).

Semantic changes by turns We compute the
frequency of occurrences of common SQL key-
words in different turns for both CoSQL and
SParC and compare them in Figure 5 (upper:
CoSQL, lower: SParC). Here we count the turn
based on user utterance only. Since CoSQL
and SParC span the same domains, Figure 5 re-
veals a comparison of semantic changes between
context-dependent DB questions issued by end

� � � � �

���

���

���

	

��
�

�
���
��

��

�

1 2 3 4 5
Question turn number

0.0

0.2

0.4

0.6

Oc
cu
re
nc
e
fre

qu
en
cy

WHERE
AGG
JOIN
GROUP
ORDER
Nested

Figure 5: Percentage of question sequences that con-
tain a particular SQL keyword at a specific user utter-
ance turn. The keyword occurrences in CoSQL (upper)
slightly fluctuates as the interaction proceeds while that
in SParC (lower) demonstrates a clear increasing trend.

users (CoSQL) and expert users (SParC). For
CoSQL, the frequencies of all keywords except
for WHERE do not change significantly throughout
the conversation, and the average frequencies of
these keywords are in general lower than those of
SParC. In addition, WHERE occurs slightly more
frequently in CoSQL than in SParC. We believe
this indicates the exploratory nature of the dia-
logues we collected, as the users switch their fo-
cus more frequently instead of building questions
upon previous ones. For example, SQL AGG com-
ponents occur most frequently in the beginning
of dialogues, as a result of users familiarizing
themselves with the amount of data in the DB or
other statistical measures. In contrast, the frequen-
cies of almost all SQL components in SParC in-
crease as the question turn increases. This sug-

1968

gests that questions in SParC have stronger inter-
dependency, as the purpose of this corpus is to
study text-to-SQL in context.

Cross domain As shown in Table 3, the dia-
logues in CoSQL are randomly split into train, de-
velopment and test sets by DB with a ratio of 7:1:2
(the same split as SParC and Spider).

Train Dev Test
Dialogs 2164 292 551

Databases 140 20 40

Table 3: Dataset Split Statistics

5 Tasks and Models

CoSQL is meant to be used as the first bench-
mark for building general-purpose DB querying
dialogue systems in arbitrary domains. Such sys-
tems take a user question and determine if it can be
answered by SQL (user dialogue act prediction).
If the question can be answered by SQL, the sys-
tem translates it into the corresponding SQL query
(SQL-grounded dialogue state tracking), executes
the query, returns and shows the result to the user.
To improve interpretability and trustworthiness of
the result, the system describes the predicted SQL
query and result tables to the user for their verifi-
cation (response generation from SQL and result).
Finally, the user checks the results and the system
responses and decides if the desired information is
obtained or additional questions shall be asked.

Some components relevant to the process
above are beyond the scope of our work.
First, our response generation task only in-
cludes turns where the system’s dialogue act is
CONFORM SQL. In case the system cannot under-
stand the user’s question (the system dialogue act
is CANNOT ANSWER) or considers it as unanswer-
able (CANNOT ANSWER), the system will reply in
a standard way to inform the user that it needs
clarification or cannot answer that question. The
same applies to questions that require human in-
ference (e.g., the system confirms with the user
which types of dorms he or she was talking about
by asking R3 instead of immediately translating
Q3 in Figure 1). Currently we do not have a task
setup to evaluate the quality of system clarifica-
tions. Second, some user questions cannot be di-
rectly answered by SQL but are possible to be an-
swered with other type of logical reasoning (e.g.,
Q3 in Figure 10). We exclude these questions from

our task design and leave them for future research.

5.1 SQL-Grounded dialogue State Tracking

In CoSQL, user dialogue states are grounded in
SQL queries. Dialogue state tracking (DST) in
this case is to predict the correct SQL query for
each user utterance with INFORM SQL label given
the interaction context and the DB schema. In our
setup, the system does not have access to gold
SQL queries from previous turns, which is dif-
ferent from the traditional DST settings in dia-
logue management where the history of ground-
truth dialogue states is given. Comparing to
other context-dependent text-to-SQL tasks such as
SParC and ATIS, the DST task in CoSQL also in-
clude the ambiguous questions if the user affirms
the system clarification of them (e.g., Q4 in Fig-
ure 1). In this case, the system clarification is also
given as part of the interaction context to predict
the SQL query corresponding to the question.1112

For instance, to generate S4 in Figure 1, the input
consists of all previous questions (Q1, Q2, Q3),
the current user question (Q4), the DB schema,
and the system response R3.

We benchmark the performance of two strong
context-dependent neural text-to-SQL models on
this the task, which are the baseline models re-
ported on SParC by Yu et al. (2019).

Context-dependent Seq2Seq (CD-Seq2Seq)
The model is originally introduced by (Suhr
et al., 2018) for the ATIS task. It incorporates
interaction history and is able to copy segments of
previous generated SQL queries. Yu et al. (2019)
extends it to encode DB schema information
such that it works for the cross-domain setting in
SParC. We apply the model to our task without
any changes.

SyntaxSQL-con SyntaxSQLNet is a SQL-
specific syntax-tree based model introduced for
Spider (Yu et al., 2018b). Yu et al. (2019)
extends it to take previous questions as input
when predicting SQL for the current question. We
apply the model to our task without any changes.

11If a dialogue contains multiple ambiguous questions, the
system clarification to all ambiguous questions will be given
as input.

12The ambiguous questions not confirmed by the user and
their system responses are given as part of the conversation
history but we do not require a system to predict SQL queries
for them.

1969

5.2 Response Generation from SQL and
Query Results

This task requires generating a natural language
description of the SQL query and the result for
each system response labeled as CONFORM SQL.
It considers a SQL query, the execution result,
and the DB schema. Preserving logical consis-
tency between SQL and NL response is crucial in
this task, in addition to naturalness and syntacti-
cal correctness. Unlike other SQL-to-text genera-
tion tasks (Xu et al., 2018), our task maps the SQL
query to a statement and summarizes the result in
that statement (instead of just mapping it back to
the user question).

We experiment with three baseline methods for
this task.

Template-based Given the SQL and NL re-
sponse pairs in the training set, we masked vari-
able values in both the SQL and NL response to
form parallel SQL-response templates. Given a
new SQL query, we employ rule-based approach
to select the closest SQL-response template pair
from the set. After that, we fill in the selected re-
sponse template with the columns, tables, and val-
ues of the SQL query and the result to generate the
final response (see more in Appendix).

Seq2Seq We experiment with a vanilla Seq2Seq
model (Sutskever et al., 2014) with attention (Bah-
danau et al., 2015), a standard baseline for text
generation tasks.

Pointer-generator Oftentimes the column or ta-
ble names in the NL response are copied from the
input SQL query. To capture this phenomenon, we
experiment with a pointer-generator network (See
et al., 2017), which addresses the problem of out-
of-vocabulary word generation in summarization
and other text generation tasks. We use a modi-
fied version of the implementation from Chen and
Bansal (2018).

5.3 User dialogue Act Prediction

For a real-world DB querying dialogue system, it
has to decide if the user question can be mapped
to a SQL query or if special actions are needed.
We define a series of dialogue acts for the DB user
and the SQL expert (Table 4).13 For example, if
the user question can be answered by a SQL query,
the dialogue act of the question is INFORM SQL.

13§A.1 defines the complete set of dialogue action types.

Since the system DATs are defined in response to
the user DATs, our task does not include system
dialogue acts prediction.

We experiment with two baseline models for
this task.

Majority The dialogue acts of all the user ques-
tions are predicted to be the majority dialogue act
INFORM SQL.

TBCNN-pair We employ TBCNN-pair (Mou
et al., 2016), a tree-based CNN model with heuris-
tics for predicting entailment and contradiction be-
tween sentences. We change the two sentence
inputs for the model to a user utterance and the
DB schema, and follow the same method in SQL-
Net (Xu et al., 2017) to encode each column
name.

6 Results and Discussion

SQL-grounded dialog state tracking We use
the same evaluation metrics used by the SParC
dataset (Yu et al., 2019) to evaluate the model’s
performance on all questions and interactions (di-
alogs). The performances of CD-Seq2Seq and
SyntaxSQL-con are reported in Table 5. The
two models achieve less than 16% question-
level accuracy and less than 3% on interaction-
level accuracy. Since the two models have been
benchmarked on both CoSQL and SParC, we
cross-compare their performance on these two
datasets. Both models perform significantly worse
on CoSQL DST than on SParC. This indicates that
CoSQL DST is more difficult than SParC. The
possible reasons is that the questions in CoSQL
are generated by a more diverse pool of users
(crowd workers instead of SQL experts), the task
includes ambiguous questions and the context
contains more complex intent switches.

Response generation Table 6 shows the re-
sults of three different baselines on three metrics:
BLEU score (Papineni et al., 2002), logic correct-
ness rate (LCR), and grammar. To compute LCR
and grammar score, we randomly sampled 100 de-
scriptions generated by each model. Three stu-
dents proficient in English participated in the eval-
uation, They were asked to choose a score 0 or 1
for LCR, and 1 to 5 for grammar check (the larger,
the better). For LCR, the final score was decided
by majority vote. We computed the average gram-
mar score.

1970

Groups Dialog acts
DB user inform sql, infer sql, ambiguous, affirm, negate, not related,

cannot understand, cannot answer, greeting, goodbye, thank you
DB expert conform sql, clarify, reject, request more, greeting, sorry, welcome, goodbye

Table 4: Dialog acts in CoSQL. See § A.1 for the comprehensive definition of each dialogue act.

Model Question Match Interaction Match
Dev Test Dev Test

CD-Seq2Seq 13.8 13.9 2.1 2.6
SyntaxSQL-con 15.1 14.1 2.7 2.2

Table 5: Performance of various methods over all ques-
tions (question match) and all interactions (interaction
match).

Model BLEU LCR (%) Grammar
Dev Test Test Test

Template 9.5 9.3 41.0 4.0
Seq2Seq 15.3 14.1 27.0 3.5

Pointer-generator 16.4 15.1 35.0 3.6

Table 6: BLEU scores on the development and test
sets, and human evaluations of logic correctness rate
(LCR) and grammar check on the 100 examples ran-
domly sampled from the test set.

Interestingly, the human evaluation and BLEU
scores do not completely agree. While the
template-based method is brittle and requires man-
ual effort, it performs significantly better than the
two end-to-end neural models in the human eval-
uation. Because the SQL-question templates pro-
vide natural and grammatical sketch of the output,
it serves as an advantage in our human evaluation.
However, this approach is limited by the small
coverage of the training templates and its LCR is
only around 40%. On the other hand, the neu-
ral models achieve better BLEU scores than the
template-based approach. A possible reason for
this is that they tend to generate words frequently
associated with certain SQL queries. However,
the neural models struggle to preserve the SQL
query logic in the output. Unsurprisingly, pointer-
generator performs better than basic Seq2Seq in
terms of both BLEU and human evaluation. The
low performances of all methods on LCR show
that the task is indeed very challenging.

Model Dev Test
Majority 63.3 62.8

TBCNN-pair 84.2 83.9

Table 7: Accuracy of user dialog act prediction on the
development and test sets.

User dialog act prediction Table 7 shows the
accuracy of the two baselines on predicting user
dialog acts. The result of Majority indicates that
about 40% of user questions cannot be directly
converted into SQL queries. This confirms the
necessity of considering a larger set of dialogue
actions for building a practical NLIDB system.
Even though TBCNN can predict around 85% of
user intents correctly, most of the correct predic-
tions are for simple classes such as INFORM SQL,
THANK YOU, and GOODBYE etc. The F-scores for
more interesting and important dialog acts such as
INFER SQL and AMBIGUOUS are around 10%.
This indicates that improving the accuracy on user
DAT prediction is still important.

7 Conclusion and Future Work

In this paper, we introduce CoSQL, the first
large-scale cross-domain conversational text-to-
SQL corpus collected under a Wizard-of-Oz setup.
Its language and discourse diversity and cross-
domain setting raise exciting open problems for
future research. Especially, the baseline model
performances on the three challenge tasks sug-
gest plenty space for improvement. The data
and challenge leaderboard will be publicly avail-
able at https://yale-lily.github.io/
cosql.

Future Work As discussed in Section 5, some
examples in CoSQL include ambiguous and unan-
swerable user questions and we do not study how
a system can effectively clarify those questions or
guide the user to ask questions that are answer-
able. Also, some user questions cannot be an-
swered with SQL but by other forms of logical
reasoning the correct answer can be derived. We
urge the community to investigate these problems
in future work in order to build practical, robust
and reliable conversational natural language inter-
faces to databases.

8 Acknowledgement

This work was supported in part by IBM under the
Sapphire Project at the University of Michigan.

https://yale-lily.github.io/cosql
https://yale-lily.github.io/cosql

1971

References
Yoav Artzi and Luke S. Zettlemoyer. 2011. Boot-

strapping semantic parsers from conversations. In
EMNLP.

Layla El Asri, Hannes Schulz, Shikhar Sharma,
Jeremie Zumer, Justin Harris, Emery Fine, Rahul
Mehrotra, and Kaheer Suleman. 2017. Frames: A
corpus for adding memory to goal-oriented dialogue
systems. CoRR, abs/1704.00057.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Ben Bogin, Jonathan Berant, and Matt Gardner. 2019.
Representing schema structure with graph neural
networks for text-to-sql parsing. In ACL.

Antoine Bordes and Jason Weston. 2017. Learning
end-to-end goal-oriented dialog. ICLR.

Pawel Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasic. 2018. Multiwoz - a large-
scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling. In EMNLP.

Yen-Chun Chen and Mohit Bansal. 2018. Fast abstrac-
tive summarization with reinforce-selected sentence
rewriting. In Proceedings of ACL.

Deborah A. Dahl, Madeleine Bates, Michael Brown,
William Fisher, Kate Hunicke-Smith, David Pallett,
Christine Pao, Alexander Rudnicky, and Elizabeth
Shriberg. 1994. Expanding the scope of the atis task:
The atis-3 corpus. In Proceedings of the Workshop
on Human Language Technology, HLT ’94, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng
Gao, Yun-Nung Chen, Faisal Ahmed, and Li Deng.
2016. End-to-end reinforcement learning of dia-
logue agents for information access. In ACL.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In Proceed-
ings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 731–742. Association for Computa-
tional Linguistics.

Catherine Finegan-Dollak, Jonathan K. Kummer-
feld, Li Zhang, Karthik Ramanathan Dhanalak-
shmi Ramanathan, Sesh Sadasivam, Rui Zhang, and
Dragomir Radev. 2018. Improving text-to-sql eval-
uation methodology. In ACL 2018. Association for
Computational Linguistics.

Stefan L. Frank. 2013. Uncertainty reduction as a mea-
sure of cognitive load in sentence comprehension.
Topics in cognitive science, 5 3:475–94.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao pei
Liu Xiao, Jian-Guang Lou, Ting Liu, and Dongmei
Zhang. 2019. Towards complex text-to-sql in cross-
domain database with intermediate representation.
In ACL.

John Hale. 2006. Uncertainty about the rest of the sen-
tence. Cognitive science, 30 4:643–72.

Charles T. Hemphill, John J. Godfrey, and George R.
Doddington. 1990. The atis spoken language sys-
tems pilot corpus. In Speech and Natural Language:
Proceedings of a Workshop Held at Hidden Valley,
Pennsylvania, June 24-27,1990.

Matthew Henderson, Blaise Thomson, and Jason D.
Williams. 2014. The second dialog state tracking
challenge. In SIGDIAL Conference.

Matthew Henderson, Blaise Thomson, and Steve
Young. 2013. Deep neural network approach for
the dialog state tracking challenge. In Proceedings
of the SIGDIAL 2013 Conference, pages 467–471,
Metz, France. Association for Computational Lin-
guistics.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung,
Jayant Krishnamurthy, and Luke Zettlemoyer. 2017.
Learning a neural semantic parser from user feed-
back. CoRR, abs/1704.08760.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 2073–2083, Berlin, Germany. Association for
Computational Linguistics.

Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. 2017.
Search-based neural structured learning for sequen-
tial question answering. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
1821–1831. Association for Computational Linguis-
tics.

Walter Lasecki, Ece Kamar, and Dan Bohus. 2013.
Conversations in the crowd: Collecting data for task-
oriented dialog learning. In In Proceedings of the
Human Computation Workshop on Scaling Speech
and Language Understanding and Dialog through
Crowdsourcing at HCOMP 2013.

Walter S. Lasecki, Mitchell Gordon, Danai Koutra,
Malte F. Jung, Steven P. Dow, and Jeffrey P. Bigham.
2014. Glance: Rapidly coding behavioral video
with the crowd. In Proceedings of the 27th An-
nual ACM Symposium on User Interface Software
and Technology, New York, NY, USA. ACM.

Ji Young Lee and Franck Dernoncourt. 2016. Sequen-
tial short-text classification with recurrent and con-
volutional neural networks. In Proceedings of the
2016 Conference of the North American Chapter of

http://aclweb.org/anthology/H90-1021
http://aclweb.org/anthology/H90-1021
https://www.aclweb.org/anthology/W13-4073
https://www.aclweb.org/anthology/W13-4073
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/P16-1195
https://www.microsoft.com/en-us/research/publication/conversations-crowd-collecting-data-task-oriented-dialog-learning/
https://www.microsoft.com/en-us/research/publication/conversations-crowd-collecting-data-task-oriented-dialog-learning/
https://doi.org/10.18653/v1/N16-1062
https://doi.org/10.18653/v1/N16-1062
https://doi.org/10.18653/v1/N16-1062

1972

the Association for Computational Linguistics: Hu-
man Language Technologies, pages 515–520, San
Diego, California. Association for Computational
Linguistics.

Roger P. Levy. 2008. Expectation-based syntactic
comprehension. Cognition, 106:1126–1177.

Fei Li and HV Jagadish. 2014. Constructing an in-
teractive natural language interface for relational
databases. VLDB.

Jiwei Li, Will Monroe, Alan Ritter, Daniel Jurafsky,
Michel Galley, and Jianfeng Gao. 2016. Deep re-
inforcement learning for dialogue generation. In
EMNLP.

Yunyao Li, Huahai Yang, and HV Jagadish. 2006.
Constructing a generic natural language interface for
an xml database. In EDBT, volume 3896, pages
737–754. Springer.

Kathleen R. McKeown. 1985. Text Generation: Using
Discourse Strategies and Focus Constraints to Gen-
erate Natural Language Text. Cambridge University
Press, New York, NY, USA.

Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui Yan,
and Zhi Jin. 2016. Natural language inference by
tree-based convolution and heuristic matching. In
ACL.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Tsung-Hsien
Wen, Blaise Thomson, and Steve Young. 2017.
Neural belief tracker: Data-driven dialogue state
tracking. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1777–1788. Asso-
ciation for Computational Linguistics.

Nikola Mrksic, Diarmuid Ó Séaghdha, Blaise Thom-
son, Milica Gasic, Pei hao Su, David Vandyke,
Tsung-Hsien Wen, and Steve J. Young. 2015. Multi-
domain dialog state tracking using recurrent neural
networks. In ACL.

Nikola Mrksic, Diarmuid Ó Séaghdha, Tsung-Hsien
Wen, Blaise Thomson, and Steve J. Young. 2017.
Neural belief tracker: Data-driven dialogue state
tracking.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’02, pages 311–318. Asso-
ciation for Computational Linguistics.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language inter-
faces to databases. In Proceedings of the 8th in-
ternational conference on Intelligent user interfaces,
pages 149–157. ACM.

P. J. Price. 1990. Evaluation of spoken language sys-
tems: the atis domain. In Speech and Natural Lan-
guage: Proceedings of a Workshop Held at Hidden
Valley, Pennsylvania, June 24-27,1990, pages 91–
95.

Antoine Raux, Brian Langner, Dan Bohus, Alan W.
Black, and Maxine Eskénazi. 2005. Let’s go pub-
lic! taking a spoken dialog system to the real world.
In INTERSPEECH.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30
- August 4, Volume 1: Long Papers, pages 1073–
1083.

Stephanie Seneff and Joseph Polifroni. 2000. Dia-
logue management in the mercury flight reservation
system. In Proceedings of the 2000 ANLP/NAACL
Workshop on Conversational Systems - Volume 3,
ANLP/NAACL-ConvSyst ’00, pages 11–16.

Tianze Shi, Kedar Tatwawadi, Kaushik Chakrabarti,
Yi Mao, Oleksandr Polozov, and Weizhu Chen.
2018. Incsql: Training incremental text-to-sql
parsers with non-deterministic oracles. arXiv
preprint arXiv:1809.05054.

Pei hao Su, Milica Gasic, Nikola Mrksic, Lina Maria
Rojas-Barahona, Stefan Ultes, David Vandyke,
Tsung-Hsien Wen, and Steve J. Young. 2016. On-
line active reward learning for policy optimisation
in spoken dialogue systems. ACL.

Alane Suhr, Srinivasan Iyer, and Yoav Artzi. 2018.
Learning to map context-dependent sentences to ex-
ecutable formal queries. In Proceedings of the Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 2238–2249. Association
for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Marilyn A. Walker, Alexander I. Rudnicky, Rashmi
Prasad, John S. Aberdeen, Elizabeth Owen Bratt,
John S. Garofolo, Helen F. Hastie, Audrey N.
Le, Bryan L. Pellom, Alexandros Potamianos, Re-
becca J. Passonneau, Salim Roukos, Gregory A.
Sanders, Stephanie Seneff, and David Stallard.
2002. Darpa communicator: cross-system results
for the 2001 evaluation. In INTERSPEECH.

Chenglong Wang, Po-Sen Huang, Alex Polozov,
Marc Brockschmidt, and Rishabh Singh. 2018.
Execution-guided neural program decoding. In
ICML workshop on Neural Abstract Machines and
Program Induction v2 (NAMPI).

https://doi.org/10.18653/v1/P17-1163
https://doi.org/10.18653/v1/P17-1163
http://aclweb.org/anthology/N18-1203
http://aclweb.org/anthology/N18-1203

1973

David HD Warren and Fernando CN Pereira. 1982. An
efficient easily adaptable system for interpreting nat-
ural language queries. Computational Linguistics,
8(3-4):110–122.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic,
Lina Maria Rojas-Barahona, Pei-Hao Su, Stefan
Ultes, David Vandyke, and Steve J. Young. 2016.
A network-based end-to-end trainable task-oriented
dialogue system. CoRR.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263. Association for Computational Linguis-
tics.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-
Asl, Caiming Xiong, Richard Socher, and Pascale
Fung. 2019. Transferable multi-domain state gener-
ator for task-oriented dialogue systems. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers). Association for Computational Linguistics.

Kun Xu, Lingfei Wu, Zhiguo Wang, Mo Yu, Liwei
Chen, and Vadim Sheinin. 2018. Sql-to-text gen-
eration with graph-to-sequence model. EMNLP.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sqlnet:
Generating structured queries from natural language
without reinforcement learning. arXiv preprint
arXiv:1711.04436.

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and
Thomas Dillig. 2017. Sqlizer: query synthesis from
natural language. Proceedings of the ACM on Pro-
gramming Languages.

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and
Dragomir Radev. 2018a. Typesql: Knowledge-
based type-aware neural text-to-sql generation. In
Proceedings of NAACL. Association for Computa-
tional Linguistics.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang,
Dongxu Wang, Zifan Li, and Dragomir Radev.
2018b. Syntaxsqlnet: Syntax tree networks for com-
plex and cross-domain text-to-sql task. In Proceed-
ings of EMNLP. Association for Computational Lin-
guistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir Radev. 2018c. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-SQL task. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern
Tan, Xi Victoria Lin, Suyi Li, Irene Li Heyang Er,
Bo Pang, Tao Chen, Emily Ji, Shreya Dixit,
David Proctor, Sungrok Shim, Vincent Zhang

Jonathan Kraft, Caiming Xiong, Richard Socher,
and Dragomir Radev. 2019. Sparc: Cross-domain
semantic parsing in context. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, Florence, Italy. Association for
Computational Linguistics.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In AAAI/IAAI, pages 1050–1055,
Portland, OR. AAAI Press/MIT Press.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial
grammars. UAI.

Rui Zhang, Tao Yu, He Yang Er, Sungrok Shim,
Eric Xue, Xi Victoria Lin, Tianze Shi, Caiming
Xiong, Richard Socher, and Dragomir Radev. 2019.
Editing-based sql query generation for cross-domain
context-dependent questions. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and 9th International Joint
Conference on Natural Language Processing. Asso-
ciation for Computational Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

Victor Zhong, Caiming Xiong, and Richard Socher.
2018. Global-locally self-attentive encoder for di-
alogue state tracking. In ACL.

A Appendices

This section provides description of dialog actions
in A.1, more details on baseline modifications and
hyperparameters in A.2, system response guides in
A.3, additional dialog examples in CoSQL dataset
in Figure 10 and 11, and the DB user (AMT turk-
ers) and the SQL expert (college computer science
students) annotation interfaces in Figure 6, 7, 8,
and 9.

A.1 Description of Dialog Acts
For the DB user, we define the following dialog
acts:

INFORM SQL The user informs his/her request
if the users question can be answered by SQL. The
system needs to write SQL.

INFER SQL If the users question must be an-
swered by SQL+human inference. For example,
users questions are are they..? (yes/no question) or
the 3rd oldest.... SQL cannot directly (or unneces-
sarily complicated) return the answer, but we can
infer the answer based on the SQL results.

http://arxiv.org/abs/1604.04562
http://arxiv.org/abs/1604.04562
https://doi.org/10.18653/v1/D17-1239

1974

AMBIGUOUS The users question is ambiguous,
the system needs to double check the user’s intent
(e.g. what/did you mean by...?) or ask for which
columns to return.

AFFIRM Affirm something said by the system
(user says yes/agree).

NEGATE : Negate something said by the system
(user says no/deny).

NOT RELATED The users question is not related
to the database, the system reminds the user.

CANNOT UNDERSTAND The users question
cannot be understood by the system, the system
asks the user to rephrase or paraphrase question.

CANNOT ANSWER The users question cannot be
easily answered by SQL, the system tells the user
its limitation.

GREETING Greet the system.

GOOD BYE Say goodbye to the system.

THANK YOU Thank the system.

For the system, we define the following dia-
log acts:

CONFIRM SQL The system creates a natural
language response that describes SQL and result
table, and asks the user to confirm if the system
understood his/her intention.

CLARIFY Ask the user to double check and
clarify his/her intention when the users question
is ambiguous.

REJECT Tell the user you did not under-
stand/cannot answer his/her question, or the user
question is not related.

REQUEST MORE Ask the user if he/she would
like to ask for more info.

GREETING Greet the user.

SORRY Apologize to the user.

WELCOME Tell the user he/she is welcome.

GOOD BYE Say goodbye to the user.

A.2 Modifications and Hyperparameters for
Baselines

CD-Seq2Seq We apply the model with the same
settings used in SParC without any changes.

SyntaxSQL-con We apply the model with the
same settings used in SParC without any changes.

Template-based We first create a list of SQL
query patterns without values, column and ta-
ble names that cover the most cases in the train
set of CoSQL. And then we manually changed
the patterns and their corresponding responses to
make sure that table, column, and value slots
in the responses have one-to-one map to the
slots in the SQL query. Once we have the
SQL-response mapping list, during the predic-
tion, new SQL statements are compared with
every templates to find the best template to
use. A score will be computed to represent the
similarity between the SQL and each template.
The score is computed based on the number of
each SQL key components existing in the SQL
and each template. Components of the same
types are grouped together to allow more flexi-
ble matching, like count, max, min are grouped
to aggregate. A concrete example of templates
is shown: SELECT column0 FROM table0 WHERE

column1 comparison0 value0. column0,1 and
table0 represent column name and table name
respectively. comparison0 represents one of
the comparison operator including >=, <=,

<,>,=,!=, and like. value0 represents a value
the user uses to constrain the query result.

Seq2Seq We train a word2vec embedding
model on the concatenation of the SQL query and
response output of the training data for the embed-
ding layer of our Seq2Seq model. We use an em-
bedding dimension of 128, hidden dimension of
256, a single-layer bi-directional LSTM encoder
and uni-directional LSTM decoder with attention.
We use a batch size of 32, clip the norm of the
gradient at 2.0, and do early stopping on the vali-
dation loss with a patience of 5. We perform de-
coding with greedy search.

Pointer-generator We follow the same settings
as in the Seq2Seq case with the addition of the
copy mechanism during training and testing.

TBCNN-pair The model is modified mainly on
the sentence embedding part and classifier part.
The input of the modified model is a user utter-
ance and the related column names. Therefore, we
replace one of the two sentence embedding mod-
ules with a database column name encoding mod-
ule, which generates representations of the col-

1975

umn names related to the sentence. The classi-
fier is modified by adding a label(user dialogue
act) number predicting module, which predicts the
number of the labels(user dialogue acts) of the
user utterance. The label number prediction mod-
ule is similar to the column number prediction
module in SQLNet.

A.3 System Response Guide
System response should be standard and profes-
sional. We follow the rules below to write re-
sponses for different system dialog action type:

CLARIFY ”Did you mean...?”, ”What did you
mean by...?”, or anything similar.

REJECT ”Sorry, I don’t have the answer to your
question...” or anything similar.

REQUEST MORE ”Do you want anything else?”
or anything similar.

CONFORM SQL We convert SQL written by us
back to natural language. (We should use the col-
umn names and values in the SQL). Our response
has to describe all information in the SQL inde-
pendently instead of referring to any previous con-
text or subject.

1. If the returned result can be combined with
the SQL description, combine them together
to generate the response. For example:

Given SQL:
SELECT AVG(SALARY) FROM INSTRUCTOR

Result Returned: 200k
Your Response:“The average salary of all in-
structors is 200k.”

2. If the returned result is too large and cannot
be combined with the SQL description, de-
scribe them separately. For example:

Given SQL:
SELECT AVG(T1.SALARY),T1.DEPARTMENT ID

FROM INSTRUCTOR AS T1 JOIN DEPARTMENT AS

T2 ON T1.DEPARTMENT ID = T2.ID GROUP BY

T1.DEPARTMENT ID

Result Returned: a long table
Your Response:“Here is the result table that
shows the average salary in each department.
For example, the average of CS professors is
250k.”

1976

Figure 6: DB User Interface

Figure 7: DB User Related Questions: a pop-up window when the user clicks highlighted ”related questions” in
the above interface.

1977

Figure 8: SQL Expert Interface

1978

Figure 9: Dialogue Review Interface

1979

D1 : Database about soccer containing 3 tables

Q2 :

S2 :
A2 : OU | FSU
R2 :

Q3 :

S3 :

A3 : OU
R3 :

What are their names? INFORM_SQL

The names of the colleges that have
enrollment values greater than 18000 are
OU and FSU

CONFIRM_SQL

SELECT cName FROM College WHERE enr > 18000

Which one has the higher enrollment? INFER_SQL

Among the results, OU has a higher
enrollment.

CONFIRM_SQL

SELECT cName FROM College WHERE enr > 18000 ORDER BY
enr DESC LIMIT 1

...

...

Figure 10: Part of a dialogue example with INFER SQL user dialog label

Figure 11: A complete dialogue example

