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Abstract
End-to-end sequence generation is a popular
technique for developing open domain dia-
logue systems, though they suffer from the
safe response problem. Researchers have at-
tempted to tackle this problem by incorpo-
rating generative models with the returns of
retrieval systems. Recently, a skeleton-then-
response framework has been shown promis-
ing results for this task. Nevertheless, how to
precisely extract a skeleton and how to effec-
tively train a retrieval-guided response gener-
ator are still challenging. This paper presents
a novel framework in which the skeleton ex-
traction is made by an interpretable matching
model and the following skeleton-guided re-
sponse generation is accomplished by a sep-
arately trained generator. Extensive exper-
iments demonstrate the effectiveness of our
model designs.

1 Introduction

Sequence-to-sequence (seq2seq) neural models
(Shang et al., 2015; Vinyals and Le, 2015; Sor-
doni et al., 2015; Serban et al., 2016; Li et al.,
2016a) have been popular for single-turn dialogue
response generation. However, many of the gen-
erated responses (e.g., “I don’t know” and “I think
so”) appear to be generic and dull (safe response
problem) (Li et al., 2016a). This problem is
avoided in traditional retrieval systems (Ji et al.,
2014; Hu et al., 2014) by preceding the selection
of informative and engaging responses.

It is of interest to benefit from both the gener-
alization capacity of the seq2seq models and the
information richness of the retrieved responses.
Following the standard encoder-decoder frame-
work, early attempts have either used an extra en-
coder for the retrieved response (Song et al., 2016;
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author.

Query: How is your day today?

Response: Great, I get promotion today.
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Figure 1: The common problem for training a retrieval-
guided generation model in previous work. The model
is forced to neglect the retrieved response even though
it is a proper response, due to the mismatch between
the retrieved response and the target response.

Pandey et al., 2018; Wu et al., 2019) or a uni-
fied encoder for the concatenation of the query
and the retrieved response (Weston et al., 2018).
To prevent the inflow of erroneous information,
Cai et al. (2019) proposed a general framework
that first extracts a skeleton from the retrieved re-
sponse and then generates the response based on
the extracted skeleton. Despite their differences, a
common issue is that the generation model easily
learns to ignore the retrieved response entirely and
collapses to a vanilla seq2seq model. As shown
in Figure 1, this happens with improper training
instances. Given the large space of possible re-
sponses, it happens frequently that a retrieved re-
sponse (extracted skeleton) is suitable for respond-
ing to the query, but inconsistent with the current
target response.1The generation model is thus mis-
takenly led to be inclined to neglect the retrieval.

To address the above problem, we present the
matching-to-generation method, a more flexible

1Previous studies (Weston et al., 2018; Wu et al., 2019;
Cai et al., 2019) alleviated the problems by putting hard
constraints on the data, which, however, greatly reduces the
amount of usable data (e.g., Cai et al. (2019) required the Jac-
card distance between the retrieved response and the target
response should be in the range [0.3, 0.7]).
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framework for retrieval-guided response genera-
tion. This framework consists of an interpretable
matching model for skeleton extraction and a
skeleton-guided response generator for response
generation. One novel characteristic of our pro-
posed framework is that the training of the skele-
ton extractor (i.e., the matching model) and the re-
sponse generator is decoupled, yet they work co-
operatively under the help of a retrieval system.
Figure 2 depicts the training and inference pro-
cedures of our framework. During training, the
skeleton-guided response generator is trained in a
similar manner as the denoising autoencoder (Vin-
cent et al., 2008), where the model learns to re-
cover an input pattern that is partially corrupted.
Specifically, we employ a random mechanism for
generating the skeletons used for training. The
generated skeletons are extracted from their cor-
responding responses with some deliberate distur-
bance. In this way, we circumvent the aforemen-
tioned problem of improper training instances in
previous work. Meanwhile, the random mecha-
nism also simulates the actual inference environ-
ment where the quality of the input skeleton varies
among different queries due to the instability of
the retrieval system and the skeleton extractor. The
diversity of the training skeletons helps produce a
robust response generator that is capable of han-
dling different situations.

Note the separation of the training of skeleton
extraction and response generation requires an ad-
ditional training objective for the skeleton extrac-
tor. Given there is no explicit response skeleton in
general query-response pairs for training, we pro-
pose to use an interpretable matching model for
matching skeleton extraction. We consider that the
matching skeleton for a given query-response pair
should be the sub-sequence of the response that
is particularly useful in matching the query. The
designed interpretable matching model is able to
reveal the fine-grained matching scores at token-
level whereas it is trained by ordinary query-
response pairs.

Experiments show that our method significantly
improves the informativeness of the generated re-
sponses as well as their relevance to the corre-
sponding queries. In addition, we conduct exten-
sive ablation studies to quantify the improvement
from different model designs.

To summarize, our contributions are as follows:

• We propose a flexible framework for

Training

Inference

query + response
random responses

Interpretable 
Matching matching scores

query
Generatorrandom skeleton response

random extraction

query Interpretable 
Matching

IR retrieved response

matching
skeleton Generator response

Figure 2: Flow charts during training and inference.

retrieval-guided dialogue response gen-
eration. The training of our approach is
independent of the underlying retrieval
system.

• We propose an interpretable matching model
for matching skeleton extraction.

• We propose to train a skeleton-guided re-
sponse generator that can handle skeletons
with different qualities.

2 Models

The whole framework consists of two compo-
nents: an interpretable matching model and a
skeleton-guided response generator. During in-
ference, the matching model is used to derive a
matching skeleton by explicitly selecting a sub-
sequence of a retrieved response. The response
generator then takes the generated skeleton as an
additional input and makes necessary editions to
obtain a complete and appropriate response.

2.1 Interpretable Matching Model

The goal of the interpretable matching model is to
reveal token-level matching information between
a query-response pair thus a matching skeleton can
be derived from the response. However, the train-
ing of the matching model does not rely on such
fine-grained annotations. Instead, it is trained to
estimate the sequence-level quality of a response
for a given query, as an ordinary query-response
matching model. The key is that the sequence-
level matching score can be decomposed into a
set of token-level scores, which will be illustrated
later.

The overall architecture of our matching model
is illustrated in Figure 3. It consists of two en-
coders, one for the query and one for the re-
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sponse. Both encoders are based on the Trans-
former architecture (Vaswani et al., 2017). For a
query q = (q1, q2, . . . , qn) and a response r =
(r1, r2, . . . , rm), where n and m are the query
length and the response length respectively, we
first insert a special token at the beginning of
each input sequence. The transformer encoders
results in two sequences of hidden state vectors
q0,q1, . . . ,qn and r0, r1, . . . , rm, where q0 and
r0 are considered as the aggregate summary for
the query and the response respectively.

We then use self-attention mechanism for ac-
quiring the final query representation xq and the
final response representation xr. For instance, to
compute the response representation xr, we use
the sequence-level summary r0 for weighting the
different parts of the input response. First, the
sequence-level summary r0 is projected to another
vector space by a linear transformation:

rw =Wwr0 + bw

where rw is the weight vector, and Ww and bw

are learnable parameters. The attention score ωi

of the i-th token in the response is then computed
as a dot-product between the weight vector rw and
the token representation ri:

ωi =
exp(rw · ri)∑m

k=1 exp(r
w · rk)

The response representation xr is calculated as the
weighted sum of the Transformer encoder outputs
as well as their initial vector representations (i.e.,
the sum of tokens and position embeddings)2:

xr =
m∑
k=1

ωi(ri + eri)

The self-attention mechanism for the query has
the identical architecture but uses a different set of
parameters. Finally, the pair-wise score is calcu-
lated by a bilinear function of xq and xr:

s(q, r) = xq
TW sxr

where W s is a trainable parameter. The above
equation can be rewritten by a decomposition of

2We found that adding the initial vector representations
eri to be critical in keeping the weighted elements reflect the
corresponding local information. Without this operation, the
Transformer encoder outputs ri tends to be constant regard-
less of the position i, which indicates that the point informa-
tion about a specific input part is overwhelmed by the global
information.
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Response: I love superhero movies. Batman is my favorite.

Query: Would you like to watch Captain America?

… superhero …movies Batman.
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Figure 3: Architecture of the interpretable matching
model. The query and response are encoded separately.
We compute all attention values for each token simulta-
neously. The final score is computed by a bilinear func-
tion between query representation and response repre-
sentation. Different colors indicate the different values
of the local scores.

the ingredients of xr:

s(q, r) = xq
TW sxr

= xq
TW s

m∑
k=1

ωk(rk + erk)

=
m∑
k=1

ωkxq
TW s(rk + erk)

Let sk = xq
TW s(rk + erk), we arrive at:

s(q, r) =

m∑
k=1

ωksk

Note that for a given query, ωk and sk are func-
tions of the response r and the position index k
only. According to the formulation, we see that sk
and ωk are largely impacted by the local informa-
tion at rk. Therefore, sk, ωk can be interpreted as
the local matching score and the local importance,
respectively, followed by that s(q, r) is a weighted
sum of all local scores.

Once the matching model has been well-trained,
we can use ωk and sk to identify the most informa-
tive and relevant parts of a retrieved response. In
experiments, we show a simple heuristic rule can
effectively pick up the skeletons.
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2.2 Skeleton-guided Response Generator
The skeleton-guided response generator is devised
for generating a fluent and adequate response
based on the current query and an input skeleton.
To ensure the skeleton-guided response generator
does make use of the input skeleton, we extract the
training skeleton from the ground-truth response
by some randomized strategies. To prevent the
response generator from mindlessly copying, we
deliberately vary the length and the quality of the
training skeletons to create a diverse set of training
instances. We note the response generator behaves
like a denoising autoencoder (Vincent et al., 2008)
with an extra input, i.e. the query. In this way, we
learn a robust response generator that is compati-
ble with different types of skeletons.

Specifically, for any golden query-response pair
(q, r), we randomly generate a training skeleton
through the following procedures.3

• All stop words in r are masked in advance.
The rest tokens are masked at a mask rate γ.
90% of the time, γ is set to 0.7. 10% of the
time, γ is uniformly sampled in the range of
[0, 1].

• Instead of always replacing the masked to-
ken with a special placeholder token, 20%
of time, we replace the token with a random
word uniformly sampled from the total vo-
cabulary.

• At a chance of 10%, we randomly shuffle the
word order in the training skeleton.

The response generator consists of one encoder for
the query q, one encoder for the skeleton s and
one decoder for the response r, all implemented
by LSTM networks (Hochreiter and Schmidhu-
ber, 1997). The decoder interacts with the two en-
coders through two separate attention mechanisms
accordingly.

2.3 Training
The matching model and the response generator
are trained separately. Previous studies (Shang
et al., 2018; Tao et al., 2018; Mou et al., 2016)
formulated the training of matching models as bi-
nary classification learning, where negative sam-
pling is used to free human annotation. Specifi-
cally, for query q and golden response r+, a nega-
tive response r− can be randomly sampled from

3We did not tune much the hyper-parameters in the ran-
dom strategies as the given setting just works fine.

other responses in the training set. We extend
the binary classification setting into a learning-
to-rank fashion for improved performance. Con-
cretely, at each training mini-batch, we randomly
sample M query-response pairs. Then we com-
pute the matching scores between all combina-
tions of queries and responses in the mini-batch.
As a result, all these scores form a scoring matrix
S ∈ RM×M , where Sij is the score between the
i-th query and the j-th response.

Inspired by Henderson et al. (2017); Lin et al.
(2017), we use softmax to compute the ranking
scores for candidate responses. Intuitively, for
each query, the matching model should give the
highest score to the golden response over other
M − 1 responses (i.e., always rank the golden re-
sponse at the first place). Thus, we define the train-
ing loss as

L(θ) = −
M∑
k=1

log softmax(Sk:)k (1)

where Sk: is k-th row of S. Label smoothing
(Szegedy et al., 2016) of value εls = 0.1 is used to
improve the performance. Note although there are
M ×M scores to compute, each query and each
response only needs to be modeled once thanks
to the independent encoding of xq and xr. Ex-
periments show that the ranking scheme outper-
forms the binary classification scheme by a large
margin when evaluated by hits@1 metric with 127
randomly sampled responses.

The response generator is trained by the stan-
dard maximum likelihood estimate.

2.4 Discussion
We note that the most related work is Cai et al.
(2019) that also employs a pipeline approach
for skeleton extraction and response generation.
However, there are some major distinctions in
our framework. First, their skeleton extractor is
pre-trained by the lexical overlap between the re-
trieved response and the golden response. How-
ever, it is not a proper objective since the mismatch
between the retrieved response and the golden
response does not imply a mismatch to the tar-
get query. In contrast, our interpretable match-
ing model allows extracting a more precise skele-
ton in semantics. Second, the training of the re-
sponse generator relies on the output of the learned
skeleton extractor, which is by no means aimed for
generating the current response, causing a trained
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generator to severely ignore the skeleton. Differ-
ently, our response generator is trained with target-
specific skeletons.

3 Experiments

3.1 Dataset and Evaluation Metrics

We use a single-turn conversation dataset col-
lected from popular Chinese social websites such
as Douban and Weibo.4 The dataset contains about
six millions query-response pairs. Throughout
all experiments, the retrieval system we adopted
is a publicly available chatbot API.5 The related
resources can be found at https://github.
com/jcyk/seqgen.

It has been argued that existing automatic met-
rics such as BLEU and METEOR cannot authen-
tically reflect the quality of dialog response. Thus,
the main evaluation is done by human annotators.
Specifically, we evaluate the quality of a response
on three criteria: informativeness, relevance, and
fluency. Each aspect is rated on a five-point scale,
where 1, 3 and 5 indicate unacceptable, moderate
and excellent performance respectively. 2 and 4
are used by annotators in unsure cases. A set of
300 different query samples are used for evalua-
tion. We recruit five experienced annotators and
take the average score among them. Besides, we
also use dist-1/dist-2 (Li et al., 2016a) to exam-
ine a model’s ability for generating diverse re-
sponses. which is the number of distinct uni-
grams/bi-grams divided by the total number.

3.2 Compared Methods

To show the effectiveness of our proposed meth-
ods, we compare it with the following methods.

• Retrieval The underlying retrieval system
used in our experiments.

• Seq2Seq The basic Seq2Seq model (Bah-
danau et al., 2014; Luong et al., 2015) that
only takes the query as input.

• Seq2Seq-MMI A variant of the basic Seq2Seq
model that uses Maximum Mutual Informa-
tion (MMI) for filtering out generic responses
(Li et al., 2016a). Concretely, a response-to-
query Seq2Seq model is trained and used to

4Douban https://www.douban.com/ and Weibo
https://www.weibo.com/

5https://ai.qq.com/product/nlpchat.
shtml

rerank the outputs of the top-100 responses
of Seq2Seq.

• RetrieveNRefine++ The best performing
model used in Weston et al. (2018), which ap-
pends the retrieved response to the query in a
basic Seq2Seq model.6 The model’s output
will be overwritten by the retrieved response
once they have a large word overlap (Jaccard
distance > 0.6).

• EditVec The model proposed in Wu et al.
(2019). In addition to the retrieved response,
the lexical difference (insert words and delete
words) between the query and the retrieved
query is also encoded (in a so-called edit vec-
tor) to feed the decoder.

• Skeleton-Lex The best method presented in
Cai et al. (2019). We refer to it as Skeleton-
Lex because its skeleton extractor is pre-
trained by the lexical overlap between the re-
trieved response and the golden response.

3.3 Implementation Details
For encoders and decoders in all above baselines,
they are implemented by LSTM networks (bidi-
rectional for encoders and unidirectional for de-
coders) (Hochreiter and Schmidhuber, 1997) with
the number of layers and hidden size equal to 2 and
500. The word embeddings are randomly initial-
ized, of which the dimension is 300. Our response
generator follows the same settings. The skeleton
extractor is implemented by 2-layer Transformer
encoder (Vaswani et al., 2017), of which the num-
ber of heads and hidden size is 8 and 512. In ex-
periments, we use a simple heuristic rule for ex-
tracting skeletons. First, we remove all words with
a negative local score sk. Then we compute the av-
erage score of the rest part. Lastly, words with a
score below the average are also removed.

As the retrieval system can potentially return a
large set of results, we allow retrieval-guided gen-
eration models (both baselines and ours) make use
of the top-10 retrieved results both in training and
testing. Therefore, during testing, 10 responses
are generated for each query. They are then ranked
by the matching model proposed in Section 2.1
and the highest-scored one is used for evaluation.7

6We take a slightly different approach by treating the two
inputs as independent sources to do attention over, as it is also
suggested by the original authors.

7We train another matching model (not the one we used
as skeleton extractor).

https://github.com/jcyk/seqgen
https://github.com/jcyk/seqgen
https://www.douban.com/
https://www.weibo.com/
https://ai.qq.com/product/nlpchat.shtml
https://ai.qq.com/product/nlpchat.shtml
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Models Informativeness Relevance Fluency Dist-1(%) Dist-2(%)
Retrieval 2.65 (0.90)† 2.58 (0.86) 2.96 (0.72) 49.10 84.19
Seq2Seq 2.01 (0.65) 2.58 (0.53) 2.71 (0.43) 30.38 54.52

Seq2Seq-MMI 2.47 (0.70) 2.79 (0.67) 2.99 (0.61) 30.98 62.85
RetrieveNRefine++ 2.30 (0.79) 2.62 (0.63) 2.82 (0.51) 29.83 61.07

EditVec 2.29 (0.61) 2.62 (0.60) 2.83 (0.47) 35.30 67.57
Skeleton-Lex 2.45 (0.61) 2.80 (0.56) 2.99 (0.46) 25.70 56.61

Ours 2.69 (0.87) 3.11 (0.55) 3.20 (0.55) 49.01 80.36

Table 1: Human scores on response quality, depicted in three aspects: informativeness, relevance, and fluency,
with standard deviation in parentheses. Sign tests on human scores show that our method is significantly better
than all other methods with p-value <0.01 with the only exception marked by †. We also present dist-1 and dist-2
for diversity assessment.

3.4 Main Results

The evaluation results are given in Table 1. They
show that our method outperforms all baseline
methods in all three human evaluation aspects.
Surprisingly, the informativeness score is even
slightly better than the underlying retrieval system,
which indicates the retrieved information has been
effectively utilized. It can also be verified by the
automatic metrics (dist-1 and dist-2), our genera-
tion model is the only one that achieves close per-
formance to that of the retrieval system.

For the relevance score, the retrieval-
independent Seq2Seq-MMI establishes a strong
baseline. As for retrieval-guided generation,
skeleton-guided methods are better than those
who use completely retrieved responses, which
confirms that the introduction of the intermediate
skeleton prevents the inflow of irrelevant infor-
mation. Furthermore, our method advances the
performance of Skeleton-Lex by a large margin,
which partly demonstrates that the skeletons
extracted by our deep semantic matching model
are more precise.

For fluency, our method also achieves much bet-
ter performance than all baseline methods. We at-
tribute the remarkable improvement to the unique
training fashion for our response generator. Dur-
ing training, our response generator receives a di-
verse set of probably noisy skeletons, which im-
pels it to learn the error correction and better lan-
guage organization.

3.5 More Analysis

To further quantify the contributions made by dif-
ferent components in our model, we turn to ab-
lation tests. Generally, we try to substitute each
component of our model with other possible coun-

Skeletons Info. Relevance Fluency
Ours 2.69 3.11 3.20

Lexical 2.62 2.92 3.05
keywords 2.56 2.90 3.03

PMI 2.53 2.88 3.02

Table 2: Ablation study on the skeleton extractor. Info.
is short for informativeness in this and following tables.

terparts. The detailed analysis is given below.
First, we would like to see if the matching skele-

ton extracted by our interpretable architecture is
beneficial. In order to examine this, we replace our
skeleton extractor by several different approaches.

• Lexical We use the skeletons extracted by the
skeleton extractor in Skeleton-Lex.

• PMI Point mutual information (PMI) is a
popular measure used for finding collocations
and associations between words. We com-
pute the PMI between query word and re-
sponse word through statistics on the training
corpus. For a word in the retrieved response,
we score it by the sum of the PMIs between it
and all words in the target query. Words with
the highest scores form the skeleton.

• Keywords We generate a skeleton by preserv-
ing the most informative words in the re-
trieved response. Specifically, the words with
the highest TF-IDF values are preserved and
the others are removed.

For a fair comparison, the lengths of the skele-
tons (the number of preserving words) generated
by PMI and Keywords are kept as the same with
the one generated by our skeleton extractor. In
this sense, the comparison with the last two ap-
proaches shows how good the token-level score sk
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Model Variants Info. Rel. Flu.
Ours 2.69 3.11 3.20

Matching + C19’s RG 2.46 2.72 2.89
C19’s SE + Generator 2.62 2.92 3.05

Cai et al. (2019) 2.45 2.80 2.99

Table 3: A systematic comparison of different compo-
nent combinations, where C19’s SE and C19’s RG are
short for Cai et al. (2019)’s skeleton extractor and re-
sponse generator respectively.

is in selecting the most useful words, compared to
statistical values such as TF-IDF and PMI.

The result is in shown Table 2. As seen, both
two learnable skeleton extractors give better re-
sults than non-parametric methods, indicating the
task of skeleton extraction is non-trivial and re-
quires deep reasoning. Our semantic-inspired
model is far ahead of others in all aspects, while
Lexical only has a notable improvement in infor-
mativeness compared to statistical methods. This
suggests that the skeleton extracted by Lexical has
a relatively low precision, leading to moderate rel-
evance. In addition, it might be a little bit sur-
prising to see that PMI and keywords give almost
the same performance on all three metrics, telling
a given query is not that necessary. However, we
found lots of skeletons proposed by PMI are iden-
tical to those of keywords. We attribute it to that
the keywords in r are often also the keywords in
differentiating its context.

To test the ability of the skeleton-based re-
sponse generator, we use the existing alternative
trained in Skeleton-Lex, which also takes a skele-
ton and input query as input. The result displays
on how good our response generator is at trans-
forming a skeleton to a proper response.

The results are shown in the first block of Ta-
ble 3. We see a clear decline in performance after
switching to the response generator of Skeleton-
Lex. We conjecture that the big gap is caused by
that their response generator is trained with the
output of their skeleton extractor, thus it is highly
biased to their specific skeleton extractor and can-
not work well with others. This result motivates
us to present a systematic examination of differ-
ent component combinations, as shown by the full
content of Table 3. As seen, our response gener-
ator is less sensitive to the underlying skeletons.
The result of combining our response generator
and their skeleton extractor is slightly below our

Variants Info. Relevance Fluency
ours 2.69 3.11 3.20

Seq2Seq-MMI 2.64 3.02 3.14

Table 4: Ablation study on the ranker.

full mode, but even higher than their full model.
Lastly, we investigate the improvement brought

by our ranker. To this end, we replace our ranker
with the seq2seq-MMI model (use the sum of the
forward and backward generation probability of
re-ranking). The results are shown in Table 4.
As we can see, our matching model shows supe-
rior capability in selecting the best response, espe-
cially in terms of relevance.

3.6 Case Study

We also present some examples generated by dif-
ferent methods in Table 5. In the first case, the
retrieved utterance is very specific with elaborated
details. However, it is not a reasonable response
due to the sudden topic drift. While other methods
directly ignore the retrieved response, our method
makes an informative and fluent response by using
some useful details. In the second case, our skele-
ton extractor again successfully locates the most
informative and relevant parts of the retrieved re-
sponse, the response generator then chains them
together and generate a meaningful response. In
the third case, the retrieved response is also good
but not fluent. The skeleton extracted by our skele-
ton extractor contains a useless word, yet our re-
sponse generator can ignore the mistake and gen-
erate a fluent and comforting response. We can
also see another retrieval-guided method (EditVec)
also attempt to use the retrieved response but cap-
ture the wrong parts.

4 Related Work

Open domain dialog system has been a long goal
for the NLP community since ELIZA (Weizen-
baum, 1966). Early data-driven work uses infor-
mation retrieval techniques (Ji et al., 2014; Hu
et al., 2014). Recently, end-to-end neural se-
quence generation (Vinyals and Le, 2015; Serban
et al., 2016; Li et al., 2016a; Sordoni et al., 2015)
has attracted the most attention. A major issue
of such end-to-end sequence generation method
is the safe response problem. The generated re-
sponses tend to be universal and unengaging (e.g.,
“I don’t know”, “I think so” etc.). One of the rea-
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Query 喜欢长头发的女生 I like girls with long hair
Retrieved response 可以 把 头发 后面 汤 大 卷 , 前面 是 直 刘海 , 这样 看 的 很 可爱

You can try perming the hair , hair with curly ends and straight bangs is very cute.

Ours 我也喜欢长头头头发发发的女生,卷卷卷了直直直刘刘刘海海海,头发就不好看了 I also like girl with long hair,
I think once the straight bangs are curled, it doesn’t look good any more.

Seq2Seq-MMI 我也喜欢长头发的女生 I also like girls with long hair.
RetrieveNRefine++ 我喜欢长头发的女生 I like girls with long hair.
EditVec 我也喜欢长头发的女生 I also like girls with long hair.
Skeleton-Lex 我喜欢长头发的女生 I like girls with long hair.

Query 我提现怎么还没到 Why hasn’t my withdrawal arrived yet?

Retrieved response 就是 提现 到 你 绑定 的 银行卡 上 了 Withdrawal is in the bound bank card .
Ours 你提提提现现现的时候绑绑绑定定定了银银银行行行卡卡卡吗 Have you bounded the bank card when withdrawing ?
Seq2Seq-MMI 我提现也到了 My withdrawal has arrived too.
RetrieveNRefine++ 你要支付宝干嘛 Why do you need Alipay?
EditVec 你是提现的吗 Do you want to withdraw?
Skeleton-Lex 你不是已经到了吗 Haven’t you arrived ?

Query 我月经不太规律 I have irregular periods.
Retrieved response 去 看 医生 啊 . 最 好看 中医 , 挺准 的 , 别 不好意思 Go to see a doctor ,

best see a traditional Chinese doctor . Pretty accurate , don’t be shy.

Ours 看医医医生生生吧,最最最简单的方法就是中中中医医医调理一下了 See a doctor, the easiest way is with
Chinese medicine recuperation.

Seq2Seq-MMI 我也不规律 I am irregular too.
RetrieveNRefine++ 有啥不规律的 What is irregular?
EditVec 有啥不好意思的 Why you are shy?
Skeleton-Lex 我也不规律 I am irregular too.

Table 5: Example responses from different models, as well as a visualization of the skeleton extraction in our
model. Darker color indicates bigger matching scores and the words being selected for skeleton are in red boxes.

sons is that for most queries, the set of possible re-
sponses is considerably large and the query alone
cannot specify an informative response. Various
approaches (Li et al., 2016b; Xing et al., 2017;
Ghazvininejad et al., 2018; Zhou et al., 2018; Liu
et al., 2018; Bi et al., 2019; Tian et al., 2019; Gao
et al., 2019) have been proposed for this problem.

Some previous studies have been about using
the results of traditional retrieval systems for in-
formative response generation. Song et al. (2016)
introduced an extra encoder for the retrieved re-
sponse. The encoder’s output, together with that
of the query encoder, is utilized to feed the de-
coder. Weston et al. (2018) simply concatenated
the original query and the retrieved response as
the input to the encoder. Instead of solely using
the retrieved response, Wu et al. (2019) further
introduced to encodes the lexical differences be-
tween the current query and the retrieved query.
Besides, Pandey et al. (2018) proposed to weight
different training instances by context similarity,
yet their work is done in close domain conversa-
tion. The idea of editing some prototype materials
rather than generating from scratch has also been

explored in other text generation tasks. For ex-
amples, Guu et al. (2018) proposed a prototype-
then-edit model for unconditional text generation.
Wiseman et al. (2017, 2018) used either fixed tem-
plate or learned templates for data-to-text genera-
tion. Xu et al. (2018) conditioned the next sen-
tence generation on a skeleton that is extracted
from the source input and the already generated
text in storytelling. Also for storytelling, Clark
et al. (2018) proposed to extract the entities in sen-
tences and use them as additional input. Gu et al.
(2018) uses retrieved translation as a reference to
the generative translation model.

5 Conclusion

In this paper, we presented a novel framework,
matching-to-generation, for retrieval-guided re-
sponse generation. Our method uses an inter-
pretable matching model for response skeleton ex-
traction and a robust response generator for re-
sponse completion. The two components are
trained separately to allow more flexibility. Exper-
iments show our method significantly outperforms
several strong baselines.
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