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Abstract

The neural encoder-decoder models have
shown great promise in neural conversation
generation. However, they cannot perceive
and express the intention effectively, and
hence often generate dull and generic re-
sponses. Unlike past work that has focused
on diversifying the output at word-level or
discourse-level with a flat model to alleviate
this problem, we propose a hierarchical gen-
eration model to capture the different levels
of diversity using the conditional variational
autoencoders. Specifically, a hierarchical re-
sponse generation (HRG) framework is pro-
posed to capture the conversation intention in a
natural and coherent way. It has two modules,
namely, an expression reconstruction model
to capture the hierarchical correlation between
expression and intention, and an expression at-
tention model to effectively combine the ex-
pressions with contents. Finally, the training
procedure of HRG is improved by introducing
reconstruction loss. Experiment results show
that our model can generate the responses with
more appropriate content and expression.

1 Introduction

Neural conversation generation (Xu et al., 2017;
Zhang et al., 2018), focusing on responding to hu-
mans intelligently on a variety of topics, has drawn
great attention from both academic and indus-
try. The sequence-to-sequence model (Seq2Seq)
(Sutskever et al., 2014) is one type of neural gen-
eration model that maximizes the probability of
generating a response given the dialogue context.
It enables the incorporation of rich context to gen-
erate coherent responses in an unsupervised man-
ner. However, it was found that Seq2Seq models
suffer from so-called safe response problem (Xu
et al., 2017) , i.e., they tend to generate some dull
and generic repetitive responses (e.g., “I think so”,
“I don’t know’, etc.), rather than meaningful and

conscious expression. Xu et al. (2017) ascribed
this to the fundamental nature of statistical models
since the distribution of most pieces of informa-
tion are relatively sparser when compared to the
safe response patterns in the open domain conver-
sations. Some works attempted to improve the ar-
chitecture of Seq2Seq models, including introduc-
ing reinforcement learning (Zhang et al., 2018),
encouraging responses that have long-term pay-
off, etc. The other important reason is that the
response generation model cannot express the in-
tention and emotion internally. Thus, one line of
research has focused on forcing the model to simu-
late some human’s skills by augmenting the input
with rich meta information. For example, some
recent works biased the responses to some spe-
cific personas (Li et al., 2016b) or emotions (Hu-
ber et al., 2018).

Usually, in the process of human conversation,
a speaker participates in the dialogue including the
following steps. The speaker is firstly required to
decide what the intention is to reflect the inner
feelings or opinions. In the speaker’s knowledge
base, there may be varieties of appropriate expres-
sions that can be found to represent his current in-
tention. Therefore, a meaningful response can be
produced by choosing one of the expressions and
filling it with relevant content. For example, if a
man wants to ask the way to the Park, he first needs
to select an appropriate expression from a clus-
ter of the expressions, e.g., “Where is the . . . ?”,
“How do I get to the . . . ?” and “Is the . . . far from
here?”, and then replaces “. . . ” as the destination,
i.e., the Park. As a crucial feature in natural con-
versation, dialog acts (Poesio and Traum, 1998)
have been widely used in the dialogue managers
to represent the intentions. Existing works intro-
duce dialog acts to label a cluster of responses and
a latent variable is learned to select a dialog act
for response generation (Zhao et al., 2017; Serban
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et al., 2017a). However, it is not effective to cap-
ture the output diversity since the natural corre-
lation between the expression patterns and dialog
acts is not learnt. Intuitively, another latent level
can be introduced to generate different expressions
from the same dialog act, and a hierarchical struc-
ture can be used to model the response generation
process. That is, the knowledge base is first con-
structed over the pairs of expressions and dialog
acts to capture the latent correlation between them.
Then, varieties of expressions can be selected from
the knowledge base to be filled with the response
content based on the latent correlation.

To learn the hierarchical model, it is quite chal-
lenging in large-scale conversation generation due
to the following reasons. First, the semantic world
is populated with a vast number of expressions,
each of which corresponds to a specified label
that reflects a kind of dialog act. Obtaining high-
quality expression-act data is impractical partic-
ularly in open domain conversations. Second, it
is difficult to incorporate expression and content
into the generation model in a nature and coher-
ent way because they have different semantic rep-
resentation patterns. Last, this process cannot be
efficiently optimized using stochastic gradient de-
scent (SGD) akin to backpropagation on feedfor-
ward neural networks.

To tackle the challenges, we propose to take ad-
vantage of the hierarchical nature of response gen-
eration. In particular, we investigate: (1) how to
automatically learn a hierarchical model to natu-
rally capture the response generation process; (2)
how to adaptively learn and adjust the influence
ratio between expression and content. Our solu-
tions to these questions result in a new architec-
ture for neural response generation. In particular,
a novel hierarchical response generation (HRG)
framework is proposed to effectively capture the
process of response generation. An expression re-
construction model with a two-level probability
structure is introduced to randomly generate the
expressions, and an expression attention model is
proposed to effectively fill the expressions with
content. Finally, an efficient training method is
proposed to learn the model within the framework
of conditional variational autoencoders (CVAE)
(Doersch, 2016). The main contributions are out-
lined as:

• We propose to investigate the problem of
generating variety and meaningful responses

by imitating the human response process with
a hierarchical response generation model.

• We propose an end-to-end framework to in-
corporate the expression and response con-
tent into the dialog generation. Our model is
interpretable and even controllable compared
to traditional generation model.

• We empirically demonstrate that our ap-
proach can generate responses with better ex-
pressions and content than traditional gener-
ation model.

2 Problem Statement

Our problem is formulated as follows: Given a di-
alog context C and a dialog act a of the response
to be generated, the goal is to generate a response
y = (y1, y2, ..., yn) that is coherent with the di-
alog act a. Essentially, the model estimates the
probability: P (y|C, a) =

∏
t P (yt|y<t, C, a). A

simple implementation is to directly embed the act
information into the Seq2Seq model. However, as
shown in our experiments, it still suffers from safe
response problem.

In this paper, we propose a novel hierarchical
model to imitate the human thinking process in
the conversation generation. The hierarchical gen-
eration process is: (1) for each dialog act a, a
set Ω(a) is constructed to contain all the corre-
sponding expressions of a; (2) to generate an ex-
pression, a dialog act a is first selected, and then
an appropriate expression e is also selected from
Ω(a); (3) a response is obtained by filling the ex-
pression e with relevant content according to the
dialog context C. This hierarchical model allows
us to express the responses with diverse expres-
sion templates of the same dialog act by drawing
different samples from Ω(a). However, in addi-
tion to the difficulty of constructing high-quality
set Ω(a), it is also needed to maximize the proba-
bility of each y in the training set with the objec-
tive: P (y|C, a) =

∫
e∈Ω(a) P (y|C, e) de, which is

also difficult to compute by the numeric methods.
In our approach, the expression e is modeled as

a conditional distribution over the dialog act a, i.e.,
pθ(e|a). The response is then generated by feeding
the expression e obtained based on pθ(e|a) into
the model, i.e., P (y|C, e), e ∼ pθ(e|a). Now, the
training objective is simplified as follows:

P (y|C, a) =

∫
P (y|C, e) pθ(e|a) de. (1)
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This objective can be transformed as the varia-
tional lower bound of CVAE (Doersch, 2016), and
thus can be optimized efficiently. Specifically, the
variational approximation qφ(e|y) is constructed
to approximate the intractable posterior pθ(e|a).
Assuming that the meaning of expression e is in-
dependent of C, we train the model by maximiz-
ing the variational lower bound,

L(θ, φ; y, C,a) = −KL(qφ(e|y)||pθ(e|a))

+ Ee∼qφ(e|y)[log pθ(y|C, e, a)]

≤ log p(y|C, a)

(2)

whereKL(·||·) is the Kullback-Leibler divergence
to measure the distance between two distributions.

Note that in our problem statement, we assume
that the dialog act of the to-be-generated response
is given in advance, rather than predicted depend-
ing on the context. Many existing researches
(Sacks et al., 1978; Young et al., 2013; Daniel Ju-
rafsky, 2017) have explored dialog act interactions
with dialog system and proposed some methods to
decide the most appropriate dialog act for the re-
sponse. In this paper, we only focus on response
generation. During the testing process, we simply
specify a dialog act to the model. We leave this
study to our future work.

3 Hierarchical Response Generation

Building upon the encoder-decoder models (e.g.,
Seq2Seq, HRED(Serban et al., 2016)), a Hierar-
chical Response Generation (HRG) framework is
proposed to effectively generate more diverse ex-
pressions for conversation generation. As shown
in Figure 1, HRG contains two main modules:
Expression Reconstruction model and Expression
Attention model. A training method is proposed to
learn the hierarchical HRG model in Section 3.3.

3.1 Expression Reconstruction

To maximize the objective Eq.(2), we are first re-
quired to model the networks qφ(e|y) and pθ(e|a).
The task of network qφ(e|y) is to capture the ex-
pression representations from the responses while
pθ(e|a) to sample an expression representation
from the distributions associated with the specified
dialog acts. As shown in Figure 2, in the frame-
work of CVAE, the response is first encoded as a
latent variable, and then a decoder is introduced to
reconstruct the response. But this generation pro-
cess is not interpretable and controllable. Thus, we
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Figure 1: The overview of Hierarchical Response Gen-
eration (HRG). The components in the dashed box are
removed during testing. The dialog act a is specified
manually and the random variable z is generated by
PriNet during testing.

propose a novel method to reconstruct the expres-
sion with multiple latent variables by establishing
links between qφ(e|y) and pθ(e|a).

Modeling qφ(e|y). It was found that the con-
volutional layer can extract the common patterns
within the local regions of the input utterance
(Kim, 2014). Therefore, the text convolutional
network proposed in (Kim, 2014) is leveraged to
mine the relationship between expression patterns
and responses. Particularly, the network qφ(e|y)
consists of several convolutional filtering, local
contrast normalization, and max-pooling layers,
followed by several connected linear layers. For-
mally, given a response y, the expression represen-
tation can be described as

e = CNN(y). (3)

In the experiments, we found that the convolu-
tional layers can effectively extract the expression
representation by discarding the content-related
information.

Modeling pθ(e|a). Given a dialog act a, the net-
work pθ(e|a) outputs an expression representation
associated with a. To capture output diversity, it
is also necessary to generate different expressions
each time given the same dialog act. The classical
models (e.g., linear layer) are not capable of repre-
senting this feature. Instead, the network pθ(a|e)
is easy to model by a linear layer, where

a = g(e) = Wf · e+ bf . (4)
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Motivated by this observation, we propose an In-
verse Linear Layer to model the network pθ(e|a)
where the dialog act a is mapped inversely into the
expression representation e by solving g−1.

Penrose Theorem (Ben-Lsrael and Greville,
1976) gives a general solution of equation AX =
B and proofs it. To solve g−1, we simplify Pen-
rose Theorem under an extra constraint and give a
Corollary:

Corollary 1 Let A ∈ Cm×n, b ∈ Cm. The gen-
eral solution of the equation Ax = b is

x = A+b+ (I −A+A)z (5)

for arbitrary z ∈ Cn (if 0 < rank(A) < n),
where A+ is Moore–Penrose inverse of A and I
is an identity matrix.

The transformation of Ax inevitably leads to the
information loss of x and thus the random vector
z should be supplemented to the solution.

According to Corollary 1, the expression e can
be represented by an inverse linear layer as

e = g−1(a, z) = Wf
+(a−bf )+(I−Wf

+Wf )z.
(6)

The expression is uniquely determined by two in-
dependent variables, i.e., the dialog act a and the
latent variable z. Given the same or similar di-
alog context, there may exist many valid expres-
sions for the responses with the same dialog act a,
each corresponding to a certain configuration of z.
This representation allows us to express responses
with diverse expression templates of specified di-
alog act by drawing samples from the learned dis-
tribution of z. The network pθ(e|a) can be eas-
ily computed by setting pθ(a, z) = pθ(a)pθ(z),
where a and z are uncorrelated.

Reconstructing Expression. As shown in Fig-
ure 1, during training, the expression representa-
tion e is first captured from the ground-truth re-
sponse by the network qφ(e|y). The expression
e is decomposed into multiple independent vari-
ables, i.e., a and z, and then these variables are
composed to reconstruct the expression e by the
network pθ(e|a). These variables provide different
discourse-level information to force the decoder
to focus on multiple global information simulta-
neously. As shown in Figure 2, different from
CVAE, some variables (i.e., a) in HRG are in-
terpretable to make the model controllable while
some (i.e., z) are continuous to reflect the latent
feature. During testing, the model is controllable
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(b) HRG

e

y

C
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Figure 2: Graphical models for (a) CVAE and
(b) HRG. Solid lines denote the generative mod-
els (a) p(z)p(y|z, C) and (b) p(e|a)p(y|e, C) =
p(a)p(z)p(y|a, z, C); dashed lines denote the vari-
ational approximation (a) q(z|y) and (b) q(e|y) =
q(a|y)q(z|y).

by specifying an appropriate dialog act to express
the intention.

3.2 Expression Attention

There exist two main methods to incorporate the
expression representation into the decoder. First,
the concatenation of the context and expression
representation e is used to initialize the recurrent
of the decoder RNN with a nonlinear transforma-
tion. During the decoding, the decoder RNN de-
codes words based on the current state and previ-
ous word embeddings w. The second way is that
the concatenation of fixed e and w is fed into de-
coder to update its state at each step. Formally,
the first way updates its state only according to
[w, 0 · e], while the second according to [w, 1 · e].
However, these methods may cause that the con-
tent (expression) is so powerful that the responses
are without any effective expression (meaningful
content). In this paper, we propose an expression
attention (EA) model to attend on different parts of
expression representations each step by learning a
vector α = {αi ∈ (0, 1)} adaptively. A balance
between content and expression is effectively kept
by feeding [w,α · e] into decoder.

In particular, before decoding, an expression
state is initialized as q0 = e to record the current
expression representation. At step t, a strength
gate βt is computed based on the input of the pre-
viously decoded word yt−1 and the previous de-
coder state st−1. The expression state is weakened
by a certain amount βt at each step,

βt = Sigmoid(Ws[yt−1, st−1]), (7)

ft = qt−1 ⊗ βt (8)



1776

where ⊗ is element-wise multiplication and
Sigmoid(x) = 1/(1 + exp(−x)). The decoder
updates its state conditioned on the previous token
yt−1 and the current output ft as follows:

st = RNNd(st−1, [yt−1, ft]). (9)

It is a dynamic process that the expression is
adjusted adaptively according to the current envi-
ronment and model behaviors compared to the two
existing methods above. After step t, a self-update
strategy is designed to update the expression state
based on the context vector ct (computed by At-
tention Mechanism (Luong et al., 2015)) and the
current decoder state st. This process is formu-
lated as

γt = Sigmoid(Wu[ct, st]), (10)

qt = qt−1 ⊗ γt. (11)

The expression representation is integrated into
the decoder gradually until the expression state de-
cays to zero through multiple iterations. The ex-
pression reconstruction and attention models re-
spectively provide discourse-level and token-level
randomness respectively, which can avoid the de-
coder generates the next token only depending on
Neural Probabilistic Language Model instead of
the dialog context and the current decoding state.

3.3 Reconstruction Training
The learnt parameters include the embeddings of
vocabulary, and those in the encoder-decoder com-
ponent and HRG. According to Section 3.1, we
first identify two key assumptions that are essen-
tial: Both z and a are the indigenous properties of
the expression e; The meaning of z is independent
of the dialog act a. Based on them, we update the
objective Eq.2 as

L(θ, φ;y, C, a) = −KL(qφ(z|y)||pθ(z))
−KL(qφ(a|y)||pθ(a))

+ Ez∼qφ(z|y),a∼qφ(a|y)[log pθ(y|C, a, z)].
(12)

Assuming that z follows isotropic Gaussian dis-
tribution, the prior network (PriNet) pθ(z) =
N (µ, σ2I) and the recognition network (RecNet)
qφ(z|y) = N (µ′, σ′2I), where[

µ′

log(σ′2)

]
= WrCNN(y) + br. (13)

Now, the term KL(qφ(z|y)||pθ(z)) is a KL-
divergence between two multivariate Gaussian

distributions which can be computed in a closed
form (Doersch, 2016). Different from z, the dia-
log act a follows discrete distribution. Minimiz-
ing the term KL(qφ(a|y)||pθ(a)) is much simpler
than the continuous one, which can be evaluated
by

A∑
k=1

qφ(a = k|y) log
qφ(a = k|y)

pθ(a = k) + ε
(14)

whereA is the number of dialog acts and ε = 10−6

is used to prevent division by zero. We denote the
network qφ(a|y) as the act classifier and its prob-
ability is evaluated by softmax(WfCNN(y) +
bf ). As shown in Figure 1, note here that the in-
verse linear layer shares the same parameters Wf

and bf with those in qφ(a|y).
In the training process, by introducing the

re-parameterization trick (Kingma and Welling,
2014), we obtain the variables z and a from Rec-
Net qφ(z|y) and act classifier qφ(a|y), and then
feed them into the inverse linear layer to cap-
ture expression representations. During testing, by
specifying a dialog act a, the decoder generates the
response according to the sample from the PriNet
pθ(z).

4 Experiment

4.1 Implementation Details
The dataset DailyDialog Corpus (Li et al., 2017b)
is used to evaluate the proposed model. It con-
tains 13,118 multi-turn human-human dialogs an-
notated with dialog acts and emotions, and covers
10 main topics about daily life. In this Corpus, the
dialog act categories are {Inform, Question, Di-
rective, Commissive}. In our experiments, HRG
is combined into HRED model (Serban et al.,
2016) as the expression-aware chatting machine
(ECM). PyTorch1 is used to implement the pro-
posed model. All the RNN modules have 2-layer
gated recurrent units (GRU) (Cho et al., 2014)
structures with 500 hidden cells for each layer and
are set with different parameters. Word embed-
ding has size 300 and is initialized from Glove
embedding2. The size of the latent variable z is
set to be 300. The maximum dialog turn is 5 (10
utterances).

The models are trained end-to-end using Adam
optimizer (Kingma and Ba, 2015) with batch size

1https://pytorch.org/
2https://nlp.stanford.edu/projects/

glove/

https://pytorch.org/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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of 30, learning rate of 0.001 and gradient clipping
at 50. To overcome the latent variable vanishing
problem in CVAE, we use the heuristic method
(Bowman et al., 2016) to encode the meaningful
information in z. That is, we multiply the first KL
term in Eq.12 by a scalar, which starts at 0 and lin-
early increases to 1 over the first 10,000 batches.

4.2 Baselines
We compare our hierarchical model with two pop-
ular baselines: (1) HAE: a HRED-based model
which we design to embed the dialog act informa-
tion in the decoder; (2) kgCVAE: a knowledge-
guided model that introduces dialog acts to guide
the learning of the CVAEs (Zhao et al., 2017).
A variant of the proposed model is implemented
to verify the effectiveness of expression attention
(EA) model. We denote the model without EA as
w/o EA. The hyperparameters of the baselines and
variants are the same as ECM.

As for HAE, we initialize the embedding of
dialog acts using three different methods: (1)
RD (random): initializing the embedding ran-
domly; (2) LG (logic-related): training a Skip-
Gram model (Mikolov et al., 2013) to maximize
the co-occurrence probability among the acts that
appear within a window, w, in the sequence of
dialog acts for each dialog (set w to 1); (3) CT
(content-related): training an act classifier qφ(a|y)
with the pairs of utterances and dialog acts in train-
ing set, and use each row in Wf as the embed-
dings. The size of act embeddings is set to 300,
as the same with the output of EA. The concate-
nation of dialog act embedding and the previous
word embedding is fed into the decoder of HRED
to update its state at each step during decoding.
HAE is trained to minimize the standard cross en-
tropy loss of the decoder RNN model without any
auxiliary loss.

4.3 Quantitative Analysis
Automatically evaluating the quality of the dialog
model remains an open question. To evaluate how
semantically relevant the response is, we report the
results for three word embedding-based similar-
ity metrics proposed by Liu et al. (2016): Greedy
Matching (GDY), Embedding Average (AVG) and
Vector Extrema (EXT). To evaluate whether the re-
sponse follows the dialog act, we adopt act accu-
racy (ACC) as the agreement between the ground-
truth dialog act and the dialog act predicted by an
act classifier. We trained the act classifier and its

precision and average recall in the testing set are
83.4% and 74.3% respectively.

In addition to automatic evaluation metrics, a
manual evaluation metric (MUL) is also given to
evaluate both the response content and expression,
where three workers are employed to score a re-
sponse in terms of Content (rating scale is 0,1,2)
and Act (rating scale is 0,1). Content is evalu-
ated based on whether the response is appropriate
and natural to the dialog context, while Act based
on whether the expression agrees with the ground-
truth act. Content rating is a widely accepted met-
ric proposed by Shang et al. (2015). And, the
workers can easily evaluate Act rating based on the
context since the number of acts is few in our ex-
periment.

During testing, to efficiently measure output di-
versity, we generate N responses from HAE mod-
els by introducing beam search. For kgCVAE and
ECM, we sample N times from the latent vari-
able and only use greedy decoders. Meanwhile,
for HAEs and ECM, we specify a as the act of the
ground-truth response.

The automatic evaluation metrics focus on com-
paring the generated responses rj with the ground
truth gi of the conversation. We compute the
scores of models based on all the M test samples
as follows:

AM =
1

M

M∑
i=1

max
j∈[1,N ]

d(gi, rj) (15)

where d(·) is one of automatic metrics described
above, and N is empirically set to 10. Note here
that the maximum metric in Eq.15 is more appro-
priate to measure the output diversity than aver-
age one. This is because that taking average met-
rics may cause that the safety responses get higher
scores than meaningful and diverse responses if
most of these valid responses are not related to the
ground-truth. The maximum metric can greatly re-
duce the error by increasing the number of sam-
ples. The evaluation of MUL metric is unrelated
to the ground truth responses. To evaluate MUL
metric, we randomly selected 40 dialog contexts
from the test set and then generate 400 responses
for each model. Each response is evaluated with a
rating of Content-Act by workers.

The automatic evaluation results are given in
Table 1. According to the word embedding-based
similarity metrics, responses generated by ECM
are substantially more coherent and relevant to
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Method (%) GDY AVG EXT ACC

HAE-RD 11.6 57.7 33.8 64.2
HAE-LG 14.7 66.0 30.0 74.2
HAE-CT 18.2 72.0 35.5 77.0
kgCVAE 23.6 75.3 39.8 —

ECM 28.1 84.6 37.9 80.4
w/o EA 20.6 78.0 34.8 82.6

Table 1: Automatic Evaluation Result.

the topic compared to HAE models and kgCVAE.
ECM obtains higher act accuracy score than HAE
as well since the second KL term of Eq.(12) forces
the predicted act distribution to approximate the
ground-truth. ECM without EA (w/o EA) achieves
the best performance in act accuracy but poor per-
formance in embedding-based similarity metrics.
It indicates that EA is an efficient model to bal-
ance the expression and the content dynamically.
On the other hand, HAE-CT gets higher scores
both in embedding-based metrics and in accuracy
than other HAE models, which suggests that the
act classifier can preserve act-related information
effectively. Note here that the act accuracy of kgC-
VAE is not given because the response act is an
internal parameter predicted by the dialog context
rather than an input during testing. Compared to
ECM, kgCVAE may give the decoder a wrong di-
rection to approximate the ground-truth responses
with different dialog acts.

Method (%) 2-1 2-0 1-1 1-0 0-1 0-0

HAE-CT 13.5 8.0 23.5 9.0 31.5 14.5
ECM 26.5 15.5 32.0 7.0 16.0 3.0
w/o EA 21.0 6.0 29.0 10.0 28.5 5.5

Table 2: Manual evaluation result. The percentage of
responses with the ratings of Content-Act. For instance,
2-1 means Content rating is 2 and Act rating is 1.

Table 2 shows the manual evaluation result
where the content and expression are considered
simultaneously. As we can see, responses gener-
ated by w/o EA tend to contain obvious act infor-
mation but a little of content, while HAE generates
the responses with lower scores of Content-Act.
Compared to other methods, responses generated
by ECM keep a good balance between Content and
Act. In our experiment, we also find that HAE-CT
still faces serious safe response problems. How-
ever, EA provides token-level randomness to avoid
that the decoder generates the next token only de-
pending on Neural Probabilistic Language Model.

Figure 3: Visualization of expression representations
for utterances with dialog acts. The size of circle rep-
resents the response length.

Discussion. ECM performs well than w/o EA
not in automatic evaluation but also in manual
evaluation obviously. Although ECM includes
more trainable parameters in EA than w/o EA,
the improvement of performance is mainly due to
the effective architecture of EA. The EA model
only involves two learnt matrices, i.e, Ws and
Wu, described in Section 3.2. Compared to the
parameters in the multi-layer HRED, expression
reconstruction, and the embedding of vocabulary,
the number of parameters in EA can be ignored.
Therefore, it can be concluded that EA plays a key
role in improving output diversity with few param-
eters due to its efficient architecture.

4.4 Qualitative Analysis

Table 3 shows the responses generated by kgC-
VAE and ECM. In Example 1, speaker “A” begins
with an open domain demand (directive). ECM
generated highly diverse answers that cover mul-
tiple dialog acts which were fed into the model in
advance during decoding. Further, we notice that
the generated response with inform act (i.e., sam-
ple 1) has similar expression with the ground-truth
one, implying that the latent z is able to capture the
expression-sensitive variations. It verifies the ef-
fectiveness of the hierarchical generation process.
ECM can obtain effective expression representa-
tion, and fill it with appropriate content obtained
from the dialog context. Example 2 is a situation
where the waiter “A” tells the customer “B” that
the order has done. ECM takes the directive act
as input and generate multiple responses to give
“A” some suggestions (or commands). All the re-
sponses reflect the similar behaviors with differ-
ent expression styles. On the contrary, kgCVAE
is capable of generating some diverse responses,
but cannot accurately understand the intention of
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Example 1: History (Directive): A: Tell me a little bit about yourself , please . Target (Inform): B: My name
is Dunlin and I live in Beijing . I was born in 1980 . I will graduate from Peking University this July .

kgCVAE + z Samplings ECM + Dialog Acts + z Samplings
1. i’ve been in china for two weeks . 1. (Inform) i graduated from hebes university .
2. how do you wish i can speak to

the teacher’s letter ?
2. (Commissive) of course , i ’ ve been visiting

a new company . i ’ m looking for a job .
3. i’d like to speak a little more , but i know him . 3. (Question) yes , what ’ s the matter ?
4. excuse me ? 4. (Directive) can you give me a example ?
Example 2: History (Inform): waiter A: good morning , sir . i ve got breakfast your ordered .

Target (Directive): customer B: just put it on the table please .

kgCVAE + z Samplings ECM + Directive Act + z Samplings
1. oh , no . 1. put it on .
2. yes , i’d like to have a look . it s a good choice . 2. please check out this time .
3. that’s ok . it’s got wireless only , and we’re over . 3. please . i am sorry to have kept you waiting .
4. good morning , thanks . 4. please wait a moment .

Table 3: Generated responses from kgCVAE and ECM in two examples.

“A” and thus the responses lack of coherency.
The human-human dialogues in the dataset fol-
low some dialog flow patterns, such as Question-
Inform, Directive-Commissive (Li et al., 2017b).
kgCVAE predicts the dialog act exactly in exam-
ple 1 but wrongly in Example 2 since the pattern
Inform-Directive is not common.

In our work, a CNN module is leveraged to fil-
ter the content-related information of utterances
and get a discourse-level representation, i.e. ex-
pression vector, where meaningful expression in-
formation is preserved. CNN models have been
shown to be efficient for NLP and have achieved
excellent results in sentence modeling and clas-
sification. So we conjecture that the expression
vectors are highly correlated with the dialog acts,
and each one reflects a concrete expression rep-
resentation of the specified dialog act. Figure 3
visualizes the expression vectors in the test dataset
in 2D space using t-SNE (Der Maaten and Hin-
ton, 2008). We find that the expression vectors are
clustered into meaningful groups associated with
the dialog acts, which confirms that CNN is an ef-
ficient tool to extract the expression information.

5 Related Works

Vanilla Seq2Seq model usually ends up with
generic and dull responses. To tackle this prob-
lem, one line of research has focused on forcing
the model to imitate some human’s skills by aug-
menting the input with rich meta information. For
example, some works separately gave chatbots the
ability of emotions (Zhou et al., 2018), persona (Li
et al., 2016b), vision (Huber et al., 2018; Wu et al.,
2018) and thinking over the knowledge base (Liu
et al., 2018; Zhu et al., 2017). In this work, we

consider open domain dialogue generation with
dialog acts. But, only a little works (Zhao et al.,
2017; Serban et al., 2017a) on open domain end-
to-end modeling take dialog acts into account.

On the other hand, many attempts have also
been made to improve the architecture of Seq2Seq
models by changing the training methods. Li et al.
(2016a) attributed safe response problems to the
use of MLE objective. Some works separately at-
tempted to replace the MLE method with maxi-
mum mutual information (Li et al., 2016a), rein-
forcement learning (Zhang et al., 2018; Li et al.,
2016c) and adversarial learning (Xu et al., 2017;
Li et al., 2017a). Serban et al. (2017b) viewed the
dialog context as prior knowledge and combined
HRED model into the CVAE framework. Zhao
et al. (2017) further introduced dialog acts to guide
the learning of CVAE. In our paper, we use CVAE
to learn the hierarchy generation model.

6 Conclusion and Future Work

In this paper, we investigate the problem of gener-
ating meaningful responses by imitating the hier-
archical process of human response. Specifically,
a hierarchical response generation model is pro-
posed to hierarchically generate the expressions
and fill them with appropriate content naturally
and coherently. The experiment results show that
HRED model equipped with HRG can generate re-
sponses appropriate not only in content but also
in expression. Different from existing works, our
model is interpretable and controllable.

In the future work, we will explore the act inter-
actions with HRG. Instead of specifying a dialog
act manually, the most appropriate one can be de-
cided automatically.
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