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Abstract

Many pledges are made in the course of an
election campaign, forming important corpora
for political analysis of campaign strategy and
governmental accountability. At present, there
are no publicly available annotated datasets
of pledges, and most political analyses rely
on manual analysis. In this paper we col-
late a novel dataset of manifestos from eleven
Australian federal election cycles, with over
12,000 sentences annotated with specificity
(e.g., rhetorical vs. detailed pledge) on a fine-
grained scale. We propose deep ordinal regres-
sion approaches for specificity prediction, un-
der both supervised and semi-supervised set-
tings, and provide empirical results demon-
strating the effectiveness of the proposed tech-
niques over several baseline approaches. We
analyze the utility of pledge specificity model-
ing across a spectrum of policy issues in per-
forming ideology prediction, and further pro-
vide qualitative analysis in terms of captur-
ing party-specific issue salience across elec-
tion cycles.

1 Introduction

Election manifestos play a critical role in struc-
turing political campaigns. Campaign communi-
cation can influence a party’s reputation, credibil-
ity, and competence, which are primary factors
in voter decision making (Fernandez-Vazquez,
2014). Among the various campaign-related func-
tions fulfilled by manifestos (Eder et al., 2017),
perhaps the most important is the contract they
represent between parties and voters in terms
of pledges and prioritisation of political issues
(Royed et al., 2019). Political scientists have long
studied how specific pledges translate into govern-
ment programs and actual policy (Royed, 1996;
Thomson, 2001; Naurin, 2011; Schermann and
Ennser-Jedenastik, 2014). Other work relates spe-
cific pledges to the issue clarity of a political party

through selective emphasis, which complements
salience theory (Robertson et al., 1976; Budge and
Farlie, 1983; Praprotnik, 2017). For example:

we commit ... 30 per cent tax rebate or
cash benefit on the cost of private health
insurance premiums

conveys the party’s support for private health in-
surance, and is more verifiable than:

we will improve the health system.

Issue clarity has also been shown to be influenced
by a party’s ideological position and its role in
government (Praprotnik, 2017).

Although pledge specificity prediction is an im-
portant task for the analysis of party position, pri-
orities, and post-election policy framing, to date,
almost all research has relied on manual analysis.
Subramanian et al. (2019) is a recent exception to
this, in performing speech act classification over
political campaign text, where the class schema in-
cludes the distinction between specific and vague
pledges (binary specificity class).

In this paper, we perform fine-grained pledge
specificity prediction, which is more expressive
than binary levels (Li et al., 2016; Gao et al.,
2019). We use a class schema proposed by Pomper
and Lederman (1980) as detailed in Table 1, which
captures seven levels of specificity, forming a non-
linear increasing order of commitment and speci-
ficity (Pomper and Lederman, 1980). Given the
non-linear nature of the scale, we use deep ordinal
regression models for this task, with distributional
loss (Imani and White, 2018), where we model
the output as a uni-modal distribution (Beckham
and Pal, 2017). Our goal is to capture the in-
tuition that a pledge with specificity level k, has
higher commitment than all the levels < k, pro-
ducing a smoothly varying prediction over the or-
dinal classes. This can be modeled as a uni-modal
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distribution which has a probability mass that de-
creases on both sides of the most probable class.
Lastly, as it is expensive to obtain large-scale an-
notations, in addition to developing a novel an-
notated dataset, we also experiment with a semi-
supervised approach by using unlabeled text.

The contributions of this paper are as fol-
lows: (1) we develop and release a dataset1 for
fine-grained pledge specificity prediction based
on election manifestos covering eleven Australian
federal election cycles (1980–2016), from the two
major political parties — Labor and Liberal; (2)
we propose to use deep ordinal regression models
for the prediction task, and evaluate the model un-
der sparse supervision scenarios using the teacher–
student framework; and (3) we evaluate the utility
of pledge specificity towards ideology prediction,
and provide further qualitative analysis by corre-
lating model predictions with party-specific issue
salience across major policy areas.

2 Related Work

Political manifesto text analysis is a relatively
novel application, at the intersection of Political
Science and NLP. Research has focused primar-
ily on fine-grained policy topic classification and
overall ideology prediction tasks (Volkens et al.,
2017; Verberne et al., 2014; Zirn et al., 2016; Sub-
ramanian et al., 2018). Most work dealing with
pledge specificity analysis in manifestos has been
based on manual analysis, as outlined in Section 1.

Specificity is a pragmatic property of text which
has been studied across various fields of research.
In cognitive linguistics, Dixon (1987) showed that
specificity of information in text impacts read-
ing comprehension speed. In Political Science, it
has been used to analyze salience, party position
and post-election policy framing (see Section 1).
There has also been research on the association
between text specificity and communication style.
In terms of automated specificity analysis, Cook
(2016) found specificity in the context of congres-
sional hearings to vary between speakers belong-
ing to the same vs. different ideologies. Namely,
it was shown that specificity increases as the ideo-
logical distance between the committee chair and
the witness decreases. Subramanian et al. (2019)
addressed two levels of pledge specificity, as part
of speech act classification task. Specificity has

1https://github.com/shivashankarrs/
Pledge-Specificity

also been studied in news (Louis and Nenkova,
2011) and classroom discussion domains (Luo and
Litman, 2016; Lugini and Litman, 2017).

These studies have dealt with a restrictive
coarse-level analysis (2–3 categories), whereas a
fine-grained scale better captures and allows for
comparison of election manifestos (Pomper and
Lederman, 1980). Gao et al. (2019) was the first
attempt at fine-grained text specificity prediction,
in the context of social media posts. Here, we
target the novel task of fine-grained pledge speci-
ficity prediction, which can be used in a range
of downstream applications, including capturing
party priorities (salience) and ideological position
across election cycles.

All the text specificity analysis work in NLP
has modeled the task as classification or regres-
sion. As the 7-step pledge specificity levels used
in this research (Pomper and Lederman, 1980) do
not form a single real-valued scale, we model it as
an ordinal regression task. Some examples of ordi-
nal regression tasks include sentiment rating pre-
diction (Rosenthal et al., 2017), stages of disease
prediction (Gentry et al., 2015), and age prediction
(Eidinger et al., 2014). Recent work has shown
that adding a distributional (auxiliary) loss along-
side a regression loss, and using expectation to ob-
tain the predicted value (Imani and White, 2018),
provides label smoothing and improves regression
performance (Gao et al., 2017). Approaches based
on a uni-modal probability distribution (e.g., Pois-
son) as output (da Costa et al., 2008; Beckham and
Pal, 2017) can be seen as related to the former ap-
proach (Imani and White, 2018) where the discrete
probability mass function replaces the histogram
density. We propose to use a uni-modal distri-
butional loss-based ordinal regression for pledge
specificity prediction.

Secondly, as it is difficult to obtain large
amounts of labeled data, existing approaches have
used semi-supervised learning (Li and Nenkova,
2015; Subramanian et al., 2019). Here we use a
cross-view training approach (Clark et al., 2018;
Subramanian et al., 2019), where we enforce con-
sensus between the intermediate class distribu-
tions or the final real-valued output.

3 Pledge Specificity Dataset

We annotated 22 election manifestos from the
Australian Labor and Liberal parties, covering
eleven Australian federal election cycles from

https://github.com/shivashankarrs/Pledge-Specificity
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Category Definition Example #

Not a pledge Provide facts; greetings; approval or
criticism of policies

We have modernised Australia’s industrial re-
lations system, particularly through the 1996
Workplace Relations Act

1

Rhetorical pledge Based on moral values and applies to all
irrespective of the party

We will put our country first 2

General pledge Specify intangible goals, and also not
the ways to achieve them

Labor will build a stronger and more productive
economy

3

Continuity pledge Commit to the maintenance of currently
functioning policy

We will retain the voluntary health insurance
system which now covers the great majority of
Australians

4

Goal pledge Provide tangible outcomes and goals,
without providing the means to achieve
them

A Shorten Labor Government will create 2000
jobs in Adelaide

5

Action pledge Provide means to achieve the objective,
but don’t reveal specific details

We pledge to support effective voluntary fam-
ily planning, and to recognize officially the link
between social and economic development and
the willingness of the individual to limit family
size

6

Detailed pledge Provide clear details of action to
achieve an objective

A re-elected Coalition Government will invest
$1 million to support the Exeter Community
Precinct

7

Table 1: Pledge specificity category, definition, example manifesto sentence, and the corresponding specificity
value (#).

Specificity # Sentences % Avg. Length

1 8165 67.00 19.5
2 423 3.47 22.0
3 950 7.80 23.4
4 300 2.46 24.6
5 473 3.88 24.8
6 901 7.39 25.2
7 973 7.99 28.5

Table 2: Distribution and length statistics across speci-
ficity categories.

1980–2016. The dataset has 12,185 sentences an-
notated with seven levels of specificity (Pomper
and Lederman, 1980). See Table 1 for class def-
initions and an example of each class. We ob-
tained annotations using the Figure Eight crowd-
sourcing platform. For each sentence we provided
the previous two sentences from the manifesto (as
context), the party which published the manifesto,
election year, and incumbent and opposition party
details. Each sentence was annotated by at least 3
workers after passing quality control (at least 70%
accuracy on test questions). After obtaining anno-
tations, the label which has the highest confidence
score is chosen for each sentence. Confidence is
the level of agreement between multiple contrib-
utors, weighted by the contributors’ trust scores.
Overall agreement based on the Krippendorf’s Al-
pha is α = 0.58, indicating moderate agreement

1980 1984 1990 1993 1998 2001 2004 2007 2010 2013 2016
0

1

2

3

4 Liberal
Labor

1

Figure 1: Average pledge specificity of Labor and Lib-
eral parties over different election cycles

(Artstein and Poesio, 2008; Krippendorff, 2011),
on par with related studies (Gao et al., 2019). The
class distribution in the final dataset is given in
Table 2, alongside the average sentence length in
tokens. It can be seen that more specific pledge
categories have higher average length. Average
specificity values of Labor and Liberal party man-
ifestos across elections are given in Figure 1. The
length of the manifesto (in terms of number of sen-
tences) influences average specificity values, with
exceptions such as the Liberal party’s 2010 elec-
tion manifesto which is the shortest document but
has the highest average pledge specificity value.
Further detailed analysis, to decipher the pledge
specificity trends in general, is a potential task for
future work.
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4 Proposed Approach

4.1 Base Model

We first obtain representations for each sentence
via a sequence of word embeddings, to which
we apply a bidirectional GRU (“biGRU”: Cho
et al. (2014)), and concatenate the final hidden
state of both the forward and backward GRUs,
hi =

[−→
h i,
←−
h i

]
. Rather than using a linear acti-

vation layer for the output, we study the effect of
learning a distribution over ordinal classes, and us-
ing an expectation layer to get the final prediction,
which we now expound upon.

4.2 Distributional Loss

Let us assume that the continuous target variable
Y is normally distributed, conditioned on inputs
x ∈ Rd, Y ∼N (µ=f(x), σ2) for a fixed variance
σ2 > 0. In regression, the maximum likelihood
function f for n samples {xi, yi} corresponds to
minimizing l2 loss, such that f(x) = E(Y |x). Al-
ternatively, we can learn a categorical distribution
(qx) over the ordinal classes Y , and use the ex-
pected value as the prediction, f(x) (Rothe et al.,
2018). In this work, we follow the latter method,
but parameterise the categorical distribution based
on uni-modal probability distribution, a technique
which has been shown to perform well for ordinal
regression tasks (Beckham and Pal, 2017). This
modification converts the problem to a more diffi-
cult (multi-task) problem, that promotes general-
ization and reduces over-fitting (Imani and White,
2018). The overall objective is to jointly mini-
mize the squared loss for the regression task (LS),
and cross-entropy for the distributional loss over
Y (LD), based on the objective LJ = αLS + LD,
where the hyper-parameter α is tuned using a val-
idation set. We experiment with different distri-
butions in generating the intermediate representa-
tions qx, including categorical (as a baseline ap-
proach, see Section 5: Beckham and Pal (2016);
Gao et al. (2017); Rothe et al. (2018)), discrete
uni-modal (Binomial and Poisson: Beckham and
Pal (2017)), and truncated Gaussian (Imani and
White, 2018). The final prediction is obtained us-
ing expectation, which has been shown to be effec-
tive for various regression tasks in the vision do-
main. Here we study the use of uni-modal distri-
butional loss-based ordinal regression approaches
(Beckham and Pal, 2017; Imani and White, 2018)
for text specificity analysis (Section 5 has re-

sults demonstrating its superiority over the other
choices). We detail the different ways to obtain
qx, and the corresponding loss functions LD be-
low, and provide an overall summary in Figure 2.

4.2.1 BINOMIAL

With the biGRU model, we estimate the param-
eter (p) of the Binomial distribution (with a sig-
moid output), based on which the distribution over
classes can be obtained via the probability mass
function,

p(k;K − 1, p) =

(
K − 1

k

)
pk(1− p)K−1−k,

k ∈ {0, 1, . . .K − 1}, where p ∈ [0, 1]. As the
final layers (post sigmoid) are under-parametrized,
we have a softmax layer with τ after obtaining the
probability masses,

qk =
exp(φk/τ)∑K−1
j=0 exp(φj/τ)

,

where τ ∼ SoftPlus(τ ′), and τ ′ is learned by the
deep net, conditioned on the input (x). We then
have an expectation layer to obtain the final output
f(x). Output of the softmax layer is fit to the one-
hot encoded ordinal classes for each input (y), by
minimizing the cross-entropy loss (LDBINOMIAL).

4.2.2 POISSON

POISSON is similar to the binomial case, in that we
obtain the parameter (λ) of the Poisson distribu-
tion using the biGRU, with a SoftPlus activation.
We then use the probability mass function of the
Poisson distribution to get the probabilities over
different classes, k ∈ Y ,

p(k;λ) =
λke−λ

k!
,

which is again passed through a softmax layer to
obtain qx, fit by minimizing cross-entropy loss
(LDPOISSON), and an expectation layer is used to
obtain the final prediction.

4.2.3 Gaussian (GAUSS)
To compute E(Y |x) (µ of the Gaussian), here we
fit the intermediate distribution qx directly to his-
togram density of a truncated Gaussian distribu-
tion with support [1,K] (target distribution: p∗).
We achieve this by learning a prediction distribu-
tion with the biGRU model, qx : Y → [0, 1]. For
this, the ordinal label of training instances is trans-
formed into a truncated Gaussian PDF. The mean
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Figure 2: Illustration of the model architecture, com-
prising a biGRU over sentence tokens, to compute the
parameter of one of the three distributions: p for Bino-
mial (with n = K−1) and λ for Poisson. Pmf of these
distributions are then used to define a categorical distri-
bution over the ordinal classes Y . For learning, we use
the categorical cross-entropy against the gold one-hot
y, as well as the squared error (y − f(x))2, where f(x)
is given by expectation taken under the predicted cate-
gorical distribution q. Gaussian uses a different mech-
anism, as described in Section 4.2.3 where the cate-
gorical distribution (q) is predicted directly using a K-
dimensional softmax output, and the cross-entropy is
computed between q and a Gaussian histogram density
centred at µ = y, discretised by way of integration of
the PDF between adjacent label indices.

µ for this Gaussian is the target y of each data-
point, with fixed variance σ2, which we set to the
radius of the bins in Y (1 in this case). The CDF
for the chosen target distribution is computed as
1
2(1 + erf(x−µ

σ
√
2
)) and p∗ is obtained for each class,

k ∈ Y , as,

1

2

(
erf
(k − µ
σ
√
2

)
− erf

(k − 1− µ
σ
√
2

))
.

This formulation allows efficient computation
of divergence between p∗ and qx for optimiza-
tion, which results in cross-entropy minimization
(LDGAUSS: Imani and White (2018)). Note that the
training target p∗ is uni-modal, and no constraints
are explicitly enforced on the shape of qx.

4.3 Incorporating Context
We incorporate context in the form of information
from adjacent sentences following the approach of
Liu et al. (2017): for each training sentence, we

use the predicted (intermediate) probability distri-
bution across ordinal classes of the previousL sen-
tences as context. A new biGRU model is trained
with the sentence and the additional contextual in-
formation, concatenated to hi. We refer to this
model as biGRUORD + CONTEXT. In the test phase,
biGRUORD provides contextual information, and
the newly trained model (biGRUORD + CONTEXT) is
used to predict the test sentence output.

4.4 Semi-supervised Learning

As it is expensive to get large-scale specificity
annotations we employ a cross-view training ap-
proach (Clark et al., 2018; Subramanian et al.,
2019) for semi-supervised learning, which can
leverage additional unlabeled text. Cross-view
training is a kind of teacher–student method,
whereby the model “teaches” a “student” model
to classify unlabelled data. The student has a re-
stricted view over the data, e.g., through the ap-
plication of noise (Sajjadi et al., 2016; Wei et al.,
2018). We use biGRUORD + CONTEXT with word-
level dropout and zero vector set to contextual in-
formation as the auxiliary model. This procedure
regularizes the learning of the teacher to be more
robust, as well as increasing its exposure to unla-
beled text. We augment our dataset with over 32k
sentences from UK and US election manifestos re-
leased from the same time period. On these un-
labeled examples, the model’s output is used to
fit the auxiliary model by enforcing consensus in
their predictions. This consensus loss LU is added
to the supervised training objective (LJ ). Under
the semi-supervised setting, we evaluate the fol-
lowing approaches:
MSE: use the final regression output of the

teacher model (f(x)) to fit an auxiliary
model, thereby enforcing consensus using a
squared loss, MSE(Eqθ [Y],Eqω [Y]) where Y
is a fixed class vector; denoted as “LUMSE”.

KLD: an intermediate distribution over targets
qθ(Y|s) is used to fit an auxiliary model,
qω(Y|s), by minimising the Kullback-Leibler
(KL) divergence, KL(qθ(Y|s), qω(Y|s)); de-
noted as “LUKLD”.2

EMD: qθ(Y|s) is again used to fit the auxil-
iary model, qω(Y|s), by minimising the earth

2This is the closest setting to Subramanian et al. (2019),
which minimizes KL divergence between output distributions
in a classification setting. But the overall objective is different
in our case, in that we have an expectation layer over q to
obtain the target regression output.
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Category Approach MMAE ρ

Majority 3 -
Length - 0.21
Speciteller - 0.18
NNREG 2.05 0.33
biGRUREG 1.83 0.47
biGRUCLASS 2.17 0.40
biGRUREGl1

1.99 0.46

Ordinal biGRUCATEGORICAL 1.80 0.48
Ordinal biGRUBINOMIAL 1.78 0.48
Ordinal biGRUPOISSON 1.90 0.41
Ordinal biGRUGAUSS 1.72 0.49

Ordinal biGRUGAUSS + CONTEXT 1.71 0.49

Table 3: Specificity prediction performance; the best
approach is given in bold.

mover’s distance, EMD(qθ(Y|s), qω(Y|s));
denoted as “LUEMD”. EMD is defined as
EMD(qθ, qω) = 1

K

1
l ‖cmf(qθ) − cmf(qω)‖l,

where cmf(·) is the cumulative mass function
for the predicted (intermediate) probability
distribution q, and we use l = 2. EMD con-
siders distance between classes, and is more
suitable for ordinal tasks (Hou et al., 2016).

5 Experimental Results

To evaluate model performance we use macro-
averaged mean absolute error (MMAE: Rosen-
thal et al. (2017)) given the class imbal-
ance, and Spearman’s ρ. MMAE is given as

1
|K|

|K|∑
j=1

1
|Sj |

∑
xi∈Sj

|f(xi)−yi|, where Sj denotes the

subset of instances annotated with (true) ordinal
class j. We consider the following baselines:
Majority: assign the majority class in the train-

ing set to all test instances.
Length: use sentence length as the specificity

score.
Speciteller: co-training model of Li and

Nenkova (2015), used by Cook (2016) for
congressional hearings specificity analysis.

NNREG: bag-of-words term-frequency represen-
tation, fed into a feed-forward neural network
model (Gao et al., 2019).

biGRUREG: biGRU model trained with a mean
squared loss objective.

biGRUCLASS: biGRU model trained with a cross-
entropy objective (Subramanian et al., 2019).

biGRUREGl1
: biGRU regression model with

mean absolute error objective (l1 loss).
All the baseline and proposed biGRU models

use ELMo embeddings (Peters et al., 2018). The
regression models minimize l2 loss, unless oth-
erwise specified. We compare the average per-
formance across five runs with an 80:20 train:test
split. We randomly choose 10% of instances from
the training set as validation data. We compare
the baseline approaches with our proposed ordinal
approaches, which have an intermediate distribu-
tional loss in conjunction with the final prediction
loss: biGRUGAUSS (Section 4.2.3), biGRUBINOMIAL

(Section 4.2.1), or biGRUPOISSON (Section 4.2.2).
We also evaluate biGRUCATEGORICAL, where the
softmax layer is fitted to one-hot encoded class la-
bels (Gao et al., 2017; Rothe et al., 2018). Note
that this is not uni-modal.

Gao et al. (2019) used a combination of bag-
of-words representation, surface features, social-
media-specific features (eg., Tweet mentions), and
emotion-related features, with a support vector re-
gression model which minimizes squared loss. So-
cial media and emotion-related attributes are not
relevant to our data, and other surface features
did not provide improvements. Hence we show
the performance of the bag-of-words representa-
tion with squared loss objective (NNREG in Table
3). From the results in Table 3, we can see that se-
quential models with ELMo embeddings (biGRU)
perform better than neural bag-of-words models
(NNREG). The l2 regression model (biGRUREG)
performs better than l1 regression (biGRUREGl1

)
and classification (biGRUCLASS).

With respect to deep ordinal approaches,
biGRUPOISSON performs better than classification
(biGRUCLASS), but does not improve upon re-
gression (biGRUREG). The Binomial performs
better than the Poisson, consistent with previ-
ous work (Beckham and Pal, 2017; da Costa
et al., 2008). biGRUCATEGORICAL performs bet-
ter than biGRUREG, but not over unimodal ap-
proaches (biGRUBINOMIAL, biGRUGAUSS). Overall,
the model which fits intermediate distribution to a
truncated Gaussian (histogram density) target dis-
tribution provides the best performance. It gives
over 6% improvement in terms of MMAE, and
over 4% in ρ, compared to biGRUREG. Adding
context to biGRUGAUSS (biGRUGAUSS + CONTEXT)
provides a slight reduction in error.

5.1 Semi-supervised Learning

We next compare the performance of
biGRUGAUSS + CONTEXT (SUP) and the semi-
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Figure 3: Prediction performance across different training ratios. Note that 90% = all the training data, as 10% is
used for validation. The supervised ordinal model (SUP) and semi-supervised teacher–student models (MSE, KLD,
EMD, given in Section 4.4) are compared on MMAE and Spearman’s ρ.

supervised extensions of it (Section 4.4) which
leverage additional unlabeled data: minimizing
LUMSE (MSE), LUKLD (KLD), and LUEMD (EMD).
The amount of labeled data in the training split is
varied from 10% to 90%. Results are presented
in Figure 3 for MMAE and ρ. From the results,
semi-supervised approaches provide large gains
in terms of both MMAE and ρ, especially when
training with fewer instances, ratio ≤ 30%.
Overall, the semi-supervised learning approach
which minimizes EMD performs best across all
training ratios compared to both supervised and
other semi-supervised approaches. It provides .10
and .06 absolute improvements in ρ under sparse
supervision scenarios (10% and 30% of training
data, resp.). Even under richer supervision
settings (≥ 70 %), it provides higher ρ.

6 Political Analysis Using the Models

Political scientists utilize pledge specificity for a
variety of applications (see Section 1). Here, we
extrinsically evaluate our specificity model using
two tasks related to campaign strategy: (1) party
position or ideology prediction (Section 6.1), and
(2) issue salience analysis (Section 6.2). For both
tasks, we compare the use of pledge specificity
across policy issues vs. a count-based representa-
tion of policy mentions.

6.1 Ideology Prediction

Estimating the manifesto-level ideology score on
the left–right spectrum using sentence-level pol-
icy topic annotations is a popular task (Slapin and
Proksch, 2008; Lowe et al., 2011; Däubler and
Benoit, 2017; Subramanian et al., 2018), for which

the policy scheme provided by CMP (Volkens
et al., 2017) is commonly used. It has 57 polit-
ical themes, across 7 major categories. Among
those approaches, the RILE index is the most
widely adopted (Merz et al., 2016; Jou and Dal-
ton, 2017), and has been shown to correlate highly
with other popular scores (Lowe et al., 2011).
RILE is defined as the difference between count
of (pre-determined) right and left policy theme
mentions across sentences in a manifesto (Volkens
et al., 2013). Here we evaluate the effectiveness
of using the proposed specificity modeling across
those policy issues, compared to using RILE-
based party position scores (Volkens et al., 2013).

We compute the specificity weight (Pomper
and Lederman, 1980) from the average specificity
score across sentences, 1

|I|
∑
Si∈I

Spec(Si) for each

policy issue (I). With specificity weight as the ba-
sic feature, we also model global signals such as
party coalition and temporal dependencies across
elections, which can enforce smoothness in mani-
festo positions (Greene, 2016; Subramanian et al.,
2018) based on probabilistic soft logic.

6.1.1 Probabilistic Soft Logic

To address this, we propose an approach using
hinge-loss Markov random fields (“HL-MRFs”),
a scalable class of continuous, conditional graphi-
cal models (Bach et al., 2013). These models can
be specified using Probabilistic Soft Logic (“PSL”:
Bach et al. (2017)), a weighted first order logical
template language. An example of a PSL rule is
λ : P(a) ∧ Q(a, b) → R(b), where P, Q, and R

are predicates, a and b are variables, and λ is the
weight associated with the rule. PSL uses soft
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truth values for predicates in the interval
[
0, 1
]
.

The degree of ground rule satisfaction is deter-
mined using the Lukasiewicz t-norm and its cor-
responding co-norm as the relaxation of the logi-
cal AND and OR, respectively. The weight of the
rule indicates its importance in the HL-MRF prob-
abilistic model, which defines a probability den-
sity function of the form:

P (Y|X) ∝ exp

(
−

M∑
r=1

λrφr(Y,X)

)
,

where φr(Y,X) = max {lr(Y,X), 0}ρr is a
hinge-loss potential corresponding to an instanti-
ation of a rule, and is specified by a linear function
lr and optional exponent ρr ∈ {1, 2}.

6.1.2 PSL Model
Here we elaborate on our PSL model based
on manifesto content-based features (specificity
weight across 57 policy issues), coalition informa-
tion, and temporal dependencies. Our target pos
(left–right position) is a continuous variable

[
0, 1
]
,

where 1 indicates an extreme right position, 0 de-
notes an extreme left position, and 0.5 indicates
center. We also model the social and economic
positions explicitly (socpos and econpos), which
influence the overall pos. Each instance of a man-
ifesto, its party affiliation and policy issues, are
denoted by the predicates Manifesto, Party and
Policy. Other predicates are given as follows:
Specificity weight of each policy issue in the

given manifesto (Specw).
Relative specificity scale: ratio of specificity

weight for each policy issue given a party’s
manifesto, to maximum specificity weight for
the same policy issue across parties from the
same country and election (SpecScale).

Policy issue mapping: 26 out of the 57 pol-
icy themes are categorized as social and eco-
nomic left–right issues by Benoit and Laver
(2007) (IdeologyMap).

Coalition: captures the strength of ties between
two parties, given by a logistic transforma-
tion of the number of times two parties have
been in a coalition in the past (Coalition).

Temporal dependency between a party’s current
manifesto position and its previous manifesto
position (PreviousManifesto).

Representative rules of our PSL model, based
on the predicates presented above, are given in Ta-
ble 4. They include:

Specificity: if a manifesto contains more spe-
cific pledges related to social (or economic)
left/right policies, then it will more likely be
a social (or economic) left/right-aligned man-
ifesto.

Overall position: social and economic position
influences the overall position, and this al-
lows the model to place different weights on
the influence of social and economic policies
on the overall position, which is found to be
necessary by Benoit and Laver (2007).

Global signals: coalition and temporal depen-
dencies to enforce smoothness in manifesto
positions.

Relative specificity: SpecScale of a left (or
right) policy during an election amplifies its
overall position scores.

6.1.3 Evaluation

We use manifestos from Australia and UK for
our analysis. We use data from Voter Survey
(Cameron and McAllister, 2019) for Australia and
CHES Expert Survey (Bakker et al., 2015) for the
UK as the gold-standard party position. A primary
step (related to the model given in Section 6.1.2)
is to obtain policy topic classification for sentences
in each manifesto. If annotations are not available
from Volkens et al. (2017), one out of 57 politi-
cal themes are predicted using the method of Sub-
ramanian et al. (2018). Specificity scores of sen-
tences are obtained using the proposed ordinal re-
gression approach (biGRUGAUSS+CONTEXT). Using
social, economic and a combined list of left–right
policy themes (IdeologyMap), and with the RILE
formulation, we bootstrap socpos, econpos and
pos. We then use the PSL model (Table 4) to re-
calibrate the scores based on specificity scores and
the global signals.

We compare the performance of bootstrapped
pos (RILE or policy count-based) with the PSL
model. Principal component analysis (“PCA”:
Gabel and Huber (2000)) on the frequency distri-
bution, and projection on its principal component,
is used as an additional baseline. Spearman’s cor-
relation (ρ) against the gold-standard positions is
given in Table 5. Overall, pledge specificity, espe-
cially on a relative scale (which differentiates em-
phasis between parties) provides large gains, and
global signals give only mild improvements.



1737

Specificity Weight — Model I

Manifesto(x) ∧ Policy(I) ∧ Specw(x, I) ∧ IdeologyMap(I, social left/right) → socpos(x)
Manifesto(x) ∧ Policy(I) ∧ Specw(x, I) ∧ IdeologyMap(I, economic left/right) → econpos(x)

Overall position — Model II

Manifesto(x) ∧ socpos(x) → pos(x)
Manifesto(x) ∧ econpos(x) → pos(x)

Global signals — Model III

Manifesto(x) ∧ Party(x, a) ∧ Manifesto(y) ∧ Party(y, b) ∧ Coalition(a, b) ∧ pos(x) → pos(y)
Manifesto(x) ∧ Party(x, a) ∧ PreviousManifesto(x, t) ∧ Party(t, a) ∧ pos(t) → pos(x)

Relative specificity — Model IV

Manifesto(x) ∧ Policy(I) ∧ SpecScale(x, I) ∧ IdeologyMap(I, social left/right) → socpos(x)
Manifesto(x) ∧ Policy(I) ∧ SpecScale(x, I) ∧ IdeologyMap(I, economic left/right) → econpos(x)

Table 4: PSL Model: Representative rules. left/right in the IdeologyMap predicate indicates policy issues
mapped to left/right categories, which is implemented as two separate rules — one for left and another for right.

Model Aus UK

bootstrapped pos 0.66 0.39
PCA 0.11 0.39
Model I + II 0.63 0.33
Model I + II + III 0.65 0.33
Model I + II + III + IV 0.71 0.45

Table 5: Spearman’s ρ for prediction of party position
based on the different models.

6.2 Capturing Issue Salience

For the Australian manifestos (from the Greens,
Labor, Liberal, and National parties) we perform a
qualitative study of specificity weight across pol-
icy themes, by correlating it against the salience
of major policy areas given by the Voter Survey
(Cameron and McAllister, 2019). Again we com-
pare its utility over the use of counts across pol-
icy themes in a manifesto. Using sentences classi-
fied with policy themes and specificity scores us-
ing our proposed approach, we construct the fol-
lowing |Manifestos| × 57 features — frequency
distribution (C) and pledge specificity weight (S)
across policy themes. The features are used as
independent variables, and voter survey salience
scores across major policy areas — health, educa-
tion, environment, tax, and economy — are treated
as dependent variables. Note that the voter survey
scores are available for each party and election cy-
cle across policy areas. We build separate multi-
variate linear regression models and compare them
based on the goodness of fit (log-likelihood). Log-
likelihood values are given in Table 6: across
all policy areas, pledge specificity better captures
salience than a count-based representation.

Policy Area C S

Health 824.92 905.19
Education 781.15 905.54
Environment 841.89 897.53
Tax 735.97 824.69
Economy 258.30 276.71

Table 6: Log-likelihood with pledges specificity weight
(S) and count of sentences (C) across 57 policy themes
as independent variables. Log-likelihood values using
S are better than C across all the policy areas.

7 Conclusion and Future Work

In this work we present a new dataset of election
campaign texts, annotated with pledge specificity
on a fine-grained scale. We study the use of deep
ordinal regression approaches using an auxiliary
uni-modal distributional loss for this task. The
proposed approaches provide large gains in perfor-
mance under both supervised and semi-supervised
settings. Specificity weight across policy issues
benefits ideology prediction and also better cap-
tures issue salience, compared to the traditional
policy theme count-based representation. This
aligns with previous studies done based on manual
annotations (Praprotnik, 2017). In future work, we
aim to expand this study to multiple languages.

Acknowledgements

We thank Robert Thomson for his inputs on the
task definition. This work was funded in part
by the Australian Government Research Training
Program Scholarship, and the Australian Research
Council.



1738

References
Ron Artstein and Massimo Poesio. 2008. Inter-coder

agreement for computational linguistics. Computa-
tional Linguistics, 34(4):555–596.

Stephen H Bach, Matthias Broecheler, Bert Huang,
and Lise Getoor. 2017. Hinge-loss Markov random
fields and probabilistic soft logic. Journal of Ma-
chine Learning Research, 18(109):1–67.

Stephen H. Bach, Bert Huang, Ben London, and Lise
Getoor. 2013. Hinge-loss Markov random fields:
Convex inference for structured prediction. In Pro-
ceedings of the Twenty-Ninth Conference on Uncer-
tainty in Artificial Intelligence, pages 32–41.

Ryan Bakker, Catherine De Vries, Erica Edwards,
Liesbet Hooghe, Seth Jolly, Gary Marks, Jonathan
Polk, Jan Rovny, Marco Steenbergen, and Mi-
lada Anna Vachudova. 2015. Measuring party posi-
tions in Europe: The Chapel Hill expert survey trend
file, 1999–2010. Party Politics, 21(1):143–152.

Christopher Beckham and Christopher Pal. 2016. A
simple squared-error reformulation for ordinal clas-
sification. arXiv preprint arXiv:1612.00775.

Christopher Beckham and Christopher Pal. 2017. Uni-
modal probability distributions for deep ordinal clas-
sification. In International Conference on Machine
Learning, pages 411–419.

Kenneth Benoit and Michael Laver. 2007. Estimating
party policy positions: Comparing expert surveys
and hand-coded content analysis. Electoral Studies,
26(1):90–107.

Ian Budge and Dennis Farlie. 1983. Party competition:
selective emphasis or direct confrontation?: an al-
ternative view with data. Western European party
systems : continuity & change, pages 267–305.

Sarah Cameron and Ian McAllister. 2019. Australian
election study, 1987-2016 trends.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1724–1734.

Kevin Clark, Minh-Thang Luong, Christopher D Man-
ning, and Quoc V Le. 2018. Semi-supervised se-
quence modeling with cross-view training. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1914–
1925.

Ian Cook. 2016. Content and Context: Three Essays
on Information in Politics. Ph.D. thesis, University
of Pittsburgh.

Joaquim F Pinto da Costa, Hugo Alonso, and Jaime S
Cardoso. 2008. The unimodal model for the classi-
fication of ordinal data. Neural Networks, 21(1):78–
91.

Thomas Däubler and Kenneth Benoit. 2017. Esti-
mating better left-right positions through statisti-
cal scaling of manual content analysis. Retrieved
from http://kenbenoit.net/pdfs/text_
in_context_2017.pdf.

Peter Dixon. 1987. The processing of organizational
and component step information in written direc-
tions. Journal of memory and language, 26(1):24–
35.

Nikolaus Eder, Marcelo Jenny, and Wolfgang C Müller.
2017. Manifesto functions: How party candidates
view and use their party’s central policy document.
Electoral Studies, 45:75–87.

Eran Eidinger, Roee Enbar, and Tal Hassner. 2014.
Age and gender estimation of unfiltered faces. IEEE
Transactions on Information Forensics and Security,
9(12):2170–2179.

Pablo Fernandez-Vazquez. 2014. And yet it moves:
The effect of election platforms on party policy im-
ages. Comparative Political Studies, 47(14):1919–
1944.

Matthew J Gabel and John D Huber. 2000. Putting par-
ties in their place: Inferring party left-right ideolog-
ical positions from party manifestos data. American
Journal of Political Science, pages 94–103.

Bin-Bin Gao, Chao Xing, Chen-Wei Xie, Jianxin Wu,
and Xin Geng. 2017. Deep label distribution learn-
ing with label ambiguity. IEEE Transactions on Im-
age Processing, 26(6):2825–2838.

Yifan Gao, Yang Zhong, Daniel Preotiuc-Pietro, and
Junyi Jessy Li. 2019. Predicting and analyzing lan-
guage specificity in social media posts. In Proceed-
ings of the Thirty-Third AAAI Conference on Artifi-
cial Intelligence.

AE Gentry, CK Jackson-Cook, DE Lyon, and
KJ Archer. 2015. Penalized ordinal regression
methods for predicting stage of cancer in high-
dimensional covariate spaces. Cancer informatics,
14(Suppl 2):201–208.

Zachary Greene. 2016. Competing on the issues:
How experience in government and economic condi-
tions influence the scope of parties’ policy messages.
Party Politics, 22(6):809–822.

Le Hou, Chen-Ping Yu, and Dimitris Samaras. 2016.
Squared earth mover’s distance-based loss for
training deep neural networks. arXiv preprint
arXiv:1611.05916.

Ehsan Imani and Martha White. 2018. Improving re-
gression performance with distributional losses. In
Proceedings of the International Conference on Ma-
chine Learning, pages 2162–2171.

https://doi.org/10.26193/231VJS
https://doi.org/10.26193/231VJS
http://kenbenoit.net/pdfs/text_in_context_2017.pdf
http://kenbenoit.net/pdfs/text_in_context_2017.pdf


1739

Willy Jou and Russell J. Dalton. 2017. Left-right ori-
entations and voting behavior. Oxford Research En-
cyclopedia of Politics.

Klaus Krippendorff. 2011. Computing Krippendorff’s
alpha-reliability. Technical Report, University of
Pennsylvania.

Junyi Jessy Li and Ani Nenkova. 2015. Fast and accu-
rate prediction of sentence specificity. In Proceed-
ings of the Twenty-Ninth AAAI Conference on Artifi-
cial Intelligence, pages 2281–2287. AAAI Press.

Junyi Jessy Li, Bridget O’Daniel, Yi Wu, Wenli Zhao,
and Ani Nenkova. 2016. Improving the annotation
of sentence specificity. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC 2016), pages 3921–3927.

Yang Liu, Kun Han, Zhao Tan, and Yun Lei. 2017. Us-
ing context information for dialog act classification
in DNN framework. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2170–2178.

Annie Louis and Ani Nenkova. 2011. Automatic iden-
tification of general and specific sentences by lever-
aging discourse annotations. In Proceedings of
5th International Joint Conference on Natural Lan-
guage Processing, pages 605–613.

Will Lowe, Kenneth Benoit, Slava Mikhaylov, and
Michael Laver. 2011. Scaling policy preferences
from coded political texts. Legislative studies quar-
terly, 36(1):123–155.

Luca Lugini and Diane Litman. 2017. Predicting speci-
ficity in classroom discussion. In Proceedings of the
12th Workshop on Innovative Use of NLP for Build-
ing Educational Applications, pages 52–61.

Wencan Luo and Diane Litman. 2016. Determining
the quality of a student reflective response. In The
Twenty-Ninth International FLAIRS Conference.

Nicolas Merz, Sven Regel, and Jirka Lewandowski.
2016. The Manifesto Corpus: A new resource for
research on political parties and quantitative text
analysis. Research & Politics, 3(2).

E. Naurin. 2011. Election Promises, Party Behaviour
and Voter Perception. Palgrave Macmillan.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2227–2237.

Gerald M. Pomper and Susan S. Lederman. 1980.
Elections in America: Control and Influence in
Democratic Politics. Longman.

Katrin Praprotnik. 2017. Issue clarity in electoral com-
petition. Insights from Austria. Electoral Studies,
48:121–130.

David Bruce Robertson et al. 1976. A theory of party
competition. Wiley London.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
Semeval-2017 task 4: Sentiment analysis in Twitter.
In Proceedings of the 11th international workshop
on semantic evaluation (SemEval-2017), pages 502–
518.

Rasmus Rothe, Radu Timofte, and Luc Van Gool.
2018. Deep expectation of real and apparent age
from a single image without facial landmarks. Inter-
national Journal of Computer Vision, 126(2-4):144–
157.

Terry J Royed. 1996. Testing the mandate model in
Britain and the United States: Evidence from the
Reagan and Thatcher eras. British Journal of Po-
litical Science, 26(1):45–80.

Terry J Royed, Elin Naurin, and Robert Thomson.
2019. Making and Keeping Pledges. New Com-
parative Politics.

Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tas-
dizen. 2016. Regularization with stochastic
transformations and perturbations for deep semi-
supervised learning. In Proceedings of the Advances
in Neural Information Processing Systems, pages
1163–1171.

Katrin Schermann and Laurenz Ennser-Jedenastik.
2014. Coalition policy-making under constraints:
Examining the role of preferences and institutions.
West European Politics, 37(3):564–583.

Jonathan B Slapin and Sven-Oliver Proksch. 2008. A
scaling model for estimating time-series party posi-
tions from texts. American Journal of Political Sci-
ence, 52(3):705–722.

Shivashankar Subramanian, Trevor Cohn, and Timo-
thy Baldwin. 2018. Hierarchical structured model
for fine-to-coarse manifesto text analysis. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1964–1974.

Shivashankar Subramanian, Trevor Cohn, and Timothy
Baldwin. 2019. Target based speech act classifica-
tion in political campaign text. In Proceedings of
the Eighth Joint Conference on Lexical and Compu-
tational Semantics (* SEM 2019), pages 273–282.

Robert Thomson. 2001. The programme to policy link-
age: The fulfilment of election pledges on socio–
economic policy in the Netherlands, 1986–1998.
European Journal of Political Research, 40(2):171–
197.



1740

Suzan Verberne, Eva D’hondt, Antal van den Bosch,
and Maarten Marx. 2014. Automatic thematic clas-
sification of election manifestos. Information Pro-
cessing & Management, 50(4):554–567.

Andrea Volkens, Judith Bara, Budge Ian, and Simon
Franzmann. 2013. Understanding and validating the
left-right scale (RILE). In Mapping Policy Prefer-
ences From Texts: Statistical Solutions for Manifesto
Analysts, chapter 6. Oxford University Press.

Andrea Volkens, Pola Lehmann, Theres Matthieß,
Nicolas Merz, Sven Regel, and Bernhard Weßels.
2017. The Manifesto Data Collection. Manifesto
Project (MRG/CMP/MARPOR). Version 2017b.
Wissenschaftszentrum Berlin für Sozialforschung.

Xiang Wei, Boqing Gong, Zixia Liu, Wei Lu, and
Liqiang Wang. 2018. Improving the improved train-
ing of Wasserstein GANs: A consistency term and
its dual effect. In Proceedings of the International
Conference on Learning Representations.

Cäcilia Zirn, Goran Glavaš, Federico Nanni, Jason Ei-
chorts, and Heiner Stuckenschmidt. 2016. Classify-
ing topics and detecting topic shifts in political man-
ifestos. In Proceedings of the International Confer-
ence on the Advances in Computational Analysis of
Political Text, pages 88–93.


