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Abstract
Sexism, an injustice that subjects women and
girls to enormous suffering, manifests in bla-
tant as well as subtle ways. In the wake of
growing documentation of experiences of sex-
ism on the web, the automatic categorization
of accounts of sexism has the potential to as-
sist social scientists and policy makers in uti-
lizing such data to study and counter sexism
better. The existing work on sexism classifica-
tion, which is different from sexism detection,
has certain limitations in terms of the cate-
gories of sexism used and/or whether they can
co-occur. To the best of our knowledge, this is
the first work on the multi-label classification
of sexism of any kind(s), and we contribute
the largest dataset for sexism categorization.
We develop a neural solution for this multi-
label classification that can combine sentence
representations obtained using models such as
BERT with distributional and linguistic word
embeddings using a flexible, hierarchical ar-
chitecture involving recurrent components and
optional convolutional ones. Further, we lever-
age unlabeled accounts of sexism to infuse
domain-specific elements into our framework.
The best proposed method outperforms several
deep learning as well as traditional machine
learning baselines by an appreciable margin.

1 Introduction

Sexism, discrimination on the basis of one’s sex,
prevails in our society in numerous forms, caus-
ing immense suffering to women and girls. Online
forums have enabled victims of sexism to share
their experiences freely and widely by facilitat-
ing anonymity and connecting far-away people.
A meaningful categorization of these accounts of
sexism can play a part in analyzing sexism with
a view to developing sensitization programs, sys-
temic safeguards, and other mechanisms against

∗The author is also an applied researcher at Microsoft.

this injustice. Given the rising volume of such
information on digital media, automated sexism
categorization can aid social scientists and policy
makers in combating sexism by conducting such
analyses efficiently.

While sexism is detected as a category of hate in
some of the hate speech classification work (Bad-
jatiya et al., 2017; Waseem and Hovy, 2016), it
does not perform sexism classification. Except the
work on categorizing sexual harassment by Kar-
lekar and Bansal (2018), the prior work on clas-
sifying sexism assumes the categories to be mu-
tually exclusive (Anzovino et al., 2018; Jha and
Mamidi, 2017). Moreover, the existing category
sets number between 2 to 5. In this paper, we fo-
cus on the new problem of the multi-label cate-
gorization of an account of sexism reporting any
type(s) of sexism. We create a dataset comprising
13023 accounts of sexism, including first-person
accounts from survivors, each tagged with at least
one of 23 categories of sexism. The categories
were defined keeping in mind the discourse and
campaigns on gender-related issues along with po-
tential policy implications, under the guidance of
a social scientist. Ten annotators, most of whom
have formally studied topics related to gender
and/or sexuality, were recruited to label textual ac-
counts of sexism. The accounts are drawn from
the Everyday Sexism Project website1, where vol-
untary contributors from all over the world docu-
ment experiences of sexism suffered or witnessed
by them. For classification experiments, the cat-
egories found in less than 400 accounts in our
dataset are appropriately merged with others, re-
sulting in 14 categories.

The rationale for formulating this classification
as multi-label is that many experiences inherently
involve multiple types of sexism. For instance, “I

1https://everydaysexism.com

https://everydaysexism.com
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overheard a co-worker saying that I should be in
more team events and photos because I am pleas-
ing to the eye! Disgusting.” is an experience of
sexism wherein the victim was subjected to three
types of sexism, namely hyper-sexualization, sex-
ual harassment, and hostile work environment.

We develop a novel neural architecture for the
multi-label classification of accounts of sexism
that enables flexibly combining sentence represen-
tations created using models such as BERT (Bidi-
rectional Encoder Representations from Trans-
formers) (Devlin et al., 2018) with distributional
word embeddings like ELMo (Embeddings from
Language Models) (Peters et al., 2018) and Global
Vectors (GloVe) (Pennington et al., 2014) and a
linguistic feature representation through hierar-
chical convolutional and/or recurrent operations.
Leveraging general-purpose models such as BERT
for encoding sentences likely makes our model
better equipped to capture semantic aspects ef-
fectively, since they are trained on substantially
larger textual data than the domain-specific la-
beled data that we have. Moreover, we adapt a
BERT model for the domain of instances of sexism
using unlabeled data. Embeddings from sentence
encoders are complemented by sentence represen-
tations built from word embeddings as a function
of trainable neural network parameters. We ex-
plore multiple ways to deal with the multi-label
aspect. The adopted method produces label-wise
probabilities directly and simultaneously using
shared weights and a joint loss function. Our ex-
perimentation finds multiple instances of the pro-
posed framework outperforming several diverse
baselines on established multi-label classification
metrics.

Our key contributions are summarized below.

• We propose a neural framework for the multi-
label classification of accounts of sexism that
can combine sentence representations built from
word embeddings of different kinds through
learnable model parameters with those created
using pre-trained models. It yields results supe-
rior to many deep learning and traditional ma-
chine learning baselines.

• To the best of our knowledge, this is the first
work on classifying an account recounting any
type(s) of sexism without the assumption of the
mutual exclusivity of classes.

• We provide a dataset consisting of 13023 ac-

counts of sexism by survivors and observers an-
notated with one or more of 23 carefully formu-
lated categories of sexism.

2 Related Work

Substantial work has been directed to hate speech
detection in recent years. Since some of it involves
the detection of sexism (Badjatiya et al., 2017;
Waseem and Hovy, 2016), we review it along with
the work on sexism classification.

2.1 Hate Speech Detection

Warner and Hirschberg (2012) identify anti-
semitic hate speech using SVM. Gao et al. (2017)
perform hate speech detection in a weakly super-
vised fashion. Nobata et al. (2016) distinguish
abusive comments from clean ones through var-
ious NLP and embedding-derived features. Bur-
nap and Williams (2016) classify cyber hate with
respect to race, disability, and sexual orientation
using text parsing to extract typed dependencies.
Waseem and Hovy (2016) explore the role of
extra-linguistic features along with character n-
grams in classifying tweets as racist, sexist or nei-
ther. Badjatiya et al. (2017) experiment with var-
ious deep learning approaches for the same three-
way classification. Zhang and Luo (2018) ex-
plore skipped CNN and a combination of CNN
and GRU for hate speech detection. Unlike these
papers, we seek to categorize accounts of sexism,
a specific form of discrimination or hate.

2.2 Sexism Categorization

Anzovino et al. (2018) use features such as (Part
of Speech) n-grams and text embeddings for the
5-class categorization of misogynistic language.
Jafarpour et al. (2018) classify sexist tweets into
one of four categories, which deal with harassment
and threats. Jha and Mamidi (2017) experiment
with SVM, biLSTM with attention, and fastText
to categorize tweets as benevolent, hostile, or non-
sexist. Their way of categorizing sexism relates to
the manner in which sexism is stated. While it is
applicable to all sexist remarks, narrated accounts
of sexism may not always capture how the perpe-
trators stated sexism. Karlekar and Bansal (2018)
focus on accounts of sexual harassment, exploring
CNN and/or RNN for their 3-class classification.
As far as we know, our paper presents the first at-
tempt to categorize accounts involving any type(s)
of sexism in a multi-label way. Moreover, we pro-
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vide a larger dataset and significantly more exten-
sive or finer-grained categorization scheme than
these papers.

3 Dataset Construction

Creating our multi-label sexism account catego-
rization dataset entailed two parts: textual data
collection and data annotation. To collect data,
we crawled the Everyday Sexism Project website,
which receives numerous accounts of sexism from
survivors themselves as well as observers. After
removing entries with less than 7 words, around
20000 entries were shortlisted for annotation; we
prioritized shorter ones and tried to approximate
the tag distribution on the website. Though shorter
entries were preferred keeping in mind the poten-
tial future work of transfer learning to Twitter con-
tent, our neural framework is devised in a size-
agnostic way.

Under the direction of a social scientist, 23
categories of sexism were formulated taking
into account gender-related discourse and cam-
paigns (Dutta and Sircar, 2013; Eccles et al., 1990;
Mead, 1963; Menon, 2012) as well as possible im-
pact on public policy. Table 1 provides succinct
descriptions for the categories.

We followed a three-phase annotation process
to ensure that the categorization of each account
of sexism in the final dataset involved the labeling
of it by at least two of our 10 annotators, most of
whom have studied topics related to gender and/or
sexuality formally. The annotators were given de-
tailed guidelines, which evolved during the course
of their work. Each annotator was given train-
ing, which included a pilot round involving eval-
uation and feedback. Phase 1 involved identify-
ing one or more textual portions capturing dis-
tinct accounts of sexism from an entry obtained
from Everyday Sexism Project and subsequently
tagging each portion with at least one of the 23
categories of sexism, producing over 23000 la-
beled accounts. In phases 2 and 3, we sought
redundancy of annotations for improved quality,
as permitted by the availability of annotators ade-
quately knowledgeable about sexism. Over 21000
accounts were categorized again in phase 2 such
that the annotators for phases 1 and 2 were differ-
ent. The inter-annotator agreement across phases
1 and 2, measured by the average of the Cohen’s
Kappa (Cohen, 1960; Artstein and Poesio, 2008)
scores for the per-category pairs of binary label

vectors, is 0.584. Each account for which the label
sets annotated across phases 1 and 2 were iden-
tical was included in the dataset along with the
associated label set. In phase 3, some of the ac-
counts for which there was a mismatch between
the phase 1 and phase 2 annotations were selected.
For each account, the annotators were presented
with only the mismatched categories and asked to
select or reject each. Duplicates and records for
which the Everyday Sexism Project entry numbers
match but the accounts do not fully match were
removed at multiple stages. In order to improve
the annotation reliability further, some records for
which the annotations differed across phases 1 and
2 were discarded based on the annotators involved
and sensitivities of the categories, resulting in a
multi-label sexism categorization dataset of 13023
accounts. For our automated sexism classifica-
tion experiments, we merge the categories found
in less than 400 records with others as follows,
resulting in 14 categories. ‘Menstruation-related
discrimination’ and ‘Motherhood-related discrim-
ination’ are merged into ‘Motherhood and men-
struation related discrimination’; ‘Mansplaining’,
‘Gaslighting’, ‘Religion-based sexism’, ‘Physical
violence (excluding sexual violence)’, and ‘Other’
are merged into ‘Other’; ‘Pay gap’ and ‘Hos-
tile work environment (excluding pay gap)’ are
merged into ‘Hostile work environment’; ‘Tone
policing’, ‘Moral policing (excluding tone polic-
ing)’, and ‘Victim blaming’ are merged into
‘Moral policing and victim blaming’; ‘Rape’ and
‘Sexual assault (excluding rape)’ are merged into
‘Sexual assault’. Our dataset, however, retains all
23 categories. Fig. 1 shows the frequency distri-
bution of the number of labels per account in the
dataset, demonstrating the multi-label nature of in-
stances of sexism.

Caution: 1) The category frequencies in our
dataset (used for merging categories) do not rep-
resent real-world instances of sexism, as they are
affected by several factors including the bias of
our sampling scheme toward smaller posts and the
small size of our dataset relative to the immense
degree of prevalence of sexism in the world. 2)
Labeling categories of sexism can be complex in
many cases. Hence, despite our best efforts, our
labeled data may contain inaccuracies or discrep-
ancies. We also recognize that our categorization
scheme could be improved.
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Table 1: Descriptions of the categories of sexism used in our dataset
Category Description
Role stereotyping Socially constructed false generalizations about certain roles being more appropriate for women; also applies to such

misconceptions about men
Attribute stereotyping Mistaken linkage of women with some physical, psychological, or behavioral qualities or likes/dislikes; also applies

to such false notions about men
Body shaming Objectionable comments or behaviour concerning appearance including the promotion of certain body types or stan-

dards
Hyper-sexualization (excluding
body shaming)

Unwarranted focus on physical aspects or sexual acts

Internalized sexism The perpetration of sexism by women via comments or other actions
Pay gap Unequal salaries for men and women for the same work profile
Hostile work environment (ex-
cluding pay gap)

Sexism encountered by an employee at the workplace; also applies when a sexist misdeed committed outside the
workplace by a co-worker makes working uncomfortable for the victim

Denial or trivialization of sexist
misconduct

Denial or downplaying of sexist wrongdoings

Threats All threats including wishing for violence or joking about it, stalking, threatening gestures, or rape threats
Rape FBI’s expanded definition of rape
Sexual assault (excluding rape) Any sexual contact without consent; unwanted touching
Sexual harassment (excluding
assault)

Any sexually objectionable behaviour

Tone policing Comments or actions that cause or aggravate restrictions on how women communicate
Moral policing (excluding tone
policing)

The promotion of discriminatory codes of conduct for women in the guise of morality; also applies to statements that
feed into such codes and narratives

Victim blaming The act of holding the victim responsible (fully or partially) for sexual harassment, violence, or other sexism perpe-
trated against her

Slut shaming Inappropriate comments made about women 1) deviating from conservative expectations relating to sex or 2) dressing
in a certain way when it gets linked to sexual availability

Motherhood-related discrimina-
tion

Shaming, prejudices, or other discrimination or misconduct related to the notion of motherhood; also applies to the
violation of reproductive rights

Menstruation-related discrimi-
nation

Shaming, prejudices, or other discrimination or wrongdoings related to periods

Religion-based sexism Sexist discrimination or prejudices stemming from religious scriptures or constructs
Physical violence (excluding
sexual violence)

Domestic abuse, murder, kidnapping, confinement, or other physical acts of violence linked to sexism

Mansplaining A woman being condescendingly talked down to by a man; also applies when a man gives an unsolicited advice or
explanation to a woman related to something she knows well that she disapproves of

Gaslighting Sexist manipulation of the victim through psychological means into doubting her own sanity
Other Any type of sexism not covered by the above categories

3.1 Ethical Data Use and Release

We are committed to following ethical prac-
tices, which includes protecting the privacy and
anonymity of the victims. We only use accounts of
sexism and tags from entries on the Everyday Sex-
ism Project website (ESP). The entry titles, which
could contain sensitive information related to the
names or locations of the victims (or contributors),
are not saved or used at all.

Our dataset can be requested for academic pur-
poses only by providing some prerequisites as rec-
ommended by an ethics committee and agreeing to
certain terms through our website2. The requesters
who fulfill these conditions will be emailed 1) the
data comprising only numerical placeholders and
labels, 2) a script that fetches only accounts of sex-
ism from ESP to obtain the account for each place-
holder, and 3) the annotation guidelines used. We
have devised this method to ensure that if an entry
gets removed from ESP by a victim (or contribu-
tor), any and all parts of it in our dataset will also
be removed.

2https://irel.iiit.ac.in/
sexism-classification
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Figure 1: Frequency distribution of #labels per post

4 Sexism Categorization Approach

Given an account of sexism (post), our objective is
to predict a list of up to 14 applicable categories of
sexism, making this a multi-label multi-class clas-
sification task. In this section, we detail our pro-
posed framework, which enables combining sen-
tence representations derived from word embed-
dings using trainable model parameters with those
obtained using general-purpose models. Our ar-
chitecture is depicted in Fig. 2. We also discuss
how we tap unlabeled data and loss functions.

4.1 Sexism Categorization Architecture

Let each post contain a maximum of |S| sentences
with a maximum of |W | words per sentence. Ev-

https://irel.iiit.ac.in/sexism-classification
https://irel.iiit.ac.in/sexism-classification
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Figure 2: Proposed sexism categorization architecture

ery word (or sentence) can be represented using
multiple word (or sentence) embedding methods.
Let f (or g) be the number of word (or sentence)
embedding methods chosen. Let dwi (or dsj) be the
embedding dimension for the ith (or jth) word (or
sentence) embedding scheme. Each post is repre-
sented using two kinds of tensors: (a) f tensors
∈ R|S|×|W |×dwi created using different word em-
beddings, and (b) g tensors ∈ R|S|×d

s
j constructed

using different sentence encoders.
First, subsets of the f tensors based on word

embeddings are concatenated in a configurable
manner (configurable word-level concat in Fig. 2),
producing p tensors ∈ R|S|×|W |×Dw

i , where Dw
i

is the dimension resulting from the ith concate-
nation. Next, we construct vector representations
for the sentences word-embedded in each of the
p tensors using CNN-based and/or LSTM-based
operations as configured. The CNN-based opera-
tions begin with convolutional filters being applied
along the word dimension (Kim, 2014) to gener-
ate many bigram, trigram and 4-gram based fea-
tures. This is followed by max-over-time pool-
ing, which picks the largest value for each fil-
ter and produces a sentence representing tensor
∈ R|S|×c, where c is the total number of convolu-
tional filters used. The LSTM-based components
include biLSTM followed by an attention mecha-
nism (Yang et al., 2016) through which the LSTM
outputs across time steps are aggregated into a
vector representation for each sentence, resulting

in a tensor ∈ R|S|×h, where h is the bi-LSTM out-
put length. At this stage, we have three types of
sentence representing tensors if both CNN-based
and RNN-based operations are chosen to be ap-
plied on all word embedding tensors: (a) p tensors
∈ R|S|×c from the CNN-based processing, (b) p
tensors ∈ R|S|×h from the LSTM-based process-
ing, and (c) g tensors ∈ R|S|×d

s
j obtained using

general-purpose sentence encoders.
From these sentence representing tensors, sub-

sets are concatenated to produce q tensors ∈
R|S|×D

s
j (configurable sentence-level concat in

Fig. 2), where Ds
j is the dimension stemming from

the jth concatenation. The sequence of sentence
vectors in each of these q tensors is then passed
through bi-LSTM followed by attention-based ag-
gregation, producing q representations for a post
collectively. These vectors are then concatenated
to produce the overall post representation. The fi-
nal step involves a fully connected layer with a sig-
moid or softmax non-linearity depending on the
loss function used, generating the output probabil-
ities.

4.2 Word and Sentence Representations

We model a post using both word embeddings and
sentence embeddings. We experiment with three
distributional word vectors, namely ELMo (Peters
et al., 2018), GloVe (Pennington et al., 2014), and
fastText (Bojanowski et al., 2017), and a linguis-
tic feature vector. Our linguistic feature repre-
sentation comprises a variety of features, namely
features from the biased language detection work
(assertive verb, implicative verb, hedges, fac-
tive verb, report verb, entailment, strong subjec-
tive, weak subjective, positive word, and nega-
tive word) (Recasens et al., 2013), PERMA (Pos-
itive Emotion, Engagement, Relationships, Mean-
ing, and Accomplishments) features for both po-
larities (Schwartz et al., 2016), associations with
eight basic emotions (anger, fear, anticipation,
trust, surprise, sadness, joy, and disgust) and
two sentiments (negative and positive) from the
NRC emotion lexicon (Mohammad and Turney,
2013), and affect (valence, arousal, and domi-
nance) scores (Mohammad, 2018). Missing values
are filled with zero for binary features and with the
mean for non-binary ones.

We explore the following for creating sentence
embeddings: BERT (Devlin et al., 2018), Univer-
sal Sentence Encoder (USE) (Cer et al., 2018), and
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InferSent (Conneau et al., 2017). Our choice of
utilizing these models is warranted by the fact that
the corpora that they are trained on are consid-
erably bigger than the textual data that we have
for supervised learning and hence likely contain
greater semantic diversity.

4.3 Utilizing Unlabeled Data

Models such as BERT are not trained to generate
representations tuned to a specific domain. We use
over 90000 entries crawled from Everyday Sex-
ism Project’s website to tailor a pre-trained BERT
model for obtaining more effective representations
for our model. After removing the unlabeled en-
tries corresponding to the posts in the test and val-
idation data, we use the rest to tune the BERT pa-
rameters using its masked language modeling and
next sentence prediction tasks. We henceforth re-
fer to this refined model as tBERT (tuned BERT).

4.4 Loss Function Choice

Since the popular cross-entropy loss is inapt for
our multi-label classification task in its standard
form, we explore two alternatives. Binary (multi-
hot) target vectors are used for both.

4.4.1 Extended Binary Cross Entropy Loss

We adopt an Extended version of the Binary Cross
Entropy loss (EBCE), formulated as a weighted
mean of label-wise binary cross entropy values in
order to neutralize class imbalance.

LEBCE = − 1

n

n∑
i=1

1

L

L∑
j=1

wjyij
{
yij log(p̂

σ
ij)

+(1− yij) log(1− p̂σij)
}

(1)

Here, n and L denote the number of samples
(posts) and the number of classes respectively. yij
is 1 if label lj applies to post xi and 0 otherwise.
p̂σij is the estimated probability of label lj being ap-
plicable to post xi computed using a sigmoid acti-
vation atop the fully connected layer with L output
units. The weights for correcting class imbalance
wjv are computed as follows.

wjv =
n

2|{xi | yij = v, 1 ≤ i ≤ n}|
(2)

4.4.2 Normalized Cross Entropy Loss

We also experiment with a Normalized variant of
the Cross Entropy loss tailored for a multi-label
problem configuration also mitigating class imbal-
ance (referred to as NCE).

LNCE = − 1

n

n∑
i=1

1

|y+
i |

L∑
j=1

wcj{yij log(p̂ij)} (3)

Here, y+
i is the set of labels applicable to post

xi. p̂ij denotes the estimated probability of label
lj being applicable to post xi computed through
a softmax function. The class imbalance negating
weights wcj are generated as follows.

wcj =
n∑n

i=1
yij
|y+

i |
(4)

Unlike in single-label multi-class classification,
wherein argmax can be applied to the probabil-
ity vector generated by softmax to make the pre-
diction, we could apply a threshold on probabil-
ity vector p̂i to find the (potentially) multiple ap-
plicable classes for post xi. Instead of using a
fixed, manually tuned threshold-related parameter,
we devise an automated method for estimating a
per-sample cut-off position. For each sample, we
descendingly sort the probability scores, compute
the differences between successive (sorted) score
pairs, find the index m corresponding to the maxi-
mum value in the list of differences, and select the
classes corresponding to indices [1..m]. Note that
when sigmoid (along with EBCE loss) is used in-
stead of softmax, the prediction is made by round-
ing the probability vector, since it comprises the
class-wise binary prediction probabilities.

4.4.3 Discussion on Single-label
Transformations

Traditional approaches to multi-label classifica-
tion include transforming the problem to one or
more single-label classification problems. The La-
bel Powerset (LP) method (Boutell et al., 2004)
treats each distinct combination of classes exist-
ing in the training set as a separate class. The
standard cross-entropy loss can then be used along
with softmax. This transformative method may
impose a greater computational cost than the direct
approach using the EBCE loss since the cardinal-
ity of the transformed label set may be relatively
high. Moreover, LP does not generalize to label
combinations not covered in the training set. An-
other approach based on problem transformation
is binary relevance (BR) (Boutell et al., 2004). An
independent binary classifier is trained to predict
the applicability of each label in this method. This
entails training a total of L classifiers, making BR
computationally very expensive. Additionally, its
performance is affected by the fact that it disre-
gards correlations existing between labels.
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5 Experiments

We evaluate the proposed framework against sev-
eral baselines and provide qualitative and quanti-
tative analyses. Our code is available on GitHub3.
Our implementation utilizes parts of the code
from (Agrawal and Awekar, 2018; Pattisapu et al.,
2017; Liao, 2017) and libraries Keras and Scikit-
learn (Pedregosa et al., 2011). We reserve 15% of
the data for testing and validation each.

5.1 Evaluation Metrics

Owing to the multi-label nature of this classifica-
tion, standard metrics used in single-label multi-
class classification are unsuitable. We adopt estab-
lished example (instance) based metrics, namely
F1 (FI ) and accuracy (AccI ), and label-based met-
rics, namely F1 macro (Fmacro) and F1 micro
(Fmicro) used in multi-label classification (Zhang
and Zhou, 2014).

5.2 Baselines

Random
Labels are selected randomly as per their nor-

malized frequencies in the training data for each
test sample.
Traditional Machine Learning (ML)

We experiment with Support Vector Machine
(SVM), Random Forests (RF), and Logistic Re-
gression (LR). The features explored include TF-
IDF on character n-grams (1-5 characters), TF-
IDF on word unigrams and bigrams, the mean
of the ELMo vectors for the words in a post,
and the composite set of features similar to (An-
zovino et al., 2018) comprising n-gram based,
POS-based, and doc2vec (Le and Mikolov, 2014)
features, the post length, and the adjective count.
LSTM-based Architectures

biLSTM: The word embeddings for all words
in a post are fed to bidirectional LSTM.

biLSTM-Attention: Same as biLSTM but with
the attention mechanism by Yang et al. (2016).

Hierarchical-biLSTM-Attention: For the
words in each sentence, the word embeddings are
passed through biLSTM with attention to create a
sentence embedding. These sentence embeddings
are in turn fed to another instance of biLSTM
with attention. This broadly follows the architec-
ture proposed for document classification by Yang
et al. (2016) with GRUs replaced with LSTMs.

3https://github.com/pulkitparikh/
sexism_classification

Sentence embeddings with biLSTM-
Attention: Sentence representations generated
using a generic encoder (BERT using bert-as-
service (Xiao, 2018), USE, and InferSent) are
passed through biLSTM with attention.
CNN and CNN-LSTM based Architectures

CNN-Kim: Similar to (Kim, 2014), this in-
volves applying convolutional filters followed by
max-over-time pooling to the word vectors for a
post.

C-biLSTM: In this variant of the C-LSTM ar-
chitecture (Zhou et al., 2015) somewhat related to
an approach used by Karlekar and Bansal (2018)
for multi-label sexual harassment classification,
after applying convolution on the word vectors for
a post, the feature maps are stacked along the filter
dimension to create a sequence of window vectors,
which are then fed to biLSTM.

CNN-biLSTM-Attention: For each sentence,
convolutional and max-over-time pooling layers
are applied on the embeddings of its words. The
resultant sentence representations are put through
bi-LSTM with the attention mechanism. This ap-
proach is similar to (Wang et al., 2016) with the
attention scheme from (Yang et al., 2016) added.

The architectures of the deep learning baselines
have a fully connected layer with the sigmoid or
softmax non-linearity (depending on the loss func-
tion used) at the end.

5.3 Results

Table 2 shows results produced using traditional
ML methods (SVM, RF, and LR) across four dif-
ferent feature sets (word n-grams, character n-
grams, averaged ELMo vectors, and composite
features). We use Label Powerset for these meth-
ods, since the direct (non-transformative) formula-
tion cannot be used with them. Among these com-
binations, logistic regression with averaged ELMo
embeddings as features performs the best.

Table 3 contains results for the random and deep
learning baselines and different variants of the pro-
posed framework. For each method, the aver-
age over three runs is reported for each metric.
We find ELMo to be better than GloVe and fast-
Text for word embeddings across multiple base-
lines and hence show only ELMO-based results
for the baselines. We report all results with the
EBCE loss; the NCE loss produced inferior re-
sults across multiple methods. For our framework,
s() denotes sentence-level concatenation; wl() de-

https://github.com/pulkitparikh/sexism_classification
https://github.com/pulkitparikh/sexism_classification
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Table 2: Results with traditional machine learning (Label Powerset)
Features−→ Word n-grams Character n-grams Averaged ELMo vectors Composite features
Classifier↓ FI Fmacro AccI Fmicro FI Fmacro AccI Fmicro FI Fmacro AccI Fmicro FI Fmacro AccI Fmicro

SVM 0.448 0.373 0.324 0.410 0.449 0.374 0.331 0.416 0.546 0.430 0.431 0.500 0.178 0.094 0.116 0.174
LR 0.357 0.315 0.236 0.349 0.357 0.311 0.230 0.352 0.595 0.479 0.478 0.549 0.438 0.370 0.311 0.421
RF 0.531 0.398 0.438 0.476 0.395 0.205 0.325 0.349 0.375 0.164 0.305 0.331 0.460 0.311 0.380 0.415

notes word level concatenation and LSTM-based
processing; wc() denotes word level concatenation
and CNN-based processing. We note that the re-
sults are reported for only some of the many in-
stances that can arise from our configurable archi-
tecture. Our framework provides the ability to ex-
plore different configurations such as those with
multiple s() operations, depending on the problem
at hand.

We observe the following: (1) The random
baseline performs poorly, confirming the com-
plexity of the problem. (2) biLSTM-Attention and
Hierarchical-biLSTM-Attention are the two best
baselines. (3) Several variants of the proposed
framework outperform all baselines. Based on
FI and Fmacro, our best method is s(wl(ELMo),
wl(GloVe), tBERT), though adding linguistic fea-
tures (Ling) to it slightly improves some metrics.
(4) BERT tuned on unlabeled instances of sex-
ism (tBERT) works better than the vanilla BERT
counterpart and other sentence encoders. (5) Com-
bining tBERT sentence representations with those
generated from ELMo word vectors using biL-
STM with attention works better than using ei-
ther individually. (6) Along with tBERT, con-
catenating ELMo and GloVe at the sentence level
(s(wl(ELMo), wl(GloVe), tBERT)) is better than
concatenating them at the word level (s(wl(ELMo,
GloVe), tBERT)) while processing word vectors
using biLSTM with attention. (7) The LSTM
based processing of word embeddings produces
Table 3: Results for the proposed methods and deep
learning baselines (using ELMo embeddings) with the
EBCE loss and Random

Approach FI Fmacro AccI Fmicro

B
as

el
in

es

Random 0.042 0.141 0.027 0.193
biLSTM 0.697 0.616 0.563 0.658
biLSTM-Attention 0.728 0.650 0.601 0.688
Hierarchical-biLSTM-Attention 0.725 0.650 0.604 0.688
BERT-biLSTM-Attention 0.656 0.555 0.502 0.611
USE-biLSTM-Attention 0.628 0.549 0.468 0.594
InferSent-biLSTM-Attention 0.418 0.37 0.274 0.399
CNN-biLSTM-Attention 0.714 0.628 0.586 0.671
CNN-Kim 0.701 0.622 0.574 0.669
C-biLSTM 0.708 0.631 0.583 0.674

Pr
op

os
ed

m
et

ho
ds

tBERT-biLSTM-Attention 0.688 0.589 0.539 0.644
s(wl(ELMo), tBERT) 0.747 0.675 0.628 0.710
s(wl(ELMo, GloVe), tBERT) 0.743 0.667 0.618 0.703
s(wc(ELMo), wc(GloVe), tBERT) 0.738 0.654 0.614 0.698
s(wl(ELMo), wl(GloVe), tBERT) 0.756 0.684 0.635 0.715
s(wl(ELMo), wl(GloVe), tBERT, USE) 0.753 0.673 0.632 0.715
s(wl(ELMo), wl(GloVe), wl(Ling),
tBERT)

0.753 0.685 0.636 0.718

s(wc(ELMo), wl(ELMo), wc(GloVe),
wl(GloVe), tBERT)

0.741 0.664 0.625 0.705

better results than the CNN based counterpart.
The pre-processing steps that we perform for all

deep learning methods include removing certain
non-alpha-numeric characters and extra spaces,
lower-casing, and zero-padding input tensors as
appropriate. While breaking a post into sentences,
each sentence containing more than 35 words is
split into multiple sentences, ensuring the maxi-
mum sentence length of 35 words.

Using experiments on a validation set, which
was merged into the training set during the test
runs, for each method, we choose the values of
three hyper-parameters: the LSTM dimension, the
attention dimension, and the number CNN filters
for kernel sizes 2, 3, and 4 each. The values used
for instances of our framework and the deep learn-
ing baselines are provided in Table 5.

We employ 0.25 dropouts after each input and
before the final, fully connected layer. The learn-
ing rate was set to 0.001 and the number of epochs
to 10. We use a batch size of 64. These fixed pa-
rameters were kept unchanged across methods.

The hyper-parameter values for the traditional
ML methods are as follows. For SVM, soft mar-
gin (C) is set to 1.0. For RF (Random Forest), the
number of estimators is 100. For extracting char-
acter and word n-grams, the maximum number of
features used, word n-gram range, and character
n-gram range are 10000, (1,2), and (1,5) respec-
tively. For SVM and LR (Logistic Regression),
we apply class imbalance correction.

For tapping unlabeled data, we pre-train the
‘BERT-Base, Uncased’ model4 for 100000 steps
with a batch size of 25. For vannila BERT, we use
the bigger ‘BERT-Large, Uncased’ model, which
we could not use for pre-training because of com-
putational constraints. For generating GloVe word
embeddings, we use the 840B-token, cased model.

Table 4 lists accounts of sexism from the test
set for which our best method made the right pre-
dictions but the best baseline did not, along with
the labels. It also highlights the top two words per
sentence based on the word-level attention weights
for wl(ELMo) and wl(GloVe) combined through
element-wise max operations. For the first ac-

4https://github.com/google-research/
bert

https://github.com/google-research/bert
https://github.com/google-research/bert
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Table 4: Attention analysis for some test samples
Account of sexism Two most-attended-to words / sentence Labels
am in social services. my male coworker and I have the same job title. Everyone
assumes I am his assistant or an intern. It’s not just clients who assume he’s my
boss, it’s other agencies. The same ppl who think nothing calling me honey at work.

(services, am), (coworker, title),
(intern, assistant), (boss, agencies),
(honey, me)

Role stereotyping, Hostile work
environment, Sexual harassment
(excluding assault)

being told I should take cat calls as compliments by my father (compliments, cat) Denial or trivialisation of sexist
misconduct, Sexual harassment
(excluding assault)

I didn’t appreciate it when my own father walked into the house one day while I was
doing laundry and told me that “it’s nice to see you finally doing women’s work.”

(womens, work) Role stereotyping, Moral polic-
ing and victim blaming

Referred to as ‘not a girl’ because I have short hair and don’t wear noticeable
makeup.

(makeup, hair) Attribute stereotyping, Body
shaming

At our school girls are forbidden to wear tight trowsers or remove their blazers- in
fear of distracting the boys.

(tight, trowsers) Moral policing and victim blam-
ing, Hyper-sexualization (ex-
cluding body shaming)

Table 5: Tuned hyper-parameter values for the deep learning baselines (ELMo embeddings) and proposed methods
with the EBCE loss

Approach LSTM dimension Attention dimension CNN Filters of each kernel size
Hierarchical-biLSTM-Attention 300 400 N.A.
CNN-biLSTM-Attention 300 400 100
BERT-biLSTM-Attention 200 500 N.A.
USE-biLSTM-Attention 300 600 N.A.
InferSent-biLSTM-Attention 100 200 N.A.
C-biLSTM 300 N.A. 150
biLSTM-Attention 200 300 N.A.
biLSTM 300 N.A. N.A.
CNN-Kim N.A. N.A. 150
tBERT-biLSTM-Attention 300 600 N.A.
s(wl(ELMo), tBERT) 300 600 N.A.
s(wl(ELMo, GloVe), tBERT) 100 100 N.A.
s(wl(ELMo), wl(GloVe), tBERT) 100 200 N.A.
s(wl(ELMo), wl(GloVe), tBERT, USE) 300 600 N.A.
s(wl(ELMo), wl(GloVe), wl(Ling), tBERT) 300 600 N.A.
s(wc(ELMo), wc(GloVe), tBERT) 300 600 100
s(wc(ELMo), wl(ELMo), wc(GloVe), wl(GloVe), tBERT) 300 500 100

Table 6: Performance variation across #labels per post
#Labels per post FI Fmacro AccI Fmicro

1 0.729 0.527 0.632 0.637
2 0.754 0.675 0.631 0.722
3 0.781 0.721 0.652 0.764
4 0.743 0.722 0.604 0.735
5 0.739 0.592 0.592 0.735

count of sexism, our model produces words like
“intern”, “assistant” and “boss”, associated with
role stereotyping, among the top two words across
sentences. Likewise, “honey” related to sexual ha-
rassment and “boss”, “coworker”, and “services”
related to hostile work environments also surface.
Moreover, the top two sentences based on the
sentence-level attention weights of our model are
the last two, which evidence all category labels.
For other posts too, the model produces category-
relevant top two words per sentence; “womens”
and “work” relate to role stereotyping and moral
policing; “tight” and “trowsers” relate to hyper-
sexualization and moral policing; “makeup” re-
lates to attribute stereotyping; “hair” from “short
hair” relates to body shaming; “cat” from “cat
calls” relates to sexual harassment; “compliments”
from “take cat calls as compliments” relates to de-
nial or trivialization of sexist misconduct.

Table 6 shows results for one run of our best
method across different numbers of labels per post
(1 to 5). Entries for values 6 and 7, which have
less than 10 associated test samples, are omitted.

The best results are observed for values 2 to 4,
suggesting that our approach performs better on
multi-label samples.

6 Conclusion

We explored classifying an account reporting any
kind(s) of sexism such that the categories can co-
occur. We developed a neural framework that out-
performs many deep learning and traditional ML
baselines for this multi-label sexism classifica-
tion. Moreover, we provided the largest dataset for
sexism classification, linked with 23 categories.
Directions for future work include devising ap-
proaches that perform sexism classification more
accurately, enhancing the categorization scheme,
and developing other ways to help counter sexism.
We hope that this paper will give rise to further
work aimed at fighting sexism.
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