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Abstract

The ability to ask clarification questions is
essential for knowledge-based question an-
swering (KBQA) systems, especially for han-
dling ambiguous phenomena. Despite its
importance, clarification has not been well
explored in current KBQA systems. Fur-
ther progress requires supervised resources for
training and evaluation, and powerful models
for clarification-related text understanding and
generation. In this paper, we construct a new
clarification dataset, CLAQUA, with nearly
40K open-domain examples. The dataset sup-
ports three serial tasks: given a question, iden-
tify whether clarification is needed; if yes,
generate a clarification question; then predict
answers base on external user feedback. We
provide representative baselines for these tasks
and further introduce a coarse-to-fine model
for clarification question generation. Experi-
ments show that the proposed model achieves
better performance than strong baselines. The
further analysis demonstrates that our dataset
brings new challenges and there still remain
several unsolved problems, like reasonable
automatic evaluation metrics for clarification
question generation and powerful models for
handling entity sparsity.!

1 Introduction

Clarification is an essential ability for knowledge-
based question answering, especially when han-
dling ambiguous questions (Demetras et al.,
1986). In real-world scenarios, ambiguity is a
common phenomenon as many questions are not
clearly articulated, e.g. “What are the languages
used to create the source code of Midori?” in Fig-
ure 1. There are two “Midori” using different pro-
gramming languages, which confuses the system.

* The work was done while Jingjing Xu and Yuechen
Wang were interns in Microsoft Research, Asia.

The dataset and code will be released at https://
github.com/msra-nlc/MSParS_v2.0
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browser....

Language C Language M#

When you say the source code language

What are the languages used to
used in the program Midori, are you
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Figure 1: An example of a clarification question in

KBQA. There are two entities named “Midori” using

different programming languages, which confuses the
system.

For these ambiguous or confusing questions, it is
hard to directly give satisfactory responses unless
systems can ask clarification questions to confirm
the participant’s intention. Therefore, this work
explores how to use clarification to improve cur-
rent KBQA systems.

We introduce an open-domain clarification cor-
pus, CLAQUA, for KBQA. Unlike previous
clarification-related datasets with limited anno-
tated examples (De Boni and Manandhar, 2003;
Stoyancheyv et al., 2014) or in specific domains (Li
et al., 2017; Rao and III, 2018), our dataset cov-
ers various domains and supports three tasks. The
comparison of our dataset with relevant datasets is
shown in Table 1. Our dataset considers two kinds
of ambiguity for single-turn and multi-turn ques-
tions. In the single-turn case, an entity name refers
to multiple possible entities in a knowledge base
while the current utterance lacks necessary iden-
tifying information. In the multi-turn case, am-
biguity mainly comes from the omission where a
pronoun refers to multiple possible entities from
the previous conversation turn. Unlike CSQA
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Dataset Domain Size  Task
De Boni and Manandhar (2003)  Open domain 253 Clarification question generation.
Stoyancheyv et al. (2014) Open domain 794 Clarification question generation.
. . Learning to generate responses based on previous clar-
Lietal. (2017) Movie 180K ification questions and user feedback in dialogue.
Guo et al. (2017) Synthetic 100K Learning to ask clarification questions in reading com-

Rao and III (2018)

Operating system 77K

prehension.
Ranking clarification questions in an online QA forum,
StackExchange?.

CLAQUA (Our dataset)

Open domain 40K

Clarification in KBQA, supporting clarification iden-
tification, clarification question generation, and
clarification-based question answering.

Table 1: The comparison of our dataset with relevant datasets. The first and second datasets focus on generating
clarification questions while the small size limits their applications. The middle three tasks are either not designed
for KBQA or limited in specific domains. Unlike them, we present an open-domain dataset for KBQA.

dataset (Saha et al., 2018) that constructs clarifica-
tion questions base on predicate-independent tem-
plates, our clarification questions are predicate-
aware and more diverse. Based on the clarifica-
tion raising pipeline, we formulate three tasks in
our dataset, including clarification identification,
clarification question generation, and clarification-
based question answering. These tasks can natu-
rally be integrated into existing KBQA systems.
Since asking too many clarification questions sig-
nificantly lowers the conversation quality, we first
design the task of identifying whether clarification
is needed. If no clarification is needed, systems
can directly respond. Otherwise, systems need to
generate a clarification question to request more
information from the participant. Then, external
user feedback is used to predict answers.

Our main contribution is constructing a new
clarification dataset for KBQA. To build high-
quality resources, we elaborately design a data an-
notation pipeline, which can be divided into three
steps: sub-graph extraction, ambiguous ques-
tion annotation, and clarification question anno-
tation. We design different annotation interfaces
for single-turn and multi-turn cases. We first ex-
tract “ambiguous sub-graphs” from a knowledge
base as raw materials. To enable systems to per-
form robustly across domains, the sub-graphs are
extracted from an open-domain KB, covering do-
mains like music, tv, book, film, etc. Based on the
sub-graphs, annotators are required to write am-
biguous questions and clarification questions.

We also contribute by implementing representa-
tive neural networks for the three tasks and further
developing a new coarse-to-fine model for clari-
fication question generation. Take multi-turn as
an example. In the task of clarification identifica-

tion, the best performing system obtains an accu-
racy of 86.6%. For clarification question genera-
tion, our proposed coarse-to-fine model achieves
a BLEU score of 45.02, better than strong base-
line models. For clarification-based question an-
swering, the best accuracy is 74.7%. We also con-
duct a detailed analysis for three tasks and find that
our dataset brings new challenges that need to be
further explored, like reasonable automatic eval-
uation metrics and powerful models for handling
the sparsity of entities.

2 Data Collection

The construction process consists of three steps,
sub-graph extraction, ambiguous question annota-
tion, and clarification question annotation. We de-
sign different annotation interfaces for single-turn
and multi-turn cases.

2.1 Single-Turn Annotation

Sub-graph Extraction. As shown in Figure 2,
we extract ambiguous sub-graphs from an open-
domain knowledge base?, like FreeBase. For sim-
plification, we set the maximum number of am-
biguous entities to 2. In single-turn cases, we fo-
cus on shared-name ambiguity where two entities
have the same name and there is a lack of neces-
sary distinguishing information. To construct such
cases, we extract two entities sharing the same en-
tity name and the same predicate. Predicate repre-
sents the relation between two entities. The sub-
graphs provide reference for human annotators to
write diverse ambiguous questions based on the
shared predicates.

2An online QA community.
3To persevere anonymity, the name of the used KB is hid-
den for now. We will release our dataset and codes.
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Computer.software.
language_used

Computer.software.
language_used

()
Figure 2: An extracted ambiguous sub-graph in
the single-turn case. Two entities share the same
name “Midori” and the same predicate “Com-
puter.software,language _used”.

Shared Name Midori

Predicate # 1 computer.software.language_used
Predicate A property relating an instance
Description of computer.software to a pro-

gramming language that was used

to create the source code for the
software.

(o: What are the languages used to create the source
code of Midori?

Table 2: An ambiguous question annotation example in
the single-turn case.

Ambiguous Question Annotation. In this step,
the input is a table listing the shared entity name,
predicate name, and predicate description. Based
on this table, annotators need to write ambiguous
questions, e.g., “What are the languages used to
create the source code of Midori?”. An annotation
example is shown in Table 2. For diversity, anno-
tators are encouraged to paraphrase the intention
words in the predicate description.

Clarification Question Annotation. Based on
entities and the annotated ambiguous question, an-
notators are required to summarize distinguish-
ing information and write a multi-choice clarifi-
cation question with a special marker for sepa-
rating entity information and pattern information,
e.g., “When you say the source code language
used in the program Midori, are you referring to
[web browser Midori] or [operating system Mi-
dori]?”. Annotators are asked to write predicate-
aware clarification questions instead of general
questions, like “Which one do you mean, A or B?”
or “do you mean A?” as adopted in (Saha et al.,
2018). An example is shown in Table 3.

We use multi-choice as our basic type of clar-
ification. There are three possible clarification
question types, including zero-choice type (e.g., I
don’t understand, can you provide more details?),
single-choice type (e.g., Do you mean A?), and
multi-choice type (e.g., Which one do you mean,
A or B?). The zero-choice type means that the sys-
tem does not understand the question and expects

FE1 Name
E, Type

computer.software

media_common.creative_work

Midori is a free and open-source
light-weight . It uses
the WebKit rendering engine and the

FE; Description

GTK+2 or GTK+3 ... ...

F> Name Midori

FEo Type computer.operating_system
computer.software

Midori was the code name for a man-
aged code operating system being
developed by Microsoft with joint
effort of Microsoft Research... ...
Qa What are the languages used to cre-
ate the source code of Midori?
Q.: When you say the source code language used in
the program Midori, are you referring to

or [operating system Midori]?

FE> Description

Table 3: A clarification question annotation example in
the single-turn case.

more details from the participant. Though simple,
it costs more user efforts as it pushes the partic-
ipant to figure out what confuses the system. In
comparison, the advantage of single-choice type
lies in the control of conversation direction. How-
ever, if the system cannot provide user-expected
choices, conversation may be longer. As for the
multi-choice type, its advantage is less conversa-
tion turns to ask for more valuable information
while it requires more annotation work.

2.2 Multi-Turn Annotation

Sub-graph Extraction. In multi-turn cases, am-
biguity comes from the omission of the target en-
tity name from the previous conversation turn. We
first extract two connected entities. If they also
share another predicate, we extract all related in-
formation as an ambiguous sub-graph, as shown in
Figure 3. By asking the shared predicate, we get
an ambiguous question.

caracasia

higher_classification

organism_classification

Species

organism_classification

Lineodes

Figure 3: An extracted ambiguous sub-graph in
the multi-turn case. ‘“Lineodes caracasia” and “Li-
neodes” are linked and share the same relation “organ-
ism_classification”.
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FE1 Name

FE> Name

Predicate #1
Predicate Description

Lineodes
biology.higher_classification
Property relating an biol-
ogy.organism_classification
to its higher or parent biol-
ogy.organism_classification.
biology.organism_classification
Relating an biol-
ogy.organism to its biol-
ogy.organism_classification,
the formal or informal tax-
onomy grouping for the
organism.

Qr: What is the higher classification for

Predicate #2
Predicate Description

Ry Lineodes.
(Qo: What is the biological classification?

Table 4: An ambiguous question annotation example in
the multi-turn case.

F71 Name
Fh Type

media_common.cataloged_instance
biology.organism_classification

Lineodes caracasia is a moth in the

F Description

family Crambidae... ...
E> Name Lineodes
FE»> Type media_common.cataloged_instance

biology.organism_classification
Lineodes is a genus of moths of the

E» Description

Crambidae family. ... ...

Qhn What is the higher classification for
Lineodes caracasia?

Ry, Lineodes.

Qa What is the biological classification?

Q.: Are you referring to or Li-
neodes], when you ask the biological classification?

Table 5: A clarification question annotation example in
the multi-turn case.

Ambiguous Question Annotation. An annota-
tion example is shown in Table 4. Based on two
entities in the extracted sub-graph, annotators con-
struct a conversation turn and then write an am-
biguous question where the entity name is omitted,
e.g, “What is the biological classification?”.

Clarification Question Annotation. The anno-
tation guideline of this step is the same as in
single-turn annotation. The input includes two
candidate entities and the annotated ambiguous
question. The output is a clarification question.
An annotation example is shown in Table 5.

3 Tasks

Our dataset aims to enable systems to ask clarifi-
cation questions in open-domain question answer-
ing. Three tasks are designed in this work, includ-

organization

music .
location
6.9%
geography
W 1329
7.4% sports
book . ’.people
) traffic
film

Figure 4: The distribution of top-10 domains.

ing clarification identification, clarification ques-
tion generation, and clarification-based question
answering. Figure 4 shows the distribution of the
top-10 domains in our dataset.

3.1 Clarification Identification

Clarification identification can be regarded as a
classification problem. It takes conversation con-
text and candidate entity information as input. The
output is a label identifying whether clarification
is needed. Specifically, the input is {Qq, E1, Eo}
for single-turn cases or {Q, Rp, Qq, E1, Ea} for
multi-turn cases. (), represents the current ques-
tion. F7 and FE» represent the candidate entities.
@ and R, are question and response from the pre-
vious conversation turn. The output is a binary la-
bel from set Y = {0, 1} where 1 indicates that the
input question is ambiguous and 0O indicates the
opposite.

- Which film does David Wills
act?

David Wills

actor Sonic Outlaws

- Which city does river Nile
go through?

- Cairo basin_city

- Where is its mouth place?

Figure 5: Negative examples of unambiguous sub-
graphs and annotated conversations. The dotted line
means the non-existent relation. The upper figure is in
the single-turn case and the lower one is in the multi-
turn case.

As Figure 5 shows, negative examples are anno-
tated in the same way as the positive (ambiguous)
examples do, but without the clarification related
steps. In their sub-graphs, one of the entities has
its unique predicate. The unique predicates are
included in the user questions like “Where is its
mouth place?”’. As only river “Nile” has mouth
places, this question is unambiguous.
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Single-Turn Multi-Turn
Positive  Negative Positive  Negative
Train 8,139 6,841 12,173 8,289
Dev 487 422 372 601
Test 637 673 384 444

Table 6: Statistics of the dataset. It is important to note
that three tasks share the same split. Since clarifica-
tion question generation and clarification-based ques-
tion answering are built upon ambiguous situations,
they only use the positive data in their training, devel-
opment, and test sets.

The statistics of our dataset are shown in Ta-
ble 6. It is important to note that three tasks share
the same split. Since clarification question gen-
eration and clarification-based question answering
are built upon ambiguous situations, they only use
the positive (ambiguous) data in their training, de-
velopment, and test sets. For generalization, we
add some examples with unseen entities and pred-
icates into the development and test sets.

3.2 Clarification Question Generation

This text generation task takes ambiguous con-
text and entity information as input, and then out-
puts a clarification question. For single-turn cases,
the input is {Qq, E1, F2}. For multi-turn cases,
the input is {Qp, Rp, Qa, E1, E2}. In both cases,
the output is a clarification question ().. We use
BLEU as the automatic evaluation metric.

3.3 Clarification-Based Question Answering

As our dataset focuses on simple questions, this
task can be simplified as the combination of entity
identification and predicate identification. Entity
identification is to extract entity e from candidate
entities based on current context. Predicate identi-
fication is to choose predicate p that describes the
ambiguous question. The extracted entity e and
predicate p are combined to query the knowledge
triple (e, p,0). The model is correct when both
tasks are successfully completed.

Additional user responses toward clarification
questions are also necessary for this task. Due to
the strong pattern in responses, we use a template-
based method to generate the feedback. We first
design four templates, “I mean the first one”, “I
mean the second one”, “I mean [entity name]”, “I
mean [entity type] [entity name]”. Then for each
clarification example, we randomly select a candi-
date entity and fill its information into the template
as the user response, e.g., “I mean web browser
Midori.” for the clarification question in Table 3.

For entity identification, we use the selected entity
as the gold label. For predicate prediction, we use
the predicate in the current ambiguous question as
the gold label. In muli-turn cases, the predicate la-
bel is Predicate #1 as shown in Table 2. In single-
turn cases, the predicate label is Predicate #2 as
shown in Table 4.

Entity identification and predicate identifica-
tion are both classification tasks. They take
the same information as input, including am-
biguous context, clarification question, and user
response. For single-turn cases, the input
is {Qq, E1, E2,Q¢, R.} where R, is the feed-
back of the participant toward clarification ques-
tion ().. For multi-turn cases, the input is
{Qp, Rp, Qa, Er, E2,Qc, R.}. For entity identi-
fication, the output is a label from set Yp =
{E1, E2}. For predicate identification, we ran-
domly choose 1 negative predicates from the train-
ing set and combine them with the gold predicate
together as the candidate set Yp. The output of
predicate identification is the index of the gold
predicate in Yp.

4 Approach

For three tasks, we implement several representa-
tive neural networks as baselines. Here we intro-
duce these models in detail.

4.1 Classification Identification Models

The input of classification models is the ambigu-
ous context and entity information. For simpli-
fication, we use a special symbol, [S], to con-
catenate all the entity information together. These
two parts can be regarded as different source in-
formation. Based on whether the inter-relation
between different source information is explicitly
explored, the classification models can be classi-
fied into two categories, unstructured models and
structured models.

Unstructured models concatenate different
source inputs into a long sequence with a spe-
cial separation symbol [SEL]. We implement
several widely-used sequence classification mod-
els, including Convolutional Neural Network
(CNN) (Kim, 2014), Long-Short Term Memory
Network (LSTM) (Schuster and Paliwal, 1997),
and Recurrent Convolutional Neural Network
(RCNN) (Lai et al., 2015), Transformer. The
details of the models are shown in Supplementary
Materials.
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Figure 6: An illustration of the proposed coarse-to-fine
model. The proposed model consists of a template gen-
erating module and an entity rendering module. The
former is used to generate a clarification template based
on ambiguous question, e.g., “When you say the source
code language used in the program Midori, are you re-
ferring to [A] or [B]?”. The latter is used to fill up the
generated template with detailed entity information.

Structured models use separate structures to en-
code different source information and adopt an
additional structure to model the inter-relation of
the source information. Specifically, we use two
representative neural networks, Hierarchical At-
tention Network (HAN) (Yang et al., 2016) and
Dynamic Memory Network (DMN) (Kumar et al.,
2016), as our structured baselines. The details of
the models are shown in Supplementary Materials.

4.2 Clarification Question Generation
Models

The input of the generation model is the ambigu-
ous context and entity information. In single-turn
cases, the ambiguous context is current question
Q.. In multi-cases, the input is current question
and the previous conversation turn {Qp, Ry, Q4 }.
We use [S] to concatenate all entity informa-
tion together, and use [ SEL] to concatenate entity
information and context information into a long
sequence. We adopt Seq2Seq (Bahdanau et al.,
2015) and Transformer (Vaswani et al., 2017) as
our baselines and further develop a new genera-
tion model. The details of baselines can be found
in Supplementary Materials.

Coarse-to-fine Model. Generally speaking, a
clarification question contains two parts, entity
phrases (e.g., “web browser Midori’’) and pattern
phrases ( e.g. “When you say the source code lan-
guage used in the program Midori, are you refer-
ring to [A] or [B]?”). The entity phrase is summa-
rized from the given entity information for distin-
guishing between two entities. The pattern phrase

is used to locate the position of ambiguity, which
is closely related with the context. In summary,
two kinds of phrases refer to different source in-
formation. Based on this feature, we propose a
new coarse-to-fine model, as shown in Figure 6.
Similar ideas have been successfully applied to se-
mantic parsing (Dong and Lapata, 2018).

The proposed model consists of a template gen-
erating module Ty and an entity rendering module
Ry. Ty first generates a template containing pat-
tern phrases and the symbolic representation of the
entity phrases. Then, the symbolized entities con-
tained in the generated template are further prop-
erly rendered by the entity rendering module 124 to
reconstruct complete entity information. Since the
annotated clarification questions explicitly sepa-
rate entity phrases and pattern phrases, we can
easily build training data for these two modules.
For clarity, the template is constructed by replac-
ing entity phrases in a clarification question with
special symbols, [A] and [B], which represent
the positions of two entities.

The template generating module Ty uses Trans-
former (Vaswani et al., 2017) as implementation.
The input is the ambiguous context and the output
is a clarification template.

Similar to Tp, the entity rendering module Ry
is also implemented with a Transformer structure.
More specifically, for each symbolized entity in
the template, we add the hidden state of the de-
coder of Ty corresponding to this symbolized en-
tity into the decoder input.

4.3 Clarification-Based Question Answering
Models

This task contains two sub-tasks, entity identifi-
cation and predicate identification. They share
the same input. In single-turn cases, the input is
{Qa, Qc, Re, E1, E2}. In multi-cases, the input is
{Qp:, Rp, Qa, Qc, Re, Eq, Eo}. Considering these
two sub-tasks both belong to classification tasks,
we use the same models as used in the task of clar-
ification identification for implementation.

5 Experiments

We report the experiment results on three formu-
lated tasks and give a detailed analysis. More
details of hyper-parameters are in Supplementary
Materials.
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Model Single-Turn  Multi-Turn
CNN 83.3 80.0
RNN 83.8 72.7
Transformer 84.0 72.8
HAN 83.1 73.0
DMN 86.6 80.5

Table 7: Results of clarification identification models.

5.1 Experiment Results

Clarification Identification. As shown in Ta-
ble 7, the structured models have the best perfor-
mance, with a 86.6% accuracy on single-turn cases
and a 80.5% accuracy on multi-turn cases. Com-
pared to the best-performing unstructured model,
the structured architecture brings obvious perfor-
mance improvements, with 2.6% and 6.7% accu-
racy increases. It indicates that the structured ar-
chitectures have learned the inter-relation between
the context and entity details, which is a vital part
for reasoning whether a question is ambiguous.
We also find that the models all achieve better re-
sults on multi-turn cases. Multi-turn cases contain
additionally previous conversation turn, which can
help the models capture more key phrases from the
entity information.

Clarification Question Generation. Table 8
shows that Seq2Seq achieves low BLEU scores,
which indicates its tendency to generate irrelevant
text. Transformer achieves higher performance
than Seq2Seq. Our proposed coarse-to-fine model
demonstrates a new state of the art, improving the
current highest baseline result by 3.35 and 0.60
BLEU scores, respectively.

We also find that multi-turn cases generally ob-
tain higher BLEU scores than single-turn cases.
In single-turn cases, the same-name characteris-
tic makes it hard to summarize key distinguish-
ing information. As a comparison, in multi-turn
cases, two candidate entities usually have differ-
ent names and it is easier to generate clarification
questions. It is due to the flexible structure of am-
biguous questions, which makes it hard to define
universal rules to identify the asked objects. Ta-
ble 9 shows a an example generated by the pro-
posed model.

Clarification-Based Question Answering. As
Table 10 shows, the unstructured models perform
better than the structured models, indicating that
this task tends to be over-fitting and small models
have better the generalization ability.

Model Single-Turn  Multi-Turn
Seq2Seq 18.84 31.62
Transformer 20.69 44.42
The proposed Model 24.04 45.02
Table 8: Results of clarification question generation
models.
F1 Name Lineodes interrupta
Eq Type biology.organism_classification

FE1 Description | Lineodes interrupta is a moth in the
Crambidae family. It was described
by Zeller in 1873. It is found in
Mexico and the United States, where
it has been recorded from Florida,
Louisiana, Oklahoma and Texas.
Lineodes
biology.organism_classification
Lineodes is a genus of moths of the
Crambidae family.

FE> Name
FEo Type
E5 Description

Qp What is higher classification of Li-
neodes interrupta?

R, Lineodes.

Qa Biologically speaking, what is the
classification?

Output: Are you referring to Lineodes interrupta or
Lineodes, when you ask the biological classification?

Table 9: An example of the generated clarification
questions.

5.2 Discussion

Automatic Evaluation. In the task of clarifica-
tion question generation, we use BLEU, a widely
used evaluation metric on language generation
tasks, as the automatic evaluation metric. BLEU
evaluates the generated text by computing its sim-
ilarity with the gold text. However, we find this
metric not suitable for our task. A good answer
can ask different aspects as long as it can distin-
guish the entities. The given answer in our dataset
is one of possible answers but not the only cor-
rect answer. A good answer may get a low BLEU
score. Therefore, a more reasonable evaluation
metric needs to be explored in the future, like
paraphrase-based BLEU.

Error Analysis. In clarification question gener-
ation, although our proposed model has achieved
the best performance, it still generates some low-
quality questions. We conduct a human evaluation
on 100 generated clarification questions and sum-
marize two error categories. The first one is the
entity error where the generated clarification ques-
tion has a correct multi-choice structure but with
irrelevant entity information. Here we present one
example in Table 11. In this example, our model
generates entity phrases irrelevant to the input am-
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Model Single-Turn  Multi-Turn
CNN 60.8 74.7
RNN 56.4 76.0
Transformer 52.1 58.9
DMN 50.9 54.5
HAN 51.7 54.7

Table 10: Results of clarification-based question an-
swering models.

F1 Name
Ey Type

award.winning_work
award.nominated_work

Come Back, Little Sheba is a 1950
theater production of the play by

FE Description

William Inge... ...
FE> Name Come Back, Little Sheba
Eo Type theater.production

award.nominated_work

Come Back, Little Sheba is a 2008
theater production of the play by
William Inge.... ...

Qn: Who directed Come Back, Little Sheba?

Output: Which one do you mean, winning work visual
artist Claudia Coleman or winning work Elmer Gantry,
when you ask the directors?

FE> Description

Table 11: A bad generated case.

biguous question. This failure is mainly due to the
unseen entity name “Come Back, Little Sheba”,
which leads the model to wrong generation de-
cisions. Since there are lots of entities with dif-
ferent names and descriptions, how to handle the
sparse information is a non-trivial problem. The
second one is the grammar error where models
sometimes generate low-quality phrases after gen-
erating a low-frequency entity word. These errors
both can be attributed to the sparsity of entities to
some extent. How to deal with the sparsity of en-
tity information still needs further exploration.

6 Related Work

Our work is related to clarification question and
question generation.

6.1 Clarification Question in Other Tasks

There are several studies on asking clarification
questions.  Stoyanchev et al. (2014) randomly
drop one phrase from a question and require an-
notators to ask a clarification question toward the
dropped information, e.g.“Do you know the birth
data of XXX”. However, the small dataset size
makes it hard to help downstream tasks. Follow-
ing this work, Guo et al. (2017) provide a larger
synthetic dataset QRAQ by replacing some of en-
tities with variables. Li et al. (2017) use mis-

spelled words to replace entities in questions to
build ambiguous questions. Although these stud-
ies are good pioneering studies, the synthetic con-
structing way makes them unnatural and far from
real world questions.

Different from these studies, Braslavski et al.
(2017) investigate a community question answer-
ing (CQA) dataset and study how to predict the
specific subject of a clarification question. Simi-
larly, Rao and III (2018) focus on learning to rank
human-written clarification questions in an online
QA forum, StackExchange. Our work differs from
these two studies in that we have a knowledge
graph at the backend, and the clarification-related
components are able to facilitate KBQA.

6.2 Question Generation

For different purposes, there are various question
generation tasks. Hu et al. (2018) aim to ask ques-
tions to play the 20 question game. Dhingra et al.
(2017) teach models to ask questions to limit the
number of answer candidates in task-oriented dia-
logues. Ke et al. (2018) train models to ask ques-
tions in open-domain conversational systems to
better interact with people. Guo et al. (2018) de-
velop a sequence-to-sequence model to generate
natural language questions.

7 Conclusion and Future Work

In this work, we construct a clarification ques-
tion dataset for KBQA. The dataset supports
three tasks, clarification identification, clarifica-
tion question generation, and clarification-based
question answering. We implement representa-
tive neural networks as baselines for three tasks
and propose a new generation model. The de-
tailed analysis shows that our dataset brings new
challenges. More powerful models and reasonable
evaluation metrics need further explored.

In the future, we plan to improve our dataset
by including more complex ambiguous situations
for both single-turn and multi-turn questions, such
as multi-hop questions, aggregation questions, etc.
We also plan to integrate the clarification-based
models into existing KBQA system, and study
how to iteratively improve the model based on hu-
man feedback.
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A Supplementary Materials

A.1 Classification Models

Model Hyper-parameter Setting
Batch size 64
Embedding size 128
Hidden size 128
CNN Filter size 128
Kernel size 100
Learning rate 0.0003
Optimizer Adam
Batch size 8
Embedding size 128
RNN Hidden size 128
Learning rate 2
Optimizer Adam
Batch size 8
Embedding size 128
Hidden size 128
Transformer Learning rate 2
Dropout 0.1
Optimizer Adam
Batch size 64
Embedding size 100
HAN Hidden size 100
Learning rate 0.01
Optimizer Adam
Batch size 64
Embedding size 300
DMN Hidden size 300
Learning rate 0.005
Optimizer Adam

Table 12: Settings of classification models.

Table 12 shows the detailed hyper-parameter
settings of these classification models. Here we
introduce the classification models used in our ex-
periments.

CNN. It first feeds the input embedding se-
quence into a convolutional layer. The convolu-
tionial layer contains K filters f € R%¢ where s
is the size of filters and d is the dimension of word
embeddings. We use different sizes of filters to get
rich features. Then, a max pooling layer takes K
vectors as input and generates a distributed input
representation h. Finally, the vector h is projected
to the probability of labels.

RNN. It is built on a traditional bi-directional
gated recurrent unit (GRU) structure, which is
used to capture global and local dependencies in-
side the input sequence. The last output of GRU is
then fed into the output layer to generate the prob-
ability of labels.

Transformer. A model similar with RNNs. It
removes the recurrent unit in RNNs and replaces it

Model Hyper-parameter Setting
Batch size 16
Embedding size 32
Hidden size 32
Seq2Seq Learning rate 2
Beam size 1
Dropout 0.1
Optimizer Adam
Batch size 16
Embedding size 32
Hidden size 32
Transformer Learning rate 2
Beam size 1
Dropout 0.1
Optimizer Adam
Batch size 16
Embedding size 32
Hidden size 32
Our Model Learning rate 2
Beam size 1
Dropout 0.1
Optimizer Adam

Table 13: Settings of generation models.

with a special attention mechanism. called multi-
head attention. The model is composed of a stack
of 2 identical layers. Each identical layer has two
sub-layers. The first sub-layer is a multi-head self-
attention layer, and the second is a position-wise
fully connected feed-forward layer. Since input
nodes are not sequentially in order, the positional
embedding layer is removed from the model. The
decoder is also composed of a stack of 2 identical
layers.

HAN. It is built upon two self-attention layers.
The first layer is responsible for encoding context
information and entity information. Then, the sec-
ond layer uses a self-attention mechanism to learn
the inter-relations between them. Finally, the out-
put of the second layer is fed into the output layer
for predicting labels.

DMN. This model regards context information
as query and entity information as input to learn
their inter-relations. It consists of four modules,
an input module, a question module, an episodic
memory module, and an answer module. The
input module and thed question module encode
query and input into distributed vector represen-
tations. The episodic memory module decodes
which parts of the entity information to focus on
through the attention mechanism. Finally, the an-
swer module generates an answer based on the fi-
nal memory vector of the memory module.
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A.2 Clarification Question Generation
Models

Here is the detailed introduction about the genera-
tion baselines.

Seq2Seq (Bahdanau et al., 2015). This model
is based on a traditional encoder-decoder frame-
work which encodes the input sequence into a
dense vector and then decodes the target sequence
word by word. Attention is used to capture global
dependencies between input and output.

Transformer (Vaswani et al., 2017). It is based
solely on attention mechanism to capture global
dependencies. Similar to Seq2Seq, it uses an
encoder-decoder framework but with different im-
plementation.

Table 13 shows the detailed hyper-parameter
settings of generation models.
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