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Abstract

Rapid progress has been made in the field of
reading comprehension and question answer-
ing, where several systems have achieved hu-
man parity in some simplified settings. How-
ever, the performance of these models de-
grades significantly when they are applied
to more realistic scenarios, where answers
are involved with various types, multiple text
strings are correct answers, or discrete rea-
soning abilities are required. In this paper,
we introduce the Multi-Type Multi-Span Net-
work (MTMSN), a neural reading comprehen-
sion model that combines a multi-type answer
predictor designed to support various answer
types (e.g., span, count, negation, and arith-
metic expression) with a multi-span extraction
method for dynamically producing one or mul-
tiple text spans. In addition, an arithmetic
expression reranking mechanism is proposed
to rank expression candidates for further con-
firming the prediction. Experiments show that
our model achieves 79.9 F1 on the DROP hid-
den test set, creating new state-of-the-art re-
sults. Source code! is released to facilitate fu-
ture work.

1 Introduction

This paper considers the reading comprehension
task in which some discrete-reasoning abilities are
needed to correctly answer questions. Specifi-
cally, we focus on a new reading comprehension
dataset called DROP (Dua et al., 2019), which
requires Discrete Reasoning Over the content of
Paragraphs to obtain the final answer. Unlike pre-
vious benchmarks such as CNN/DM (Hermann
et al., 2015) and SQuAD (Rajpurkar et al., 2016)
that have been well solved (Chen et al., 2016;
Devlin et al., 2019), DROP is substantially more
challenging in three ways. First, the answers to

'https://github.com/huminghaol6/MTMSN

the questions involve a wide range of types such
as numbers, dates, or text strings. Therefore, var-
ious kinds of prediction strategies are required to
successfully find the answers. Second, rather than
restricting the answer to be a span of text, DROP
loosens the constraint so that answers may be a set
of multiple text strings. Third, for questions that
require discrete reasoning, a system must have a
more comprehensive understanding of the context
and be able to perform numerical operations such
as addition, counting, or sorting.

Existing approaches, when applied to this more
realistic scenario, have three problems. First,
to produce various answer types, Dua et al.
(2019) extend previous one-type answer predic-
tion (Seo et al., 2017) to multi-type prediction
that supports span extraction, counting, and ad-
dition/subtraction. However, they have not fully
considered all potential types. Take the question
“What percent are not non-families?”” and the pas-
sage snippet “39.9% were non-families” as an ex-
ample, a negation operation is required to infer the
answer. Second, previous reading comprehension
models (Wang et al., 2017; Yu et al., 2018; Hu
et al., 2018) are designed to produce one single
span as the answer. But for some questions such as
“Which ancestral groups are smaller than 11%?”,
there may exist several spans as correct answers
(e.g., “Italian”, “English”, and “Polish”), which
can not be well handled by these works. Third,
to support numerical reasoning, prior work (Dua
et al., 2019) learns to predict signed numbers for
obtaining an arithmetic expression that can be ex-
ecuted by a symbolic system. Nevertheless, the
prediction of each signed number is isolated, and
the expression’s context information has not been
considered. As a result, obviously-wrong expres-
sions, such as all predicted signs are either minus
or zero, are likely produced.

To address the above issues, we introduce
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the Multi-Type Multi-Span Network (MTMSN),
a neural reading comprehension model for pre-
dicting various types of answers as well as
dynamically extracting one or multiple spans.
MTMSN utilizes a series of pre-trained Trans-
former blocks (Devlin et al., 2019) to obtain a
deep bidirectional context representation. On top
of it, a multi-type answer predictor is proposed
to not only support previous prediction strategies
such as span, count number, and arithmetic ex-
pression, but also add a new type of logical nega-
tion. This results in a wider range of coverage
of answer types, which turns out to be crucial to
performance. Besides, rather than always produc-
ing one single span, we present a multi-span ex-
traction method to produce multiple answers. The
model first predicts the number of answers, and
then extracts non-overlapped spans to the specific
amount. In this way, the model can learn to dy-
namically extract one or multiple spans, thus being
beneficial for multi-answer cases. In addition, we
propose an arithmetic expression reranking mech-
anism to rank expression candidates that are de-
coded by beam search, so that their context infor-
mation can be considered during reranking to fur-
ther confirm the prediction.

Our MTMSN model outperforms all existing
approaches on the DROP hidden test set by achiev-
ing 79.9 F1 score, a 32.9% absolute gain over prior
best work at the time of submission. To make a fair
comparison, we also construct a baseline that uses
the same BERT-based encoder. Again, MTMSN
surpasses it by obtaining a 13.2 F1 increase on the
development set. We also provide an in-depth ab-
lation study to show the effectiveness of our pro-
posed methods, analyze performance breakdown
by different answer types, and give some qualita-
tive examples as well as error analysis.

2 Task Description

In the reading comprehension task that requires
discrete reasoning, a passage and a question are
given. The goal is to predict an answer to the ques-
tion by reading and understanding the passage.
Unlike previous dataset such as SQuAD (Ra-
jpurkar et al., 2016) where the answer is limited
to be a single span of text, DROP loosens the con-
straint so that the answer involves various types
such as number, date, or span of text (Figure 1).
Moreover, the answer can be multiple text strings
instead of single continuous span (Ajz). To suc-

Passage: As of the census of 2000, there were 218,590
people, 79,667 households, ... 22.5% were of German
people, 13.1% Irish people, 9.8% Italian people, ...

Q1: Which group from the census is larger: German or
Irish?

A1: German

Q2: Which ancestral groups are at least 10%?

As: German, Irish

Q3: How many more people are there than households?
As: 138,923

Q4: How many percent were not German?

A4Z 77.5

Figure 1: Question-answer pairs along with a passage
from the DROP dataset.

cessfully find the answer, some discrete reasoning
abilities, such as sorting (A1), subtraction (Aj),
and negation (A ), are required.

3  Our Approach

Figure 2 gives an overview of our model that aims
to combine neural reading comprehension with
numerical reasoning. Our model uses BERT (De-
vlin et al., 2019) as encoder: we map word em-
beddings into contextualized representations using
pre-trained Transformer blocks (Vaswani et al.,
2017) (§3.1). Based on the representations, we
employ a multi-type answer predictor that is able
to produce four answer types: (1) span from the
text; (2) arithmetic expression; (3) count number;
(4) negation on numbers (§3.2). Following Dua
et al. (2019), we first predict the answer type of
a given passage-question pair, and then adopt in-
dividual prediction strategies. To support multi-
span extraction (§3.3), the model explicitly pre-
dicts the number of answer spans. It then outputs
non-overlapped spans until the specific amount is
reached. Moreover, we do not directly use the
arithmetic expression that possesses the maximum
probability, but instead re-rank several expression
candidates that are decoded by beam search to fur-
ther confirm the prediction (§3.4). Finally, the
model is trained under weakly-supervised signals
to maximize the marginal likelihood over all pos-
sible annotations (§3.5).

3.1 BERT-Based Encoder

To obtain a universal representation for both the
question and the passage, we utilize BERT (De-
vlin et al., 2019), a pre-trained deep bidirectional
Transformer model that achieves state-of-the-art
performance across various tasks, as the encoder.
Specifically, we first tokenize the question and
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Figure 2: An illustration of MTMSN architecture. The multi-type answer predictor supports four kinds of answer
types including span, addition/subtraction, count, and negation. A multi-span extraction method is proposed to
dynamically produce one or several spans. The arithmetic expression reranking mechanism aims to rank expression
candidates that are decoded by beam search for further validating the prediction.

the passage using the WordPiece vocabulary (Wu
et al., 2016), and then generate the input sequence
by concatenating a [CLS] token, the tokenized
question, a [SEP] token, the tokenized passage,
and a final [SEP] token. For each token in the
sequence, its input representation is the element-
wise addition of WordPiece embeddings, posi-
tional embeddings, and segment embeddings (De-
vlin et al., 2019). As aresult, a list of input embed-
dings Hy € RT*P can be obtained, where D is
the hidden size and T’ is the sequence length. A se-
ries of L pre-trained Transformer blocks are then
used to project the input embeddings into contex-
tualized representations Hj; as:

H; = TransformerBlock(H;_1), Vi € [1, L]
Here, we omit a detailed introduction of the block
architecture and refer readers to Vaswani et al.
(2017) for more details.

3.2 Multi-Type Answer Predictor

Rather than restricting the answer to always be a
span of text, the discrete-reasoning reading com-
prehension task involves different answer types
(e.g., number, date, span of text). Following Dua
et al. (2019), we design a multi-type answer pre-
dictor to selectively produce different kinds of an-
swers such as span, count number, and arithmetic
expression. To further increase answer coverage,
we propose adding a new answer type to sup-
port logical negation. Moreover, unlike prior work
that separately predicts passage spans and ques-
tion spans, our approach directly extracts spans
from the input sequence.

Answer type prediction Inspired by the Aug-
mented QANet model (Dua et al., 2019), we use
the contextualized token representations from the
last four blocks (H;_3, ..., Hy) as the inputs to
our answer predictor, which are denoted as My,
M;, My, M3, respectively. To predict the answer
type, we first split the representation M into a
question representation Q2 and a passage repre-
sentation Py according to the index of intermedi-
ate [SEP] token. Then the model computes two
vectors hQ2 and hP? that summarize the question
and passage information respectively:

o = softmax(W?Qs), h® =a®Q,

where h¥2 is computed in a similar way over P5.
Next, we calculate a probability distribution to

represent the choices of different answer types as:

pP¢ = softmax(FFN([h®Q2; hF2; h®L5)))

Here, h®™S is the first vector in the final con-
textualized representation M3, and FFN denotes
a feed-forward network consisting of two linear
projections with a GeLU activation (Hendrycks
and Gimpel, 2016) followed by a layer normaliza-
tion (Lei Ba et al., 2016) in between.

Span To extract the answer either from the pas-
sage or from the question, we combine the gating
mechanism of Wang et al. (2017) with the standard
decoding strategy of Seo et al. (2017) to predict
the starting and ending positions across the en-
tire sequence. Specifically, we first compute three
vectors, namely gQO, ng, gQ2, that summarize
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the question information among different levels of
question representations:

g = 39Q,

where gQ0 and gQ! are computed over Qg and Q;
respectively, in a similar way as described above.

Then we compute the probabilities of the start-
ing and ending indices of the answer span from the
input sequence as:

B9 = softmax(FFN(Qa),

MPH = [Mg; Mo; g% © Ma; g% @ Mo,
M = [My; M5 g% @ Ma; g% @ My,
pStat = softmax(WS M),

p™? = softmax(WEM)

where ® denotes the outer product between the
vector g and each token representation in M.

Arithmetic expression In order to model the
process of performing addition or subtraction
among multiple numbers mentioned in the pas-
sage, we assign a three-way categorical variable
(plus, minus, or zero) for each number to indicate
its sign, similar to Dua et al. (2019). As a result,
an arithmetic expression that has a number as the
final answer can be obtained and easily evaluated.

Specifically, for each number mentioned in the
passage, we gather its corresponding representa-
tion from the concatenation of My and M3, even-
tually yielding U = (uy,...,uy) € RVN*%D
where N numbers exist. Then the probabilities of
the ¢-th number being assigned a plus, minus or
zero is computed as:

p?ign = softmax(FFN([u;; hQ2; hP2; hM9)))

Count We consider the ability of counting en-
tities and model it as a multi-class classification
problem. To achieve this, the model first produces
a vector hV that summarizes the important infor-
mation among all mentioned numbers, and then
computes a counting probability distribution as:

oV = softmax(WYU), hY =aYU,
peount — softmax(FFN([hU; hQQ; hPQ; hCLS]))

Negation One obvious but important linguistic
phenomenon that prior work fails to capture is
negation. We find there are many cases in DROP
that require to perform logical negation on num-
bers. The question (Q4) in Figure 1 gives a qual-
itative example of this phenomenon. To model

this phenomenon, we assign a two-way categori-
cal variable for each number to indicate whether
a negation operation should be performed. Then
we compute the probabilities of logical negation
on the ¢-th number as:

P = softmax(FFN([u; hQ2; hP2; hoL5)))

(2
3.3 Multi-Span Extraction

Although existing reading comprehension tasks
focus exclusively on finding one span of text as
the final answer, DROP loosens the restriction so
that the answer to the question may be several
text spans. Therefore, specific adaption should be
made to extend previous single-span extraction to
multi-span scenario.

To do this, we propose directly predicting the
number of spans and model it as a classification
problem. This is achieved by computing a proba-
bility distribution on span amount as

PP = softmax(FFN([hQ2; hP2; hM5)))

To extract non-overlapped spans to the specific
amount, we adopt the non-maximum suppression
(NMS) algorithm (Rosenfeld and Thurston, 1971)
that is widely used in computer vision for pruning
redundant bounding boxes, as shown in Algorithm
1. Concretely, the model first proposes a set of
top-K spans S according to the descending order
of the span score, which is computed as p;tpgnd
for the span (k,1). It also predicts the amount of
extracted spans ¢ from p*P?", and initializes a new
set S. Next, we add the span s; that possesses the
maximum span score to the set S, and remove it
from S. We also delete any remaining span s; that
overlaps with s;, where the degree of overlap is
measured using the text-level F1 function. This
process is repeated for remaining spans in S, until
S is empty or the size of S reaches ¢.

3.4 Arithmetic Expression Reranking

As discussed in §3.2, we model the phenomenon
of discrete reasoning on numbers by learning to
predict a plus, minus, or zero for each number in
the passage. In this way, an arithmetic expres-
sion composed of signed numbers can be obtained,
where the final answer can be deduced by per-
forming simple arithmetic computation. However,
since the sign of each number is only determined
by the number representation and some coarse-
grained global representations, the context infor-
mation of the expression itself has not been con-
sidered. As a result, the model may predict some
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Algorithm 1 Multi-span extraction

start,
B

span

Input: p pd: p
: Generate the set S by extracting top-K spans
Sort S in descending order of span scores
t = argmax p°*?" 4+ 1
Initialize S = {}
while S # {} and |S| < t do
for s; in S do .

Add span s; to S

Remove span s; from S

for s; in S do

if fl(Si, Sj) > 0 then

11: Remove span s; from S
12: return S

SOPRDY A W

obviously wrong expressions (e.g., the signs that
have maximum probabilities are either minus or
zero, resulting in a large negative value). There-
fore, in order to further validate the prediction, it
is necessary to rank several highly confident ex-
pression candidates using the representation sum-
marized from the expression’s context.

Specifically, we use beam search to produce
top-ranked arithmetic expressions, which are sent
back to the network for reranking. Since each ex-
pression consists of several signed numbers, we
construct an expression representation by taking
both the numbers and the signs into account. For
each number in the expression, we gather its cor-
responding vector from the representation U. As
for the signs, we initialize an embedding matrix
E € R3**?*P_ and find the sign embeddings for
each signed number. In this way, given the i-th ex-
pression that contains M signed numbers at most,
we can obtain number vectors V; € RM*2+D 44
well as sign embeddings C; € RM*2*D_Then the
expression representation along with the reranking
probability can be calculated as:

a) = softmax(WV (V; + C;)),

arith

p; = softmax(FFN([th; hQz, WP hCLS]))

3.5 Training and Inference

Since DROP does not indicate the answer type
but only provides the answer string, we therefore
adopt the weakly supervised annotation scheme,
as suggested in Berant et al. (2013); Dua et al.
(2019). We find all possible annotations that point
to the gold answer, including matching spans,
arithmetic expressions, correct count numbers,
negation operations, and the number of spans. We
use simple rules to search over all mentioned num-
bers to find potential negations. That is, if 100

minus a number is equal to the answer, then a
negation occurs on this number. Besides, we only
search the addition/subtraction of three numbers at
most due to the exponential search space.

To train our model, we propose using a two-
step training method composed of an inference
step and a training step. In the first step, we use
the model to predict the probabilities of sign as-
signments for numbers. If there exists any an-
notation of arithmetic expressions, we run beam
search to produce expression candidates and la-
bel them as either correct or wrong, which are
later used for supervising the reranking compo-
nent. In the second step, we adopt the marginal
likelihood objective function (Clark and Gardner,
2018), which sums over the probabilities of all
possible annotations including the above labeled
expressions. Notice that there are two objective
functions for the multi-span component: one is a
distantly-supervised loss that maximizes the prob-
abilities of all matching spans, and the other is a
classification loss that maximizes the probability
on span amount.

At test time, the model first chooses the answer
type and then performs specific prediction strate-
gies. For the span type, we use Algorithm 1 for
decoding. If the type is addition/subtraction, arith-
metic expression candidates will be proposed and
further reranked. The expression with the maxi-
mum product of cumulative sign probability and
reranking probability is chosen. As for the count-
ing type, we choose the number that has the max-
imum counting probability. Finally, if the type is
negation, we find the number that possesses the
largest negation probability, and then output the
answer as 100 minus this number.

4 Experiments

4.1 Implementation Details

Dataset We consider the reading comprehension
benchmark that requires Discrete Reasoning Over
Paragraphs (DROP) (Dua et al., 2019) to train
and evaluate our model. DROP contains crowd-
sourced, adversarially-created, 96.6K question-
answer pairs, with 77.4K for training, 9.5K for
validation, and another 9.6K hidden examples for
testing. Passages are extracted from Wikipedia
articles and the answer to each question involves
various types such as number, date, or text string.
Some answers may even be a set of multiple spans
of text in the passage. To find the answers, a com-
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Dev Test
Model EM Fl EM Fl
Heuristic Baseline (Dua et al., 2019) 428 807 4.18 8.59
Semantic Role Labeling (Carreras and Marquez, 2004) | 11.03 13.67 10.87 13.35
BiDAF (Seo et al., 2017) 26.06 28.85 2475 27.49
QANet+ELMo (Yu et al., 2018) 27.71 30.33 27.08 29.67
BERTgasg (Devlin et al., 2019) 30.10 33.36 2945 32.70
NAQANet (Dua et al., 2019) 46.20 49.24 44.07 47.01
NABERTgAsE 55.82 58.75 - -
NABERT ARGE 64.61 67.35 - -
MTMSNgAsE 68.17 72.81 - -
MTMSN| ARGE 76.68 80.54 75.85 79.88
Human Performance (Dua et al., 2019) - - 92.38 95.98

Table 1: The performance of MTMSN and other competing approaches on DROP dev and test set.

BASE LARGE
Model EM Fl EM FI
MTMSN 68.2 728 76.7 80.5
w/o Add/Sub 46.7 51.3 53.8 58.0
w/o Count 62.5 664 71.8 75.6
w/o Negation 594 636 672 709
w/o Multi-Span | 67.5 70.7 75.6 78.4
w/o Reranking | 669 712 749 787

Table 2: Ablation tests of base and large models on the
DROP dev set.

prehensive understanding of the context as well as
the ability of numerical reasoning are required.

Model settings We build our model upon two
publicly available uncased versions of BERT:
BERTgAse and BERT arGE2, and refer readers
to Devlin et al. (2019) for details on model sizes.
We use Adam optimizer with a learning rate of 3e-
5 and warmup over the first 5% steps to train. The
maximum number of epochs is set to 10 for base
models and 5 for large models, while the batch size
is 12 or 24 respectively. A dropout probability of
0.1 is used unless stated otherwise. The number of
counting class is set to 10, and the maximum num-
ber of spans is 8. The beam size is 3 by default,
while the maximum amount of signed numbers M
is set to 4. All texts are tokenized using Word-

2BERTBASE is the original version while BERTaArGE
is the model augmented with n-gram masking and
synthetic  self-training: https://github.com/
google—-research/bert.

Model EM Fl

MTMSN 76.7 80.5
w/o Q/P Vectors 75.1 79.2
w/o CLS Vector 74.0 78.4
Q/P Vectors Using Last Hidden 76.5 80.2
w/o Gated Span Prediction 75.8  79.7
Combine Add/Sub with Negation | 75.5 79.4

Table 3: Ablation tests of different architecture choices
using MTMSNLARGE.

Piece vocabulary (Wu et al., 2016), and truncated
to sequences no longer than 512 tokens.

Baselines Following the implementation of
Augmented QANet (NAQANet) (Dua et al.,
2019), we introduce a similar baseline called Aug-
mented BERT (NABERT). The main difference
is that we replace the encoder of QANet (Yu
et al., 2018) with the pre-trained Transformer
blocks (Devlin et al., 2019). Moreover, it also sup-
ports the prediction of various answer types such
as span, arithmetic expression, and count number.

4.2 Main Results

Two metrics, namely Exact Match (EM) and F1
score, are utilized to evaluate models. We use the
official script to compute these scores. Since the
test set is hidden, we only submit the best single
model to obtain test results.

Table 1 shows the performance of our model
and other competitive approaches on the develop-
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NABERT MTMSN

NABERT MTMSN

Type %) EM  FI EM FI Type (%) EM Fl (%) EM Fl
Date 16 557 608 557 690 Span 430 679 742 427 722 810
Number 619 638 640 809 8I.1 Add/Sub | 436 620 621 324 781 782

Single Span | 31.7 759 80.6 775 828
Multi Span 4.8 0 227 251 628

Count 134 624 624 134 704 704
Negation 0 0 0 1.5 963 963

Table 4: Performance breakdown of NABERT| arGE
and MTMSN| argEe by gold answer types.

ment and test sets. MTMSN outperforms all ex-
isting approaches by a large margin, and creates
new state-of-the-art results by achieving an EM
score of 75.85 and a F1 score of 79.88 on the test
set. Since our best model utilizes BERT| ArGE
as encoder, we therefore compare MTMSN{ ArRGE
with the NABERT srGEg baseline. As we can see,
our model obtains 12.07/13.19 absolute gain of
EM/F1 over the baseline, demonstrating the effec-
tiveness of our approach. However, as the human
achieves 95.98 F1 on the test set, our results sug-
gest that there is still room for improvement.

4.3 Ablation Study

Component ablation To analyze the effect of
the proposed components, we conduct ablation
studies on the development set. As illustrated in
Table 2, the use of addition and subtraction is ex-
tremely crucial: the EM/F1 performance of both
the base and large models drop drastically by more
than 20 points if it is removed. Predicting count
numbers is also an important component that con-
tributes nearly 5% gain on both metrics. More-
over, enhancing the model with the negation type
significantly increases the F1 by roughly 9 percent
on both models. In brief, the above results show
that multi-type answer prediction is vitally impor-
tant for handling different forms of answers, es-
pecially in cases where discrete reasoning abilities
are required.

We also report the performance after remov-
ing the multi-span extraction method. The results
reveal that it has a more negative impact on the
F1 score. We interpret this phenomenon as fol-
lows: producing multiple spans that are partially
matched with ground-truth answers is much easier
than generating an exactly-matched set of multiple
answers. Hence for multi-span scenarios, the gain
of our method on F1 is relatively easier to obtain
than the one on EM. Finally, to ablate arithmetic
expression reranking, we simply use the arithmetic
expression that has the maximum cumulative sign

Table 5: Performance breakdown of NABERT| ArGE
and MTMSN| argE by predicted answer types.

probability instead. We find that our reranking
mechanism gives 1.8% gain on both metrics for
the large model. This confirms that validating ex-
pression candidates with their context information
is beneficial for filtering out highly-confident but
wrong predictions.

Architecture ablation We further conduct a de-
tailed ablation in Table 3 to evaluate our architec-
ture designs. First, we investigate the effects of
some “global vectors” used in our model. Specifi-
cally, we find that removing the question and pas-
sage vectors from all involved computation leads
to 1.3 % drop on F1. Ablating the representation
of [CLS] token leads to even worse results. We
also try to use the last hidden representation (de-
noted as Mj3) to calculate question and passage
vectors, but find that does not work. Next, we re-
move the gating mechanism used during span pre-
diction, and observe a nearly 0.8% decline on both
metrics. Finally, we share parameters between the
arithmetic expression component and the negation
component, and find the performance drops by
1.1% on F1.

4.4 Analysis and Discussion

Performance breakdown We now provide a
quantitative analysis by showing performance
breakdown on the development set. Table 4 shows
that our gains mainly come from the most frequent
number type, which requires various types of sym-
bolic, discrete reasoning operations. Moreover,
significant improvements are also obtained in the
multi-span category, where the F1 score increases
by more than 40 points. This result further proves
the validity of our multi-span extraction method.
We also give the performance statistics that
are categorized according to the predicted answer
types in Table 5. As shown in the Table, the main
improvements are due to the addition/subtraction
and negation types. We conjecture that there are
two reasons for these improvements. First, our
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Figure 4: EM/F1 scores of MTMSN argg With differ-
ent beam sizes and amounts of signed numbers (M).

proposed expression reranking mechanism helps
validate candidate expressions. Second, a new in-
ductive bias that enables the model to perform log-
ical negation has been introduced. The impressive
performance on the negation type confirms our
judgement, and suggests that the model is able to
find most of negation operations. In addition, we
also observe promising gains brought by the span
and count types. We think the gains are mainly
due to the multi-span extraction method as well as
architecture designs.

Effect of maximum number of spans To inves-
tigate the effect of maximum number of spans on
multi-span extraction, we conduct an experiment
on the dev set and show the curves in Figure 3.
We vary the value from 2 to 12, increased by 2,
and also include the extreme value 1. According
to the Figure, the best results are obtained at 8.
A higher value could potentially increase the an-
swer recall but damage the precision by making
more predictions, and a smaller value may force
the model to produce limited number of answers,
resulting in high precision but low recall. There-
fore, a value of 8 turns out to be a good trade-off
between recall and precision. Moreover, when the
value decreases to 1, the multi-span extraction de-
grades to previous single-span scenario, and the
performance drops significantly.

Configuration ‘ Skipped  Kept  Ratio (%) Fl1

Span 33752 43657 56.4 389
+& 6384 71025 91.7 59.2
+dh+ M 4282 73127 94.4 63.6

+&+Mb+C0 1595 75814 97.9 72.8

Table 6: Annotation statistics under different combi-
nations of answer types in the DROP train set. “Kept”
and “Skipped” mean the number of examples with or
without annotation, respectively. & refers to Add/Sub,
& denotes Count, and Q indicates Negation. F1 scores
are benchmarked using MTMSNgpasg on the dev set.

Effect of beam size and M We further investi-
gate the effect of beam size and maximum amount
of signed numbers in Figure 4. As we can see,
a beam size of 3 leads to the best performance,
likely because a larger beam size might confuse
the model as too many candidates are ranked, on
the other hand, a small size could be not suffi-
cient to cover the correct expression. In addition,
we find that the performance constantly decreases
as the maximum threshold M increases, suggest-
ing that most of expressions only contain two or
three signed numbers, and setting a larger thresh-
old could bring in additional distractions.

Annotation statistics We list the annotation
statistics on the DROP train set in Table 6. As
we can see, only annotating matching spans results
in a labeled ratio of 56.4%, indicating that DROP
includes various answer types beyond text spans.
By further considering the arithmetic expression,
the ratio increase sharply to 91.7%, suggesting
more than 35% answers need to be inferred with
numeral reasoning. Continuing adding counting
leads to a percentage of 94.4%, and a final 97.9%
coverage is achieved by additionally taking nega-
tion into account. More importantly, the F1 score
constantly increases as more answer types are con-
sidered. This result is consistent with our observa-
tions in ablation study.

Error analysis Finally, to better understand the
remaining challenges, we randomly sample 100
incorrectly predicted examples based on EM and
categorize them into 7 classes. 38% of errors are
incorrect arithmetic computations, 18% require
sorting over multiple entities, 13% are due to mis-
takes on multi-span extraction, 10% are single-
span extraction problems, 8% involve miscount-
ing, another 8% are wrong predictions on span
number, the rest (5%) are due to various reasons
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such as incorrect preprocessing, negation error,
and so on. See Appendix for some examples of
the above error cases.

5 Related Work

Reading comprehension benchmarks Promis-
ing advancements have been made for reading
comprehension due to the creation of many large
datasets. While early research used cloze-style
tests (Hermann et al., 2015; Hill et al., 2016), most
of recent works (Rajpurkar et al., 2016; Joshi et al.,
2017) are designed to extract answers from the
passage. Despite their success, these datasets only
require shallow pattern matching and simple logi-
cal reasoning, thus being well solved (Chen et al.,
2016; Devlin et al., 2019). Recently, Dua et al.
(2019) released a new benchmark named DROP
that demands discrete reasoning as well as deeper
paragraph understanding to find the answers. Sax-
ton et al. (2019) introduced a dataset consisting
of different types of mathematics problems to fo-
cuses on mathematical computation. We choose to
work on DROP to test both the numerical reason-
ing and linguistic comprehension abilities.

Neural reading models Previous neural read-
ing models, such as BiDAF (Seo et al., 2017),
R-Net (Wang et al., 2017), QANet (Yu et al,
2018), Reinforced Mreader (Hu et al., 2018), are
usually designed to extract a continuous span
of text as the answer. Dua et al. (2019) en-
hanced prior single-type prediction to support var-
ious answer types such as span, count number,
and addition/subtraction. Different from these
approaches, our model additionally supports a
new negation type to increase answer coverage,
and learns to dynamically extract one or multiple
spans. Morevoer, answer reranking has been well
studied in several prior works (Cui et al., 2016;
Wang et al., 2018a,b,c; Hu et al., 2019). We fol-
low this line of work, but propose ranking arith-
metic expressions instead of candidate answers.

End-to-end symbolic reasoning Combining
neural methods with symbolic reasoning was con-
sidered by Graves et al. (2014); Sukhbaatar et al.
(2015), where neural networks augmented with
external memory are trained to execute simple pro-
grams. Later works on program induction (Reed
and De Freitas, 2016; Neelakantan et al., 2016;
Liang et al., 2017) extended this idea by using
several built-in logic operations along with a key-

value memory to learn different types of compo-
sitional programs such as addition or sorting. In
contrast to these works, MTMSN does not model
various types of reasoning with a universal mem-
ory mechanism but instead deals each type with
individual predicting strategies.

Visual question answering In computer vi-
sion community, the most similar work to our
approach is Neural Module Networks (Andreas
et al., 2016b), where a dependency parser is used
to lay out a neural network composed of several
pre-defined modules. Later, Andreas et al. (2016a)
proposed dynamically choosing an optimal lay-
out structure from a list of layout candidates that
are produced by off-the-shelf parsers. Hu et al.
(2017) introduced an end-to-end module network
that learns to predict instance-specific network
layouts without the aid of a parser. Compared to
these approaches, MTMSN has a static network
layout that can not be changed during training and
evaluation, where pre-defined “modules” are used
to handle different types of answers.

6 Conclusion

We introduce MTMSN, a multi-type multi-span
network for reading comprehension that requires
discrete reasoning over the content of paragraphs.
We enhance a multi-type answer predictor to sup-
port logical negation, propose a multi-span extrac-
tion method for producing multiple answers, and
design an arithmetic expression reranking mecha-
nism to further confirm the prediction. Our model
achieves 79.9 F1 on the DROP hidden test set, cre-
ating new state-of-the-art results. As future work,
we would like to consider handling additional
types such as sorting or multiplication/division.
We also plan to explore more advanced methods
for performing complex numerical reasoning.
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