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Abstract

The recent success of neural machine transla-
tion models relies on the availability of high
quality, in-domain data. Domain adaptation is
required when domain-specific data is scarce
or nonexistent. Previous unsupervised do-
main adaptation strategies include training the
model with in-domain copied monolingual or
back-translated data. However, these meth-
ods use generic representations for text regard-
less of domain shift, which makes it infeasible
for translation models to control outputs con-
ditional on a specific domain. In this work, we
propose an approach that adapts models with
domain-aware feature embeddings, which are
learned via an auxiliary language modeling
task. Our approach allows the model to assign
domain-specific representations to words and
output sentences in the desired domain. Our
empirical results demonstrate the effectiveness
of the proposed strategy, achieving consistent
improvements in multiple experimental set-
tings. In addition, we show that combining
our method with back translation can further
improve the performance of the model.!

1 Introduction

While neural machine translation (NMT) sys-
tems have proven to be effective in scenarios
where large amounts of in-domain data are avail-
able (Gehring et al., 2017; Vaswani et al., 2017;
Chen et al., 2018), they have been demonstrated
to perform poorly when the test domain does
not match the training data (Koehn and Knowles,
2017). Collecting large amounts of parallel data in
all possible domains we are interested in is costly,
and in many cases impossible. Therefore, it is es-
sential to explore effective methods to train mod-
els that generalize well to new domains.

'Our code is publicly available at: https://github.
com/zdou0830/DAFE.
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Figure 1: Main architecture of DAFE. Embedding

learners generate domain- and task-specific features at
each layer, which are then integrated into the output of
the base network.

Domain adaptation for neural machine transla-
tion has attracted much attention in the research
community, with the majority of work focusing
on the supervised setting where a small amount
of in-domain data is available (Luong and Man-
ning, 2015; Freitag and Al-Onaizan, 2016; Chu
etal., 2017; Vilar, 2018). An established approach
is to use domain tags as additional input, with
the domain representations learned over parallel
data (Kobus et al., 2017). In this work, we fo-
cus on unsupervised adaptation, where there are
no in-domain parallel data available. Within this
paradigm, Currey et al. (2017) copy the in-domain
monolingual data from the target side to the source
side and Sennrich et al. (2016a) concatenate back-
translated data with the original corpus. However,
these methods learn generic representations for all
the text, as the learned representations are shared
for all the domains and synthetic and natural data
are treated equally. Sharing embeddings may be
sub-optimal as data from different domains are in-
herently different. This problem is exacerbated
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when words have different senses in different do-
mains.

In this work, we propose a method of Domain-
Aware Feature Embedding (DAFE) that performs
unsupervised domain adaptation by disentangling
representations into different parts. Because we
have no in-domain parallel data, we learn DAFEs
via an auxiliary task, namely language modeling.
Specifically, our proposed model consists of a base
network, whose parameters are shared across set-
tings, as well as both domain and task embedding
learners. By separating the model into different
components, DAFE can learn representations tai-
lored to specific domains and tasks, which can
then be utilized for domain adaptation.

We evaluate our method in a Transformer-based
NMT system (Vaswani et al., 2017) under two
different data settings. Our approach demon-
strates consistent improvements of up to 5 BLEU
points over unadapted baselines, and up to 2
BLEU points over strong back-translation mod-
els. Combining our method with back translation
can further improve the performance of the model,
suggesting the orthogonality of the proposed ap-
proach and methods that rely on synthesized data.

2 Methods

In this section, we first illustrate the architecture of
DAFE, then describe the overall training strategy.

2.1 Architecture

DAFE disentangles hidden states into different
parts so that the network can learn representa-
tions for particular domains or tasks, as illus-
trated in Figure 1. Specifically, it consists of
three parts: a base network with parameters Gp,se
that learns common features across different tasks
and domains, a domain-aware feature embedding
learner that generates embeddings 0] .. ~given
input domain 7 and a task-aware feature embed-
ding learner that outputs task representations 6! ,
given input task . The final outputs for each layer
are obtained by a combination of the base network
outputs and feature embeddings.

The base network is implemented in the
encoder-decoder framework (Sutskever et al.,
2014; Cho et al., 2014). Both the task and domain
embedding learners directly output feature embed-
dings with look-up operations.

In this work, the domain-aware embedding

learner learns domain representations 6y .. and

Algorithm 1 Training Strategy

1: while Oyase, Odomain, fask have not converged
do

2. Sample {(C(y),y)} from Y
3:  Train {6pase, 9d0mam, tagk} with Eqn. 2
4. Sample {(C(y),y)} from Y°oul
5. Train {Opase, 05 ., Hfgjk} with Eqn. 2
6:  Sample {(x,y)} from (Xu youl)
7. Train {Opase, 05 .., O } with Eqn. 1
8: end while
Ggg;ain from in-domain and out-of-domain data re-

spectively, and the task-aware embedding leaner
learns task embeddings 6] and Htask for machine
translation and language modeling.

The feature embeddings are generated at each
encoding layer (including the source word embed-
ding layer) and have the same size as the hidden
states of the base model. It should be noted that
feature embedding learners generate different em-
beddings at different layers.

Formally, given a specific domain 7 and task ~,
the output of the [-th encoding layer Hg)
be:

would

= LAYER,(HUD; 00 ) 4970 4 7D

base domain task

H

where QJOSIZI)M and Qtag(k) are single vectors and
LAYER,(-) can be any layer encoding function,
such as an LSTM (Hochreiter and Schmidhuber,
1997) or Transformer (Vaswani et al., 2017).

In this paper, we adopt a simple, add opera-
tion to combine outputs of different parts which al-
ready achieves satisfactory performance as shown
in Section 3. We leave investigating more sophis-

ticated combination strategies for future work.

2.2 Training Objectives

In the unsupervised domain adaptation setting, we
assume access to an out-of-domain parallel train-
ing corpus (X°! Y°ut) and target-language in-
domain monolingual data Y.

Neural machine translation. Our target task is
machine translation. Both the base network and
embedding learners are jointly trained with the ob-
jective:

max E
0

(X,y)E(XO“t 7}/out)

logp(ylx:6), (1)

where 6 = {Opase, O, 65 . }.

domain
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German-English Czech-English German-English
Method LAW MED IT WMT WMT

MED \ IT | LAW \ IT | LAW \ MED || TED \ LAW \ MED | TED \ LAW \ MED
(1) Baseline [13.25] 522 [ 455 [ 3.15 [ 429 | 7.05 [ 2430 [ 28.22 | 1545 [ 28.15 | 24.61 | 26.75
Data-Centric Methods
(2) Copy 1923 | 7.57 | 6.01 | 5.89 | 5.11 | 11.15 || 26.44 | 36.49 | 22.73 | 29.79 | 26.17 | 29.33
(3) Back 2253 | 11.34 | 7.62 | 7.02 | 8.06 | 14.56 || 32.70 | 42.08 | 30.45 | 34.46 | 30.24 | 33.16
Model-Centric Methods
(4) DAFE w/o Embed 2344 | 697 | 921 | 8.34 | 8.09 | 16.34 || 26.63 | 35.86 | 23.44 | 29.88 | 27.10 | 32.15
(5) DAFE 2423 | 859 | 9.87 | 844 | 8.61 | 17.50 || 28.09 | 38.89 | 26.05 | 30.88 | 27.77 | 32.48
Combining Data-Centric and Model-Centric Methods
(6) Back + DAFE 2534 | 13.55 ] 9.60 | 11.20 | 9.60 | 17.25 || 33.18 | 44.06 | 34.24 | 34.57 | 30.72 | 35.48
(7) Back-DAFE 26.47 | 13.75 | 11.90 | 9.47 | 10.60 | 18.04 || 32.51 | 43.33 | 35.45 | 34.57 | 30.93 | 37.66
(8) Back-DAFE + DAFE || 26.96 | 15.41 | 14.28 | 13.03 | 11.67 | 21.30 || 33.02 | 44.36 | 37.48 | 34.89 | 31.46 | 38.79

Table 1:

Translation accuracy (BLEU) under different settings. The second and third rows list source and target

domains respectively. “DAFE w/o Embed” denotes DAFE without embedding learners and “Back-DAFE” de-
notes back-translation by target-to-source model trained with DAFE. DAFE outperforms other approaches when
adapting between domains (row 1-5, column 2-7) and is complementary to back-translation (row 6-8).

Language modeling. We choose masked lan-
guage modeling (LM) as our auxiliary task. Fol-
lowing Lample et al. (2018a,b), we create cor-
rupted versions C'(y) for each target sentence y by
randomly dropping and slightly shuffling words.
During training, gradient ascent is used to maxi-
mize the objective:

>

ye{yinuyout}

logp(y|C(y);0), (2

max
0

out .
63ut .} for out-of-domain

} for in-domain data.

where 6 = {gbasev etaskv

in
data and {ebase, task’ edomam

Training strategy. Our training strategy is
shown in Algorithm 1. The ultimate goal is
to learn a set of parameters {Opase, 04, .., 0%
for in-domain machine translation. While
out-of-domain parallel data allows us to train
{Brase, 032% .,0m% }, the monolingual data help

the model learn both Gégmam and 03Ut . .

3 Experiments

3.1 Setup

Datasets. We validate our models in two differ-
ent data settings. First, we train on the law, medi-
cal and IT datasets of the German-English OPUS
corpus (Tiedemann, 2012) and test our methods’
ability to adapt from one domain to another. The
dataset contain 2K development and test sentences
in each domain, and about 715K, 1M and 337K
training sentences respectively. These datasets are
relatively small and the domains are quite distant
from each other. In the second setting, we adapt
models trained on the general-domain WMT-14

datasets into both the TED (Duh, 2018) and law,
medical OPUS datasets. For this setting, we con-
sider two language pairs, namely Czech and Ger-
man to English. The Czech-English and German-
English datasets consist of 1M and 4.5M sentences
and the development and test sets contain about
2K sentences.

Models. We implement DAFE on top of the
Transformer model. Both the encoder and decoder
consist of 4 layers and the hidden size is set to 512.
Byte-pair encoding (Sennrich et al., 2016b) is em-
ployed to process training data into subwords for
a final shared vocabulary size of 50K.

Baselines. We compare our methods with two
baseline models: 1) The copied monolingual data
model (Currey et al., 2017) which copies tar-
get in-domain monolingual data to the source
side; 2) Back-translation (Sennrich et al., 2016a)
which enriches the training data by generating
synthetic in-domain parallel data via a target-to-
source NMT model. We characterize the two
baselines as data-centric methods as they rely on
synthesized data. In contrast, our approach is
model-centric as we mainly focus on modifying
the model architecture. We also perform an ab-
lation study by removing the embedding learners
(denoted as “DAFE w/o Embed”) and the model
will just perform multi-task learning.

3.2 Main Results

Adapting between domains. As shown in the
first 6 results columns of Table 1, the unadapted
baseline model (row 1) performs poorly when
adapting between domains. The copy method
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Figure 2: DAFE outperforms back-translation in low-
resource scenarios.

(row 2) and back translation (row 3) both improve
the model significantly, with back-translation be-
ing a better alternative to copying. DAFE (row 5)
achieves superior performance compared to back-
translation, with improvements of up to 2 BLEU
points. Also, removing the embedding learners
leads to degraded performance (row 4), indicating
the necessity of their existence.

Adapting from a general to a specific domain.
In the second data setting (last 6 columns of Ta-
ble 1), with relatively large amounts of general-
domain datasets, back-translation achieves com-
petitive performance. In this setting, DAFE im-
proves the unadapted baseline significantly but it
does not outperform back-translation. We hypoth-
esize this is because the quality of back-translated
data is relatively good.

3.3 Combining DAFE with Back-Translation

We conjecture that DAFE is complementary to
the data-centric methods. We attempt to sup-
port this intuition by combining DAFE with back-
translation (the best data-centric approach). We
try three different strategies to combine DAFE
with back-translation, outlined in Table 1.

Simply using back-translated data to train
DAFE (row 6) already achieves notable improve-
ments of up to 4 BLEU points. We can also gen-
erate back-translated data using target-to-source
models trained with DAFE, with which we train
the forward model (Back-DAFE, row 7). By
doing so, the back-translated data will be of
higher quality and thus the performance of the
source-to-target model can be improved. The
overall best strategy is to use Back-DAFE to
generate synthetic in-domain data and train the
DAFE model with the back-translated data (Back-
DAFE+DAFE, row 8). Across almost all adapta-
tion settings, Back-DAFE+DAFE leads to higher
translation quality, as per our intuition. An advan-

Embedding ‘ MED dev MED test ‘ IT dev IT test
MED + 42.06 34.63 { 413 4.80

36.96 30.09

7.54 8.44

Table 2: Providing mismatched domain embeddings
leads to degraded performance.

Reference please report this bug to the developers .

| MED-embed | please report this to the EMEA . _ |
IT-embed please report this bug to the developers .
Reference for intramuscular use .

| MED-embed | for intramuscularuse .. _____|
IT-embed for the use of the product .

Table 3: Controlling the output domain by provid-

ing different domain embeddings. We use compare-
mt (Neubig et al., 2019) to select examples.

tage of this setting is that the back-translated data

allow us to learn Gégmain with the translation task.

3.4 Analysis

Low-resource scenarios. One advantage of
DAFE over back-translation is that we do not need
a good target-to-source translation model, which
can be difficult be acquire in low-resource sce-
narios. We randomly sample different amounts
of training data and evaluate the performance of
DAFE and back-translation on the development
set. As shown in Figure 2, DAFE significantly
outperforms back-translation in data-scarce sce-
narios, as low quality back-translated data can ac-
tually be harmful to downstream performance.

Controlling the output domain. An added perk
of our model is the ability to control the output
domain by providing the desired domain embed-
dings. As shown in Table 2, feeding mismatched
domain embeddings leads to worse performance.
Examples in Table 3 further suggest the model
with medical embeddings as input can generate
domain-specific words like “EMEA” (European
Medicines Evaluation Agency) and “intramuscu-
lar”, while IT embeddings encourage the model to
generate words like “bug” and “developers”.

4 Related Work

Most previous domain adaptation work for NMT
focus on the setting where a small amount of in-
domain data is available. Continued training (Lu-
ong and Manning, 2015; Freitag and Al-Onaizan,
2016) methods first train an NMT model on out-
of-domain data and then fine-tune it on the in-
domain data. Similar to our work, Kobus et al.
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(2017) propose to use domain tags to control the
output domain, but it still needs a in-domain par-
allel corpus and our architecture allows more flex-
ible modifications than just adding additional tags.

Unsupervised domain adaptation techniques for
NMT can be divided into data- and model-centric
methods (Chu and Wang, 2018). Data-centric ap-
proaches mainly focus on selecting or generating
the domain-related data using existing in-domain
monolingual data. Both the copy method (Currey
et al., 2017) and back-translation (Sennrich et al.,
2016a) are representative data-centric methods. In
addition, Moore and Lewis (2010); Axelrod et al.
(2011); Duh et al. (2013) use LMs to score the out-
of-domain data, based on which they select data
similar to in-domain text. Model-centric meth-
ods have not been fully investigated yet. Gulcehre
et al. (2015) propose to fuse LMs and NMT mod-
els, but their methods require querying two mod-
els during inference and have been demonstrated
to underperform the data-centric ones (Chu et al.,
2018). There are also work on adaptation via re-
trieving sentences or n-grams in the training data
similar to the test set (Farajian et al., 2017; Bapna
and Firat, 2019). However, it can be difficult to
find similar parallel sentences in domain adapta-
tion settings.

5 Conclusion

In this work, we propose a simple yet effective un-
supervised domain adaptation technique for neu-
ral machine translation, which adapts the model
by domain-aware feature embeddings learned with
language modeling. Experimental results demon-
strate the effectiveness of the proposed approach
across settings. In addition, analysis reveals that
our method allows us to control the output domain
of translation results. Future work include design-
ing more sophisticated architectures and combina-
tion strategies as well as validating our model on
other language pairs and datasets.
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