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Abstract
Although self-attention networks (SANs) have
advanced the state-of-the-art on various NLP
tasks, one criticism of SANs is their ability
of encoding positions of input words (Shaw
et al., 2018). In this work, we propose to
augment SANs with structural position rep-
resentations to model the latent structure of
the input sentence, which is complementary
to the standard sequential positional represen-
tations. Specifically, we use dependency tree
to represent the grammatical structure of a
sentence, and propose two strategies to en-
code the positional relationships among words
in the dependency tree. Experimental re-
sults on NIST Chinese⇒English and WMT14
English⇒German translation tasks show that
the proposed approach consistently boosts per-
formance over both the absolute and relative
sequential position representations.

1 Introduction

In recent years, self-attention networks (SANs,
Parikh et al., 2016; Lin et al., 2017) have achieved
the state-of-the-art results on a variety of NLP
tasks (Vaswani et al., 2017; Strubell et al., 2018;
Devlin et al., 2019). SANs perform the atten-
tion operation under the position-unaware “bag-
of-words” assumption, in which positions of the
input words are ignored. Therefore, absolute
position (Vaswani et al., 2017) or relative posi-
tion (Shaw et al., 2018) are generally used to cap-
ture the sequential order of words in the sentence.
However, several researches reveal that the se-
quential structure may not be sufficient for NLP
tasks (Tai et al., 2015; Kim et al., 2017; Shen et al.,
2019), since sentences inherently have hierarchi-
cal structures (Chomsky, 1965; Bever, 1970).

In response to this problem, we propose to aug-
ment SANs with structural position representa-
tions to capture the hierarchical structure of the in-
put sentence. The starting point for our approach

is a recent finding: the latent structure of a sen-
tence can be captured by structural depths and dis-
tances (Hewitt and Manning, 2019). Accordingly,
we propose absolute structural position to encode
the depth of each word in a parsing tree, and rel-
ative structural position to encode the distance of
each word pair in the tree.

We implement our structural encoding strate-
gies on top of TRANSFORMER (Vaswani
et al., 2017) and conduct experiments on
both NIST Chinese⇒English and WMT14
English⇒German translation tasks. Experi-
mental results show that exploiting structural
position encoding strategies consistently boosts
performance over both the absolute and rela-
tive sequential position representations across
language pairs. Linguistic analyses (Conneau
et al., 2018) reveal that the proposed structural
position representation improves the translation
performance with richer syntactic information.
Our main contributions are:

• Our study demonstrates the necessity and
effectiveness of exploiting structural posi-
tion encoding for SANs, which benefits from
modeling syntactic depth and distance under
the latent structure of the sentence.

• We propose structural position representa-
tions for SANs to encode the latent structure
of the input sentence, which are complemen-
tary to their sequential counterparts.

2 Background

Self-Attention SANs produce representations
by applying attention to each pair of elements
from the input sequence, regardless of their
distance. Given an input sequence X =
{x1, . . . ,xI} ∈ RI×d, the model first transforms
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Figure 1: Illustration of (a) the standard sequential position encoding (Vaswani et al., 2017; Shaw et al., 2018),
and (b) the proposed structural position encoding. The relative position in the example is for the word “talk”.

it into queries Q ∈ RI×d, keys K ∈ RI×d, and
values V ∈ RI×d:

Q,K,V = XWQ,XWK ,XWV ∈ RI×d, (1)

where {WQ,WK ,WV } ∈ Rd×d are trainable
parameters and d indicates the hidden size. The
output sequence is calculated as

O = ATT(Q,K)V ∈ RI×d, (2)

where ATT(·) is a dot-product attention model.

Sequential Position Encoding To make use of
the order of the sequence, information about the
absolute or relative position of the elements in the
sequence is injected into SAN:

• Absolute Sequential PE (Vaswani et al.,
2017) is defined as

ABSPE(abs) = f(abs/100002i/d), (3)

where abs is the absolute position in the se-
quence and i is the dimension of position rep-
resentations. f(·) is sin(·) for the even di-
mension, and cos(·) for the odd dimension.

Vaswani et al. (2017) propose to conduct
element-wise addition to combine the fixed
sequential position representation with word
embedding and feed the combination repre-
sentation to the SANS.

• Relative Sequential PE (Shaw et al., 2018) is
calculated as

RELPE(rel) = R[rel], (4)

where rel is the relative position to the
queried word, which is used to index a learn-
able matrix R that represents relative posi-
tion embeddings.

Shaw et al. (2018) propose relation-aware
SANs and take the relative sequential encod-
ing as the additional key and value (Eq.2) in
the attention computation.

Figure 1(a) shows an example of absolute (i.e.,
abs) and relative (i.e., rel) sequential positions.

3 Approach

3.1 Structural Position Representations
In this study, we choose dependency tree to repre-
sent sentence structure for its simplicity on mod-
eling syntactic relationships among input words.
Figure 1 shows an example to illustrate the idea
of the proposed approach. From the perspec-
tive of relationship path between words, sequen-
tial PE measures the sequential distance between
the words. As shown in Figure 1 (a), for each
word, absolute sequential position represents the
sequential distance to the beginning of the sen-
tence, while relative sequential position measures
the relative distance to the queried word (“talk” in
the example).

The latent structure can be interpreted in var-
ious ways, from syntactic tree structures, e.g.,
constituency tree (Collins, 2003) or dependency
tree (Kübler et al., 2009), to semantic graph
structures, e.g., abstract meaning representation
graph (Banarescu et al., 2013). In this work, de-
pendency path, which is induced from the depen-
dency tree, is adopted to provide a new perspective
on modelling pairwise relationships.

Figure 1 shows the difference between the se-
quential path and dependency path. The sequen-
tial distance between the two words “held” and
“talk” is 2, while their structural distance is only
1 as word “talk” is the dependent of the head
“held” (Nivre, 2005).
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Absolute Structural Position We exploit the
tree depth of the word in the dependency tree as its
absolute structural position. Specifically, we treat
the main verb (Tapanainen and Jarvinen, 1997) of
the sentence as the origin and use the distance of
the dependency path from the target word to the
origin as the absolute structural position

absstru(xi) = distancetree(xi, origin), (5)

where xi is the target word, tree is the given de-
pendency structure and the origin is the main verb
of the tree.

In the field of NMT, BPE sub-words and end-
of-sentence symbol should be carefully handled as
they do not appear in the conventional dependency
tree. In this work, we assign the BPE sub-words
share the absolute structural position of the orig-
inal word and set the the first larger integer than
the max absolute structural position in dependency
tree as the absolute structural position of end-of-
sentence symbol.

Relative Structural Position For the relative
structural position relstru(xi, xj), we calculate
relstru(xi, xj) in the dependency tree following
two hierarchical rules:

1. if xi and xj are at same dependency edge,
relstru(xi, xj) = absstru(xi)− absstru(xj).

2. if xi and xj are at different depen-
dency edges, relstru(xi, xj) = fstru(i − j) ∗
(absstru(xi) + absstru(xj)), where

fstru(x) =


1 x > 0
0 x = 0
−1 x < 0

(6)

Following Shaw et al. (2018), we use clipping
distance r to limit the maximum relative position.

3.2 Integrating Structural PE into SANs

We inherit position encoding functions from se-
quential approaches (Eq.3 and Eq.4) to imple-
ment the structural position encoding strategies.
Since structural position representations capture
complementary position information to their se-
quential counterparts, we also exploit to integrate
the structural position encoding into SANs with
the sequential counterparts approaches (Vaswani
et al., 2017; Shaw et al., 2018).

For the absolute position, we use the nonlinear
function to fuse the sequential and structure posi-

tion representations1:

asb(xi) =fabs(ABSPE(absseq),

ABSPE(absstru))
(7)

where fabs is the nonlinear function.
ABSPE(absseq) and ABSPE(absstru) are abso-
lute sequential and structural position embedding
in Eq.3 and Eq.5 respectively.

For the relative position, we follow Shaw et al.
(2018) to extend the self-attention computation to
consider the pairwise relationships and project the
relative structural position as described at Eq.(3)
and Eq.(4) in Shaw et al. (2018)2.

4 Related Work

There has been growing interest in improving the
representation power of SANs (Dou et al., 2018,
2019; Yang et al., 2018; Wang et al., 2018; Wu
et al., 2018; Yang et al., 2019a,b; Sukhbaatar et al.,
2019). Among these approaches, a straightfor-
ward strategy is that augmenting the SANs with
position representations (Shaw et al., 2018; Ma
et al., 2019; Bello et al., 2019; Yang et al., 2019c),
as the position representations involves element-
wise attention computation. In this work, we pro-
pose to augment SANs with structural position
representations to model the latent structure of the
input sentence.

Our work is also related to the structure mod-
eling for SANs, as the proposed model utilizes
the dependency tree to generate structural repre-
sentations. Recently, Hao et al. (2019c,b) inte-
grate the recurrence into the SANs and empiri-
cally demonstrate that the hybrid models achieve
better performances by modeling structure of sen-
tences. Hao et al. (2019a) further make use of the
multi-head attention to form the multi-granularity
self-attention, to capture the different granularity
phrases in source sentences. The difference is that
we treat the position representation as a medium
to transfer the structure information from the de-
pendency tree into the SANs.

1We also use parameter-free element-wise addition
method to combine two absolute position embedding and get
0.28 BLEU point improvement on development set of NIST
Chinese⇒English over the baseline model that only uses ab-
solute sequential encoding.

2Due to the space limitations we do not show these func-
tions. Please refer to Shaw et al. (2018) for more detail.
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#
Sequential Structural

Spd. BLEU
Abs. Rel. Abs. Rel.

1
× ×

× × 2.81 28.33
2 X × 2.53 35.43
3 × X 2.65 34.23
4

X ×
× × 3.23 44.31

5 X × 2.65 44.84
6 X X 2.52 45.10
7

X X
× × 3.18 45.02

8 X × 2.64 45.43
9 X X 2.48 45.67

Table 1: Impact of the position encoding components
on Chinese⇒English NIST02 development dataset us-
ing Transformer-Base model. “Abs.” and “Rel.” denote
absolute and relative position encoding, respectively.
“Spd.” denotes the decoding speed (sentences/second)
on a Tesla M40, the speed of structural position encod-
ing strategies include the step of dependency parsing.

5 Experiment

We conduct experiments on the widely
used NIST Chinese⇒English and WMT14
English⇒German data, and report the 4-gram
BLEU score (Papineni et al., 2002).

Chinese⇒English We use the training dataset
consists of about 1.25 million sentence pairs.
NIST 2002 (MT02) dataset is used as development
set. NIST 2003, 2004, 2005, 2006 datasets are
used as test sets. We use byte-pair encoding (BPE)
toolkit to alleviate the out-of-vocabulary problem
with 32K merge operations.

English⇒German We use the dataset consist-
ing of about 4.5 million sentence pairs as the train-
ing set. The newstest2013 and newstest2014 are
used as the development set and the test set. We
also apply BPE with 32K merge operations to ob-
tain subword unit.

We evaluate the proposed position encod-
ing strategies on TRANSFORMER (Vaswani
et al., 2017) and implement them on top of
THUMT (Zhang et al., 2017). We use the Stan-
ford parser (Klein and Manning, 2003) to parse
the sentences and obtain the structural structural
absolute and relative position as described in
Section 3. When using relative structural position
encoding, we use clipping distance r = 16.
To make a fair comparison, we valid different
position encoding strategies on the encoder and
keep the TRANSFORMER decoder unchanged.

We study the variations of the BASE model on
Chinese⇒English task, and evaluate the over-
all performance with the BIG model on both
translation tasks.

5.1 Model Variations

We evaluate the importance of the proposed
absolute and relative structural position encod-
ing strategies and study the variations with
Transformer-Base model on Chinese⇒English
data. The experimental results on the development
set are shown in Table 1.

Effect of Position Encoding We first remove
the sequential encoding from the Transformer en-
coder (Model #1) and observe the translation per-
formance degrades dramatically (28.33−44.31 =
−15.98), which demonstrates the necessity of the
position encoding strategies.

Effect of Structural Position Encoding Then
we valid our proposed structural position encod-
ing strategies over the position-unaware model
(Models #2-3). We find that absolute and relative
structural position encoding strategies improve the
translation performance by 7.10 BLEU points and
5.90 BLEU points respectively, which shows that
the introducing of the proposed absolute and rel-
ative structural positions improves the translation
performance in terms of BLEU score.

Combination of Sequential and Structural Po-
sition Encoding Strategies We integrate the ab-
solute and relative structural position encoding
strategies into the Base model equipped with abso-
lute sequential position encoding (Models #4-6).
We observe that the proposed two approaches are
able to achieve improvements over the Base model
with decoding speed marginally decreases.

Finally, we valid the proposed structural posi-
tion encoding over the Base model equipped with
absolute and relative sequential position encod-
ing (Models #7-9). We find that sequential rela-
tive encoding obtains 0.71 BLEU points improve-
ment (Model #7 vs. Model #4) and structural po-
sition encoding achieves a further improvement in
performance by 0.65 BLEU points (Model #9 vs.
Model #7), demonstrating the effectiveness of the
proposed structural position encoding strategies.

5.2 Main Results

We valid the proposed structural encoding
strategies over Transformer-Big model in
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Model Architecture Zh⇒En En⇒De
MT03 MT04 MT05 MT06 Avg WMT14

Hao et al. (2019c) - - - - - 28.98
Transformer-Big 45.30 46.49 45.21 44.87 45.47 28.58

+ Structural PE 45.62 47.12↑ 45.84 45.64⇑ 46.06 28.88
+ Relative Sequential PE 45.45 47.01 45.65 45.87⇑ 46.00 28.90

+ Structural PE 45.85↑ 47.37⇑ 46.20⇑ 46.18⇑ 46.40 29.19⇑

Table 2: Evaluation of translation performance on NIST Zh⇒En and WMT14 En⇒De test sets. Hao et al. (2019c)
is a Transformer-Big model which adopted an additional recurrence encoder with the attentive recurrent network
to model syntactic structure. “↑ / ⇑”: significant over the Transformer-Big (p < 0.05/0.01), tested by bootstrap
resampling (Koehn, 2004).

Model Surface Syntactic Semantic
SeLen WC Avg TrDep ToCo BShif Avg Tense SubN ObjN SoMo CoIn Avg

BASE 92.20 63.00 77.60 44.74 79.02 71.24 65.00 89.24 84.69 84.53 52.13 62.47 74.61
+ Rel. Seq. PE 89.82 63.17 76.50 45.09 78.45 71.40 64.98 88.74 87.00 85.53 51.68 62.21 75.03
+ Stru. PE 89.54 62.90 76.22 46.12 79.12 72.36 65.87 89.30 85.47 84.94 52.90 62.99 75.12

Table 3: Performance on linguistic probing tasks. The probing tasks were conducted by evaluating linguistics
embedded in the Transformer-Base encoder outputs. “Base”, “+ Rel. Seq. PE”, “+ Stru. PE” denote Transformer-
Base, Transformer-Base with relative sequential PE, Transformer-Base with relative sequential PE and structural
PE models respectively.

Chinese⇒English and English⇒German data,
and list the results in Table 2.

For Chinese⇒English, Structural position
encoding (+ Structural PE) outperforms the
Transformer-Big by 0.59 BLEU points on average
over four NIST test sets. Sequential relative
encoding approach (+Relative Sequential PE)
outperforms the Transformer-Big by 0.53 BLEU
points, and structural position encoding (+
Structural PE) achieves further improvement
up to +0.40 BLEU points and outperforms the
Transformer-Big by 0.93 BLEU points. For
English⇒German, similar phenomenon is ob-
served, which reveals that the proposed structural
position encoding strategy can consistently boost
translation performance over both the absolute
and relative sequential position representations.

5.3 Linguistic Probing Evaluation

We conduct probing tasks3 (Conneau et al., 2018)
to evaluate structure knowledge embedded in the
encoder output in the variations of the Base model
that are trained on En⇒De translation task.

We follow Wang et al. (2019) to set model con-
figurations. The experimental results on probing
tasks are shown in Table 3, and the BLEU scores
of “Base”, “+ Rel. Seq. PE”, “+ Stru. PE” are

3https://github.com/facebookresearch/
SentEval/tree/master/data/probing

27.31, 27.99 and 28.30. From the table, we can see
1) adding the relative sequential positional embed-
ding achieves improvement over the baseline on
semantic tasks (75.03 vs. 74.61). This may indi-
cate the model benefits more from semantic mod-
eling; 2) with the structural positional embedding,
the model obtains improvement on syntactic tasks
(65.87 v.s. 64.98), which indicates that the repre-
sentations preserve more syntactic knowledge.

6 Conclusion

In this paper, we have presented a novel structural
position encoding strategy to augment SANs by
considering the latent structure of the input sen-
tence. We extract structural absolute and rela-
tive positions from the dependency tree and in-
tegrate them into SANs. Experimental results on
Chinese⇒English and English⇒German transla-
tion tasks have demonstrated that the proposed
approach consistently improve translation perfor-
mance over both the absolute and relative sequen-
tial position representations.

Future directions include inferring the structure
representations from the AMR (Song et al., 2019)
or the external SMT knowledge (Wang et al.,
2017). Furthermore, the structural position en-
coding can be also applied to the decoder with
RNN Grammars (Dyer et al., 2016; Eriguchi et al.,
2017), which we leave for future work.

https://github.com/facebookresearch/SentEval/tree/master/data/probing
https://github.com/facebookresearch/SentEval/tree/master/data/probing
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