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Abstract

Beam search is universally used in full-
sentence translation but its application to
simultaneous translation remains non-trivial,
where output words are committed on the fly.
In particular, the recently proposed wait-k pol-
icy (Ma et al., 2019a) is a simple and effec-
tive method that (after an initial wait) com-
mits one output word on receiving each input
word, making beam search seemingly impos-
sible. To address this challenge, we propose
a speculative beam search algorithm that hal-
lucinates several steps into the future in order
to reach a more accurate decision, implicitly
benefiting from a target language model. This
makes beam search applicable for the first time
to the generation of a single word in each step.
Experiments over diverse language pairs show
large improvements over previous work.

1 Introduction

Beam search has been widely used in neural text
generation such as machine translation (Sutskever
et al., 2014; Bahdanau et al., 2014), summariza-
tion (Rush et al., 2015; Ranzato et al., 2016), and
image captioning (Vinyals et al., 2015; Xu et al.,
2015). It often leads to substantial improvement
over greedy search and becomes an essential com-
ponent in almost all text generation systems.
However, beam search is easy for the above
tasks because they are all full-sequence problems,
where the whole input sequence is available at the
beginning and the output sequence only needs to
be revealed in full at the end. By contrast, in lan-
guage and speech processing, there are many in-
cremental processing tasks with simultaneity re-
quirements, where the output needs to be revealed
to the user incrementally without revision (word
by word, or in chunks) and the input is also being

*These authors contributed equally.

received incrementally. Two most salient exam-
ples are streaming speech recognition (Chiu et al.,
2018), widely used in speech input and dialog sys-
tems (such as Siri), and simultaneous translation
(Bangalore et al., 2012; Oda et al., 2015; Gris-
som Il et al., 2014; Jaitly et al., 2016), widely used
in international conferences and negotiations. In
these tasks, the use of full-sentence beam search
becomes seemingly impossible as output words
need to be committed on the fly.

How to adapt beam search for such incremen-
tal tasks in order to improve their generation qual-
ity? We propose a general technique of specula-
tive beam search (SBS), and apply it to simulta-
neous translation. At a very high level, to gener-
ate a single word, instead of simply choosing the
highest-scoring one (as in greedy search), we fur-
ther speculate w steps into the future, and use the
ranking at step w+ 1 to reach a more informed
decision for step 1 (the current step); this method
implicitly benefits from a target language model,
alleviating the label bias problem in neural genera-
tion (Murray and Chiang, 2018; Ma et al., 2019b).

We apply this algorithm to two representative
approaches to simultaneous translation: the fixed
policy method (Ma et al., 2019a) and the adaptive
policy method (Gu et al., 2017). In both cases, we
show that SBS improves translation quality while
maintaining latency (i.e., simultaneity).

2 Preliminaries

We first review standard full-sentence NMT and
beam search to set up the notations, and then re-
view different approaches to simultaneous MT.

2.1 Full Sentence NMT and Beam Search

The encoder processes the input sequence x =
(x1,...,2n), where x; € R4 represents an input
token as a d dimensional vector, and produces a
new list of hidden states h = f(x) = (hi, ..., hy)

1395

Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 1395-1402,
Hong Kong, China, November 3-7, 2019. (©2019 Association for Computational Linguistics



world bank plan exempt

debt

47 - M - HS - {ESS
Shihang nt Jlanmign Zhaiwu
bank.  bank = will : world—> bank < to to reduce to— exempts : plansy -+ some ~exempts . from ~ debt <eos>
\world/bank < is outlook\‘ p\an%/ <plan \ exempts * reduce \‘ to > reduce > some debt /<eos>
* the * of * of Y cup “planning prepare plans “from-—— some ‘exemp}‘ exempt— from/some
1 (2) (3) 1 2 (3) 3 4 5 6 7 8

Figure 1: Wait-1 policy example to illustrate the procedure of SBS. The top Chinese words are the source side
inputs which are incrementally revealed to the encoder. Gloss is annotated above Chinese word and Pinyin is
underneath. There are two extra steps (speculative window) are taken (red part) beyond greedy. When source

«fE AZ s

reaches the last word “I5155

to represent . The encoding function f can be
RNN, CNN or Transformer.

On the other hand, the (greedy) decoder selects
the highest-scoring word ¥, given source represen-
tation h and previously generated target tokens,
Y<t = (y1,...,yt—1). The greedy search contin-
ues until it emits <eos>, and the final hypothesis

Y= <y17 ceey yt) with Yt = <eos>

py o) =T1 oy | 2oy<) (D
As greedy search only explores one single
path among exponential many alternatives, beam
search is used to improve the search. At each
step t, it maintains a beam By of size b, which is an
ordered list of (hypothesis, probability) pairs; for
example By = [(<s>, 1)]. We then define one-step
transition from the previous beam to the next as

(debt), the decoder gets into tail and performs conventional beam search (in green).

odel || sequence-to-sequence prefix-to-prefix
polic (full-sentence model) (simultaneous model)
fixed- test-time wait-k (Dalvi | wait-k (Ma et al., 2019a)
latency etal., 2018; Ma et al., 2019a)
RL MILk
. (Guetal., 2017) (Arivazhagan et al., 2019)
adaptive . . o .
Supervised Learning Imitation Learning
(Zheng et al., 2019a) (Zheng et al., 2019b)

Table 1: Recent advances in simultaneous translation.
2. The second method learns an adaptive policy
which uses either supervised (Zheng et al.,
2019a) or reinforcement learning (Grissom 11
et al., 2014; Gu et al., 2017) to decide
whether to READ (the next source word) or
WRITE (the next target word) . Here the de-
coder can commit a chunk of multiple words

for a series of consecutive WRITEs.

In terms of modeling (which is orthogonal to

next{ (B) =top"{(yo v, s-p(v|a,y)) | (y )€ B} decoding policies), we can also divide most simul-

where top”(+) returns the top-scoring b pairs, and
o is the string concatenation operator. Now B; =
next?(B;_1). As a shorthand, we also define the
multi-step beam search function recursively:

next?(B) 1(B)) ()

Full-sentence beam search (over a maximum of T’
steps) yields the best hypothesis y* with score s*
(see Huang et al. (2017) for stopping criteria):

(y*, s*) :topl(nextli’p([<<s>, D)) 3)
2.2 Simultaneous MT: Policies and Models

There are two main categories of policies in neural
simultaneous translation decoding (Tab. 1):

= nextll’ (nexti’_

1. The first method is to use a fixed-latency pol-
icy, such as the wait-k policy (Ma et al,,
2019a). Such a method would, after an ini-
tial wait of k& source words, commit one tar-
get word on receiving each new source word.
When the source sentence ends, the decoder
can do a tail beam search on the remaining
target words, but beam search is seemingly
impossible before the source sentence ends.

taneous translatoin efforts into two camps:

1. Use the standard full-sentence translation
model trained by classical seq-to-seq (Dalvi
et al., 2018; Gu et al., 2017; Zheng et al.,
2019a). For example, the “test-time wait-
k” scheme (Ma et al.,, 2019a) uses the
full-sentence translation model and performs
wait-k decoding at test time. However,
the obvious training-testing mismatch in this
scheme usually leads to inferior quality.

2. Use a genuinely simultaneous model trained
by the recently proposed prefix-to-prefix
framework (Ma et al., 2019a; Arivazhagan
et al., 2019; Zheng et al., 2019b). There
is no training-testing mismatch in this new
scheme, with the cost of slower training.

3 Speculative Beam Search

We first present our speculative beam search on
the fixed-latency wait-k policy (generating a sin-
gle word per step), and then adapt it to the adaptive
policies (generating multiple words per step).
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Figure 2: Illustration of SBS: (a) wait-k policy (Eqs. 4—
5); (b) adaptive policy (Eqgs. 6-7). Speculations in red.

3.1 Single-Step SBS

The wait-k policy conducts translation concur-
rently with the source input, committing output
words one by one while the source sentence is still
growing. In this case, conventional beam search is
clearly inapplicable.

We propose to perform speculative beam search
at each step by hallucinating w more steps into
the future, and use the ranking after these w + 1
steps to make a more informed decision for the
current step. More formally, at step ¢, we generate
y; based on already committed prefix y¢:

(9,5:) = top' (next} , ([(y<t, 1)])) @)
Y<t = Y<t O Ut &)

where § = y<t © §Jt © Y1141 has three parts,
with the last one being a speculation of w steps
(see Fig. 2). We use next}, (-) to speculate w
steps. The candidate ¢, is selected based on the
accumulative model score w steps later. Then we
commit ¢; and move on to step ¢ + 1.

In the running example in Fig. 1, we have w = 2
and b = 3. In the greedy mode, after the wait-
1 policy receives the first source word, “tt 17
(world bank), the basic wait-1 model commits
“bank” which has the highest score. In SBS, we
perform a beam search for 1 + w = 3 steps with
the two speculative steps marked in red. After 3
steps, the path “world bank will” becomes the top
candidate, thus we choose to commit “world” in-
stead of “bank” and restart a new speculative beam
search with “world” when we receive a new source
word, “$1”(plan to); the speculative part from the
previous step (in red) is removed.

3.2 Chunk-based SBS

The RL-based adaptive policy system (Gu et al.,
2017) can commit a chunk of multiple words
whenever there is a series of consecutive WRITEs,
and conventional beam search can be applied on
each chunk to improve the search quality within
that chunk, which is already used in that work.
However, on top of the obvious per-chunk beam
search, we can still apply SBS to further speculate

w steps after the chunk. For a chunk of length n
starting at position ¢, we adapt SBS as:

(9, 5t) = top* (next?, ., ([(y<e, 1)) (6)

Y<t+n—1 = Y<t © Yritn—1 (7
Here next®  (-) does a beam search of n + w
steps, with the last w steps speculated. Similarly,

’y =Y<t O gt:t+n71 o yAt+n:t+n+w71

has three parts, with the last being a speculation of
w steps, and the middle one being the chunk of n
steps returned and committed (see Fig. 2).

4 Experiments

4.1 Datasets and Latency Metrics

We evaluate our work on Chinese<+English simul-
taneous translation tasks. For the training data, we
use the NIST corpus for Chinese<+English (2M
sentence pairs). We first apply BPE (Sennrich
et al., 2015) on all texts in order to reduce the
vocabulary sizes. For Chinese<»English evalua-
tion, we use NIST 2006 and NIST 2008 as our
dev and test sets with 4 English references. For
English—Chinese, we use the second among the
four English references as the source text.

We re-implement wait-k model (Ma et al.,
2019a), test-time wait-k model (Dalvi et al., 2018)
and adaptive policy (Gu et al., 2017) based on
PyTorch-based OpenNMT (Klein et al., 2017). To
reach state-of-the-art performance, we use Trans-
former based wait-k model and also use Trans-
former based pre-trained full sentence model for
learning adaptive policy. The architecture of
Transformer is the same as the base model from
the original paper (Vaswani et al., 2017). We use
Average Lagging (AL) (Maet al., 2019a) as the la-
tency metrics. AL measures the number of words
delay for translating a given source sentence.

b Yoo 1 2 3 4 5
1 34.57 - - - - -
3 - +1.3 | +1.8 | +1.2 | +2.0 | +1.7
5 - +1.6 | +1.9 | +1.3 | +1.5 | +1.3
7 - +1.5 | +2.0 | +1.0 | +1.6 | +1.4
10 - +14 | +2.2 | +1.4 | +1.5 | +1.7

Table 2: Zh—En wait-1 model BLEU improvement of
SBS against greedy search (b = 1, w = 0) on dev-set.
When w > 5 the performance of SBS becomes stable.
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shihdng  ni Jjlanmian zui qiong  giojia  zhaiwi
JLEK O 1P ) & 5 EHX &
Gloss world bank plan to remit & reduce most  poor country debt
b=l Greedy world bank to  reduce poverty - stricken countries
- SBS world bank to  exemp-t po- or- est countries from debt
it Greedy world bank to  reduce or exemp- t debt of po- or- est countries
- SBS world bank inten- ds to reduce or exemp- t debt of po- or- est countries
k=00* world bank plans to remit and reduce debts of po- or- est countries

Figure 5: Chinese-to-English example on dev set. f: test-time wait-k; ¥: wait-k. *: full-sentence beam search.

4.2 Performance on Wait-% Policy

We perform experiments on validation set using
speculative beam search (SBS) with beam sizes
b € {3,5,7,10} and speculative window sizes
w € {1,2,3,4,5}. Table 2 shows the BLEU score
of different b and w over wait-1 model. Compared
with greedy decoding, SBS improves at least 1.0
BLEU score in all cases and achieves best perfor-
mance by b = 10,w = 2. We search the best b
and w for each model on dev-set and apply them
on test-set in the following experiments.

Fig. 3 shows the performance of conventional
greedy decoding, trivial tail beam search (only
after source sentence is finished) and SBS on

test set on Chinese<+English tasks. SBS largely
boost test-time wait-k models with slightly worse
latency (especially in English—Chinese because
they tend to generate longer sentences). Wait-k
models also benefit from speculation (especially
in Chinese—English).

Fig. 5 shows a running example of greedy and
SBS output of both wait-k and test-time wait-
k models. SBS on test-time wait-k generates
much better outputs than the greedy search, which
misses some essential information. Wait-k mod-
els with speculation correctly translates “fI1”” into
“intends to” instead of “to” in greedy output.
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4.3 Performance on Adaptive Policy

Fig. 4 shows the performance of proposed SBS
on adaptive policies. We train adaptive policies
using the combination of Consecutive Wait (CW
€ {2,5,8} (Guetal., 2017)) and partial-BLEU as
reward in reinforcement learning. We vary beam
size b € {5, 10} in both chunk-based beam search
(Gu et al., 2017) and our SBS with speculative
window size w € {2,4}. Our proposed beam
search achieves better results in most cases.

4.4 Running Time Analysis

Fig. 6 shows the average time for generating words
with different target word indices on a GeForce
GTX TITAN-X GPU and an Intel Core i7 2.8 GHz
CPU. According to Ma et al. (2019a), wait-k mod-
els use bi-directional Transformer as the encoder,
thus the time complexity of incrementally encod-
ing one more source word is O(m?) where m is
the source sentence length. This is the reason why
it takes more time to encode words with larger in-
dex especially using CPU. It is generally accepted
that Mandarin speech is about 120-150 syllables
per minute, and in our corpus each token (after

BPE) has on average 1.5 Chinese syllables (which
is 1.5 characters since each Chinese character is
monosyllabic), thus in the simultaneous Chinese-
to-English speech-to-text translation scenario, the
decoder receives a source token every 0.6-0.75
seconds which is much slower than our decoding
speed (less than 0.25 seconds per token) even on
a laptop CPU. Based on these statistics, our pro-
posed speculative beam search algorithm can be
used in real simultaneous translation.

4.5 Performance on Full Sentence MT

We analyze the performance of speculative beam
search on full-sentence translation (see Fig. 7). By
only performing beam search on a sliding spec-
ulative window, the proposed algorithm achieves
much better BLEU scores compared with greedy
decoding (w = 0) and even outperforms conven-
tional beam search when w = 9, b = 3. Please
note that the space complexity of this algorithm
is O((m + n + wb)d).! This is better than con-
ventional beam search whose space complexity is
O((m + nb)d) when w < n.

5 Conclusions and Future Work

We have proposed speculative beam search for si-
multaneous translation. Experiments on three ap-
proaches to simultaneous translation demonstrate
effectiveness of our method. This algorithm has
the potential in other incremental tasks such as
streaming ASR and incremental TTS.

Acknowledgments
We thank Kaibo Liu for his AL script> and help
in training wait-£ models, and the anonymous re-
viewers for suggestions.

"Here n is the length of target sentence and d is the repre-

sentation dimension.
2https ://github.com/SimulTrans—demo/STACL
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A Supplemental Material

We also evaluate our work using Consecutive Wait
(CW) as latency metric, which measures the aver-
age lengths of consecutive wait segments, and per-
form experiments on German<>English corpora
available from WMT153. We use newstest-2013
as dev-set and newstest-2015 as test-set.*

Fig. 8 show the translation quality on
German<+English against AL of different
decoding methods. Consistent to the results of
Chinese<+English, our proposed speculative beam
search gain large performance boost especially
on test-time wait-k. Fig. 9 and Fig. 10 use CW
as latency metrics. Since both the wait-k and
test-time wait-k models use the same fixed policy,
the CW latencies of the same & are identical.
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Figure 8: Translation quality against AL on

English<+German simultaneous translation using wait-
k model. [ [J: conventional beam search only on target
tail. A A: speculative beam search. ¥ v¢:full-sentence
(greedy and beam-search).

3http ://www.statmt.org/wmt1l5/translation-task.html

“The German«<>English results are slightly different from
those in Ma et al. (2019a) because of different decoding
settings. We do not allow that the decoder stops earlier
than the finish of source sentence while it is allowed in
German<>English experiments of Ma et al. (2019a). This
makes our generated sentences longer and further results in
worse AL compared with the results in Ma et al. (2019a).
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Figure 9: Translation quality against CW on

Chinese<+English simultaneous translation using wait-
k model.
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English<+German simultaneous translation using wait-
k model.
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