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Abstract

Byte-Pair Encoding (BPE) is an unsupervised
sub-word tokenization technique, commonly
used in neural machine translation and other
NLP tasks. Its effectiveness makes it a de
facto standard, but the reasons for this are not
well understood. We link BPE to the broader
family of dictionary-based compression algo-
rithms and compare it with other members of
this family. Our experiments across datasets,
language pairs, translation models, and vocab-
ulary size show that — given a fixed vocabu-
lary size budget — the fewer tokens an algo-
rithm needs to cover the test set, the better the
translation (as measured by BLEU).

1 Introduction

It is common practice in modern NLP to represent
text in a continuous space. However, the inter-
face between the discrete world of language and
the continuous representation persists and is ar-
guably nowhere so important as in deciding what
should be the atomic symbols that will be used
as input and/or output. While using words as to-
kens seems to be the most natural encoding, it
has two major drawbacks: first it suffers from
the out-of-vocabulary problems at inference time,
and secondly the large number of words (which
can easily reach the hundred of thousands) cre-
ates additional constraints on the memory and time
that is required to train and infer with these mod-
els. On the other extreme, working at the charac-
ter level has the advantage of a small and closed
set. While current performance of character-level
Neural Machine Translation (NMT) is competi-
tive, its computational cost are much higher (up to
8 times (Cherry et al., 2018)). The commonly used
intermediate approach is to pre-process the dataset
by inferring sub-word tokens, which are then used
as the atomic symbols to be translated. The most

popular such method is known as byte-pair en-
coding (BPE), which merges iteratively the most
frequent pair of symbols. Starting with characters
as individual symbols, BPE creates new symbols
representing bigrams and eventually higher-level
order grams.

Such an approach has the advantage of incor-
porating some dataset-wide information in the lo-
cal decision of what should be a token. It is
however not linguistically motivated, and intents
to create sub-word tokens based on morpholog-
ical analyzer have failed to consistently improve
the performance of the resulting translation (Zhou,
2018; Domingo et al., 2018), or do so only in spe-
cial cases (morphological rich cases, target side
only) (Huck et al., 2017; Pinnis et al., 2017).
While this is unsatisfactory, to our knowledge the
reasons for the effectivenesses of BPE has not
been studied in the literature.

In this paper we hypothesize that the reason lies
in the compression capacity of BPE: this is, that
for two token vocabularies of the same size, the
one that allows to cover better (with fewer number
of symbols) a given sentence will achieve a better
translation. To test this hypothesis, we link BPE to
a large family of compression algorithms that aim
to discover a dictionary of tokens and use that dic-
tionary to parse the original dataset with the least
amount of tokens. This allows us to take differ-
ent algorithms from this family and to compare
different unsupervised token inference techniques,
all guided by the same compression principle. For
a fixed number of token types, some of these algo-
rithms need more tokens to cover the full sentence
than BPE while others need less. Using different
NMT models and experimenting across language
pairs, datasets and vocabulary size, we show that
the average number of tokens per sentence can be
directly linked to the quality of translation.
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2 Related Work and Context
2.1 Sub-word tokenization for NMT

Instead of relying on characters or words, unsu-
pervised sub-word tokenization techniques induce
a set of tokens that are then used to parse any new
sequence. The standard approach is BPE, intro-
duced for NMT in Sennrich et al. (2016) which
merges incrementally the most frequent bigrams.
Kudo (2018) proposes a different technique which
allows the model to sample different tokenizations
from the same word, resulting in a more robust
translation model. The new tokenization method
alone achieves comparable results, and no discus-
sion of the size of the final parse is provided. In
our experiments, we used the code of that paper.!

Alternative segmentations, using a morpholog-
ical analyser for instance, have not shown consis-
tent improvement (Zhou, 2018). Domingo et al.
(2018) benchmark different segmentation tech-
niques on different languages. While their results
indicate that there is no clear winner, the vocabu-
lary sizes of the different approaches are different
and therefore harder to compare. Note that — dif-
ferently from previous work (Cherry et al., 2018;
Domingo et al., 2018) — our set-up allows us to
compare models with the same vocabulary size.
Comparing the compression capacity of models
with different vocabulary size is misleading as
a larger vocabulary size can obviously lead to
smaller sequences. This however ignores the cost
of expressing each symbol, which increases with
the vocabulary size. Such an analysis could be
achieved with an information-theoretical approach
which is beyond the scope of this paper.

Indeed, BPE has the attractive characteristic
that it allows to control the size of the vocabulary
and can adapt to memory constraints. However,
it introduces an additional hyper-parameter in the
model and can be considered unsatisfactory from a
modelling perspective. Recent proposals to avoid
this include using several tokenizations at the same
time, either hierarchically (Morishita et al., 2018)
or through a lattice encoding (Su et al., 2017; Sper-
ber et al., 2017); or dynamically, such as increas-
ing the vocabulary size incrementally while train-
ing (Salesky et al., 2018) or reading the input se-
quence character by character and adding a halt-
ing gate which decides when to generate an output
word (Kreutzer and Sokolov, 2018).

'https://github.com/google/
sentencepiece

2.2 Byte-Pair Encoding

BPE is an instance of a the so-called macro-based
compression algorithms, which seeks redundan-
cies in the text by detecting repeated patterns, and
compresses the sequences by replacing an occur-
rence of such a pattern with pointers to a pre-
vious occurrence. They achieve good compres-
sion by replacing subwords with (shorter) refer-
ences, as opposed to statistical-based compression
algorithms which are based on information theory
and assign codewords to single symbols (but both
can of course be combined). Its use for neural
machine translation was introduced in (Sennrich
et al.,, 2016), although a similar technique had
been used previously for the creation of dictionar-
ies and language models for voice search (Schus-
ter and Nakajima, 2012). For the general frame-
work, Storer and Szymanski (1982) provide a
good overview of different possible frameworks
of macro schemes. The authors differentiate be-
tween external and internal macro schemes. Ex-
ternal macro schemes contain pointers to an exter-
nal dictionary, while the pointers of internal macro
schemes point to positions of the sequence itself.

From the external macro schemes, BPE belongs
to the class of compression algorithms called fixed
size dictionary. In this framework, the dictionary
consists in a set of tokens V' = {wj, ... w, } which
are the atomic symbols. A sequence of w; has to be
uniquely decodable, for instance by being of fixed
length or prefix-free. In general in NMT, prefix-
freeness is attained by separating these tokens with
a special symbol (whitespace). Given a new se-
quence s (the words from the test sequences), the
goal is then to find d; . ..dn, d; € V, such that
their concatenation dy - ds - ...d,, = s and m is
minimal. This problem was proposed in 1973 by
Wagner (1973) together with a dynamic algorithm
that solves this problem in an optimal way. This
optimal way is called optimal parsing by Bell
et al. (1990) and “Minimal Space” by Schuegraf
and Heaps (1974) where it is solved by a shortest-
path algorithm. There also exist faster approxi-
mate algorithms: see Katajainen and Raita (1992)
and Bell et al. (1990, Chapter 8.1).

This formulation assume that the set of words
is given. Finding the set of words whose opti-
mal parsing is minimal is an NP-complete prob-
lem: Storer and Szymanski (1982) proves this
for variations where the pointers may be recur-
sive (this is, enabling phrases themselves to be
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parsed with pointer to other phrases) or the phrases
may overlap. BPE is an instance of the re-
cursive, non-overlapping version. This version
is equivalent to the so-called Smallest Gram-
mar Problem (Charikar et al., 2005), because the
resulting parsing can be formalized as a non-
branching, non—auto-recursive context free gram-
mar, also called a straight-line program. This
problem can be seen as a specific formulation of
the Minimum Description Length principle (Ris-
sanen, 1978) which states that the best model for
some data is the one which minimizes cost of de-
scribing the data given the model plus the cost of
describing the model. In a straight-line grammar
the description of the data can be seen as the right-
hand side of the starting non-terminal, while the
description of the model is the combined parsing
cost of all other non-terminals. This principle has
been applied in a very similar form for unsuper-
vised inference of linguistic structures in (De Mar-
cken, 1996).

Several algorithms that approximate the Small-
est Grammar Problem have been given in the lit-
erature, including the one that iteratively replaces
the most frequent pair. The name BPE comes
from Gage (1994) who applied it to data compres-
sion, although the same idea had been used before
for pattern discovery in natural language (Wolff,
1975) as well as measuring the complexity of ge-
netic sequences (Angel Jiménez-Montario, 1984).
Larsson and Moffat (2000) propose the REPAIR
implementation, whose time complexity is linear
with respect to the size of the input sequence.
A theoretical analysis of its compression capacity
can be found in Navarro and Russo (2008), and
recent research focuses on reducing its memory
footprint (Gagie et al., 2019).

3 Other compression algorithms

We investigate the impact that different such al-
gorithms have on the final translation, using the
same budget on the vocabulary size. Our hypothe-
sis is that smaller parses would result in improved
translation, and that therefore algorithms that in-
fer a dictionary of tokens that cover the sequence
better should be preferred.

Despite its simplicity, BPE performs very well
in standard compression benchmarks (Gage, 1994;
Carrascosa et al., 2012). The best performing ones
have an unreasonable time-complexity (including
one of complexity O(n7) (Carrascosa et al., 2011)

and an even slower genetic algorithm (Benz and
Kétzing, 2013)). Based on these benchmarks, we
decided to use the so-called IRRMGP algorithm,
which outperforms BPE, as well as other worse
performing algorithms. IRRMGP works as fol-
lows: as BPE it is an iterative repeat replacement
(IRR) algorithm, but instead of choosing in each
iteration the most frequent bigram, it chooses the
substring w that maximizes |w| x occ(w) (where
occ(w) is the number of occurrences of w in the
training corpus). Once it has reached the de-
sired number of tokens, it re-parses the sequences
through an optimal parsing of the original se-
quence and inferred tokens so far (minimal gram-
mar parsing, MGP), removes any un-used token
and continues looking for new words. The mod-
ules of IRR and MGP are iterated until the dictio-
nary budget is reached. While a worst-case anal-
ysis bounds its running time as O(n*), in practice
its running time increases quadratically with the
sequence length (Carrascosa et al., 2012). Those
high running times however precludes our analysis
to run on very large data-sets.

We also compare against two other compres-
sion algorithm. MAXLEN (Bentley and Mcll-
roy, 1999) is another iterative repeat replacement
algorithm, but selects the longest repeat in each
iteration. It can also be implement in linear-
time (Nakamura et al., 2009). The second algo-
rithm is the popular SEQUITUR (Nevill-Manning
and Witten, 1997). It runs on-line, maintaining
two invariants while it reads the sequence: (i) bi-
gram uniqueness (no bigram appears more than
once) and (ii) rule utility (each non-terminal is
used more than once). Assuming a constant time
hashing function, SEQUITUR runs in (amortized)
linear time with respect to the sequence length,
and only requires a linear amount of memory. In
our experiments, the original implementation of
SEQUITUR? runs about 3 times faster than SEN-
TENCEPIECE.

3.1 Core tokens

It is not straightforward to run SEQUITUR to ob-
tain a fixed number of tokens, as it constructs the
dictionary online. For this, we run it until the end,
and select a posteriori a set of good tokens. For
that selection process, we use the parse tree of the
final grammar and compute the “core nodes” (Si-
yari et al., 2016). This corresponds to the set of

https://github.com/craignm/sequitur
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tokens which are used the most in the hierarchi-
cal parse of the dataset. Siyari et al. (2016) show
that the number of times token w is used is equal
to |w| x freq(w), where freq(w) is the number of
times w appears in the derivation of the unique tar-
get sequence. The core is then computed by tak-
ing the highest scoring such token, removing it,
updating the parse and iterating until reaching the
vocabulary size.

4 Experiments

We worked on the lowercased Kyoto Free Trans-
lation Task (Neubig, 2011, KFTT) and IWSLT’ 14
(en<>de), without removing any sentences (see
Table 1). For the translation model, we used
ConvS2S (Gehring et al., 2017) and Trans-
former (Vaswani et al., 2017), allowing us to com-
pare models with different field of view: local
for ConvS2S, and global for Transformer. For
ConvS2S, we used 4 layers and an embedding
size of 256, dropout of 0.2, an initial step-size
of 0.25. For Transformer, we used 4 attention
heads, dropout was set to 0.5 and initial step-size
to 0.001 (except for MAXLEN, for which we used
10e-4). These parameters were fixed in initial ex-
periments maximising the performance on BPE.
We ran training for 150 epochs, and use the aver-
age of the three best models (as measured on the
validation set).

To apply sub-word tokenization over unseen
sentences, several approaches are possible. First
we tried to run an optimal parsing on each word
with the given token set but the resulting transla-
tions were worse than the baseline BPE model.
The reported results here are obtained with a
greedy parsing, where the words in the dictio-
nary are first sorted and then applied from the
top downwards. Words are sorted first by their
length (longer first) and then by their frequency
(more frequent first). Using a consistent tokeniza-
tion — applied equally in training and inference —
seems to help the model, while in an optimal pars-
ing setting a slight change in the context could
substantially change the parsing. We believe that
this brittleness causes the worse performance of
the optimal parsing. Note that the standard BPE
procedure also applies greedily the dictionary of
words, in the order they were generated. Sub-
word regularization (Kudo, 2018) could be used
to make the training more robust to this tokeniza-
tion mismatch. Moreover, that approach could be

adapted to work with any of the inferred tokeniza-
tion: while a vanilla optimal parsing does not seem
to support a probabilistic approach which could al-
low a sampling procedure, there might be several
optimal parsings of one word (Carrascosa et al.
(2011) show both theoretical and empirical evi-
dence that there can be an exponential number of
parses with the same size) and generating several
of those could make the translation system more
robust.

We compare BPE, IRRMGP, MAXLEN, the
core on the words inferred by SEQUITUR and an
additional baseline RANDOM: given a vocabulary
budget of N, we pick up N random maximal re-
peats (Gusfield, 1997) of the multi-sequence set of
all tokens. Those are then applied to the training
and testing data as before (applying them greed-
ily, first by length — longer first — and then by fre-
quency — more frequent first).

The training data of both languages were con-
catenated, and we used two different vocabulary
sizes: 16k and 32k. Tokenization in all cases
was done at the sub-word level, so that no token
crossed word boundaries. Inference is done with
a beam search of size 5, and for BLEU evaluation
we used SacreBleu.?

The results in Fig. 1 show that there is indeed a
strong correlation between the number of tokens
used to cover the test sentences, and the result-
ing BLEU score. BPE is competitive with the best
used compression algorithm, something which can
be attributed to its compression capacity which is
only slightly worse than that of IRRMGP (some-
times hard to distinguish for IWSLT in Fig. 1 be-
cause the numbers are relatively close).

5 Conclusion

In this paper we provide evidence that the effec-
tiveness of BPE can be linked to its compression
capacity, that is, the capacity of finding a set of
words such that they are able to cover the sequence
with as few words as possible. For this, we use
other algorithms of the same family which allows
us to control the number of tokens, as it is ob-
viously easier to cover the sequence better if we
can access more tokens. Our benchmark shows
that the size of the final coverage can indeed be
strongly linked to the translation quality.

Those conclusions however do not preclude the

’BLEU+case.mixed+numrefs.l+smooth. exp+
tok.intl+version.1.2.17
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16000

32000

name ‘ lang type ‘ train dev  test

KFTT | ja<sen wikipedia 3209k 1.2k 1.2k
IWSLT | de ++ en TED(x)talks | 160.2k 7.3K 6.8K

Table 1: Datasets characteristics.

en->de de->en

2754 *m —— Convs2s 30.0 ¥‘ —— Convs2s
AR === Transformer Sss === Transformer
27.5

25.0
22.54 25.0
20.0 4 225
17.5 4 20.0

15.0 17.5

T T T T T 15.0 - T T T T
20 40 60 80 100 20 40 60 80 100

* —— Convs2s 30.04 ¥, —— Convs2s

27.51
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20.04 20.0

17.51 17.5
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mean tokens per sentence mean tokens per sentence

Figure 1: z-axis is the average number of tokens of

en->ja ja->en

2754 £ —— Convs2s 224 % —— Convs2s
~ ——- Transformer ~ —=—- Transformer

25.0
225
8
S 20.0
©
=
17.5
15.0

125

2754 ¥, — Convs2s 221 %< — Convs2s
. -=- Transformer 20 - === Transformer
25.0
225
°
8
S 20.0
a
17.5

15.0

125

40 60 80 40 60 80
mean tokens per sentence mean tokens per sentence

the training sentences (source and target) and y-axis the

BLEU score for 16k and 32k tokens (first and second row respectively). The markers correspond to IRRMGP (+),
BPE (x), SEQUITUR (H), RANDOM (4) and MAXLEN (A). Each point corresponds to the average over 5 training

runs.

use of morphological knowledge. For example,
Huck et al. (2017) show that a combined approach
can sometimes outperform pure BPE tokenization.
Following standard practices in NMT, in our ex-
periments we only performed intra-word tokeniza-
tion, using the white-space as a starting segmen-
tation beyond which no token could be formed.
When this restriction was removed, the resulting
sequences were even smaller but BLEU scores
decreased. While this might be because the hy-
perparameters were set to maximise the BLEU
score of BPE intra-word, it could be an indication
that some linguistic prior (like word tokenization)
trumps this specific formalization of Occam’s Ra-
ZOr.
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