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Abstract

In task-oriented dialogues, Natural Language
Generation (NLG) is the final and crucial step
to produce user-facing system utterances. The
result of NLG is directly related to the per-
ceived quality and usability of a dialogue sys-
tem. While most existing systems provide
semantically correct responses given goals to
present, they struggle to match the variation
and fluency in the human language. In this
paper, we propose a novel multi-task learning
framework, NLG-LM, for natural language
generation. In addition to generating high-
quality responses conveying the required in-
formation, it also explicitly targets for natu-
ralness in generated responses via an uncon-
ditioned language model. This can signifi-
cantly improve the learning of style and vari-
ation in human language. Empirical results
show that this multi-task learning framework
outperforms previous models across multiple
datasets. For example, it improves the previ-
ous best BLEU score on the E2E-NLG dataset
by 2.2%, and on the Laptop dataset by 6.1%.

1 Introduction

Natural Language Generation (NLG) is the fi-
nal procedure in the pipeline of task-oriented di-
alogues. As the result of NLG is directly fac-
ing users, its readability and informativeness have
a direct impact on users’ perception of the en-
tire dialogue system. On one hand, the response
must contain the desired information, referred to
as meaning representation (MR), in order to pro-
vide or request a user’s information. On the other
hand, the system response needs to mimic the flu-
ency and variation in human language to improve
the user experience. To this end, there have been
numerous studies on methods to generate natural
responses for task-driven dialogues.

Early work primarily employ predefined rules
or syntax (Cheyer and Guzzoni, 2014; Langkilde

and Knight, 1998). Though these frameworks can
provide adequate information, their lack of nat-
uralness and variation in language make the re-
sponse rather rigid. Moreover, these methods usu-
ally require non-trivial manual work to create tem-
plates, rendering them unscalable across domains.

Recently, corpus-based methods have gained
considerable popularity in natural language gen-
eration (Wen et al., 2015a,b; Dušek and Jurčı́ček,
2016). With the increasing availability of rich di-
alogue task data, corpus-based frameworks design
end-to-end trainable systems. With minimum hu-
man effort, these methods directly learn the pat-
tern and styles of human responses from the data,
while conveying the required task-specific mean-
ing representation information. Furthermore, the
booming of deep learning technology in natural
language processing increases these models’ ca-
pacity to generate sophisticated human-like re-
sponses. For instance, Dušek and Jurčı́ček (2016)
employs sequence-to-sequence structure and at-
tention mechanism to generate response tokens
from the MR sequence. Wen et al. (2015b) uses a
semantic control vector integrated into an LSTM
to guide the response generation process. Li
et al. (2015) uses maximum mutual information
as objective function to generate diverse and ap-
propriate responses. Wen et al. (2016) proposes
data counterfeiting to reduce the complexity of
transferring trained parameters across multiple do-
mains. However, it still remains a challenge in
task-oriented dialogue systems to generate truly
natural utterance indistinguishable from a human’s
response.

On the other hand, language modeling is a tech-
nique typically employed to learn language pat-
terns from text. It has been successfully used
to generate natural and semantically sound utter-
ances for text summarization, speech recognition
and other NLP tasks (Roark et al., 2004; Rush
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et al., 2015). As task-oriented dialogue datasets
usually contain rich human responses, leveraging
language modeling has a great potential to boost
an NLG model’s capacity to mimic human lan-
guage.

Due to recent successes of multi-task learning in
NLP (Collobert et al., 2011; Xu et al., 2018), we
propose a multi-task scheme to tackle natural lan-
guage generation in task-oriented dialogues. For
the NLG task, we employ a sequence-to-sequence
framework. The decoder uses an attention mech-
anism to carry over information from the encoder
on an MR sequence. Therefore, the NLG task gen-
erates response conditioned on input MR.

The primary contribution of our work is to in-
corporate a language modeling task on human-
generated responses as an unconditioned comple-
mentary process that brings in more language-
related elements, without the intervention of re-
quired MR information. Furthermore, the unsu-
pervised nature of language modeling means we
do not need additional labelled data. Thus, under
multi-task learning framework, we simultaneously
train the NLG and language modeling tasks. To fa-
cilitate multi-task learning, we carry out language
modeling task in decoder and it partially shares pa-
rameters from the NLG task.

To evaluate the effectiveness of our model,
NLG-LM, we conduct evaluation on 5 task-
oriented dialogue NLG tasks: E2E-NLG
(Novikova et al., 2017), TV, Laptop, Hotel
and the Restaurant datasets (Wen et al., 2015b,
2016). NLG-LM achieves new state-of-the-art
results on all 5 datasets. For example, it outper-
forms Slug (Juraska et al., 2018), the best model
in E2E-NLG competition, by 2.2% in BLEU
score. Ablation studies show that the introduction
of language modeling task during training can
improve the result by 2.4% in BLEU score on
average.

2 Problem Description

In task-oriented dialogues, the natural language
generation (NLG) process is to produce system
utterances as natural language, given system-
generated meaning representations from previous
steps in the pipeline. Each MR is a slot-value pair,
where the slot indicates the category of the infor-
mation to convey and the value represents the con-
tent. For example, (area, city south) is a mean-
ing representation and the corresponding utterance

should indicate city south as area information.
In addition to meaning representation, dialogue

acts (DA) are given to differentiate between differ-
ent types of system actions. Typical examples of
dialogue acts include inform, request and confirm.
For a given meaning representation, the NLG pro-
cess should generate different utterances for differ-
ent dialogue acts. For instance, confirm dialogue
act usually leads to system response starting with
“Let me confirm” or “Correct me if I’m wrong”.

In task-oriented dialogues, NLG is framed as
a supervised learning problem. Given training
data {(di, ri, ui)}, where di is the dialogue act,
ri = {(s1, v1), (s2, v2), ..., (sk, vk)} is the set of
meaning representations, and ui is a sample utter-
ance generated by human labellers, the goal is to
generate utterance u given a new pair of dialogue
act d and meaning representations r.

As certain types of meaning representation con-
tain entities like location names and product types
that are usually proper nouns, we use the delexi-
calization technique to replace values with a spe-
cial slot token, 〈slot name〉, during training and
generation. The ultimate response is obtained via
a reversal lexicalization process to replace slot to-
kens with their corresponding values.

3 Model

3.1 The NLG task

We approach the NLG problem using the
sequence-to-sequence method (Sutskever et al.,
2014). Compared with SC-LSTM (Wen et al.,
2015b), this method does not need to create ad-
ditional one-hot MR vector, and can be much
more easily extended across different domains
with varying meaning representations.

We first concatenate dialogue act d and mean-
ing representations r as a single input sequence I
with m tokens. The output sequence O is simi-
larly obtained from the given utterance u, with n
tokens. Both sequences are delexicalized. We put
special sentence tokens 〈BOS〉 and 〈EOS〉 around
each sequence.

The goal is to generate output tokens one at a
time, given previously predicted tokens and the in-
put sequence. This can be modeled as maximizing
the conditional probability distribution:

p(w1, ..., wn|I) =
n∏

t=1

p(wt|w1, ..., wt−1; I) (1)
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To do this, we employ the encoder-decoder
method.

Encoder. We train a dictionary D to map each
token to a fixed-length vector of dimension d. The
input embedding sequence then goes into a layer
of bidirectional RNN to produce contextualized
embeddings. We use GRU (Cho et al., 2014) as
the RNN unit and sum up the forward and back-
ward RNN outputs. The output of the encoder is
denoted by (u1, ...,um) ∈ Rdh×m, where dh is
the RNN’s output dimension and m is its input se-
quence length.

Decoder. The decoder employs an RNN with
an attention mechanism to generate tokens one at
a time. It starts with the beginning-of-sentence to-
ken and uses the final hidden state from encoder
RNN as the initial hidden state. In the t-th step,
we use the same dictionary D from the encoder to
map the t-th output token into vector st and ap-
ply dropout. Then, given the previous hidden state
ht−1, the decoder first computes attention weights
over encoder outputs:

vi = [ht−1;ui] ∈ R2dh (2)

ei = softmax(W1vi) ∈ Rdh (3)

αi = ReLU(bTei) ∈ R (4)

Here, W1 ∈ Rdh×2dh and b ∈ Rdh are pa-
rameters. The weights {αi}mi=1 are then applied
to encoder outputs to obtain the context vector
c =

∑
1≤i≤m αiui.

The context vector c and embedded vector st
are then concatenated and sent into decoder GRU
with output g ∈ Rdh and a new hidden state ht ∈
Rdh .

To generate the next token, we reuse the dic-
tionary D with its transposed weights WD

1. We
again integrate the context vector to fuse in con-
textual information:

o = W2[g; c] ∈ Rd (5)

pt = WDo ∈ R|V | (6)

where W2 ∈ Rd×2dh is a parametrized matrix.
pt is the probability distribution of the next token
over all tokens in dictionary.

The loss function is cross entropy. Suppose the
one-hot vector for the ground-truth at t-th step is

1Suppose D ∈ R|V |×d, its transposed weights WD ∈
Rd×|V |.

yt, then the loss function for each training sample
sequence pair is:

LNLG(θ) = −
n∑

t=1

yT
t log(pt) (7)

3.2 Coupling with Language Model
The encoder-decoder approach above incorporates
the information from dialogue act and meaning
representation at each step via attention. However,
due to this mechanism, the generated utterance in-
evitably relies to a great extent on the input se-
quence, focusing less on the fluency and variation
of human language, which is as important as con-
veying the required information in task-oriented
dialogues.

On the other hand, language modeling is typi-
cally used to characterize the naturalness of words,
phrases and sentences. A well-trained language
model can assign natural and semantically sound
utterance higher scores than rigid and unnatural
sentences. In deep learning, the language model
task is often solved by a recurrent neural network.
However, instead of depending on an input se-
quence like in Equation (1), the probability of the
next token in language models only relies on pre-
ceding words:

pLM (w1, ..., wn) =
n∏

t=1

pLM (wt|w1, ..., wt−1)

(8)
We propose that by integrating language mod-

elling into the NLG process as an additional ob-
jective, the generated sentences will better approx-
imate the styles and variation in human response.

To do this, we add another GRU unit, GRULM ,
to the decoder, that has its own hidden state hLM

t−1
and takes the embedded vector st as input. The
output is gLM and the new hidden state is hLM

t .
The probability distribution of next token in lan-
guage model is:

oLM = W2[: dh]g
LM ∈ Rd (9)

pLM
t = WDo

LM ∈ R|V | (10)

where W2[: dh] are the first dh columns of W2.
As we can see, the context c does not affect the
probability computation for language modeling.
The loss function of language model is:

LLM (θ) = −
n∑

t=1

yT
t log(pLM

t ) (11)
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inform <name> wifi yes <price> <SOS> I found with <price>

I found <name> <price> <EOS>

att att att att

GRU

Dictionary 𝒟

Transpose of 𝒟: 𝑾𝒟

Dialogue Act (DA) and Meaning representation (MR) Attention-based NLG

Language model

I found <name> <price> <EOS>

Figure 1: NLG-LM model structure. The encoder takes dialogue act (DA) and meaning representations (MR) as
input. The decoder for NLG applies attention on encoder outputs, and the decoder for language modeling shares
dictionary with NLG but uses a separate GRU unit.

Model E TV L H R

TGen 0.659 / / / /
Slug 0.662 0.529 0.524 / /
SCLSTM / 0.527 0.512 0.848 0.752
RALSTM / 0.541 0.525 0.898 0.779

w/o LM 0.673 0.609 0.560 0.927 0.734
NLG-LM 0.684 0.617 0.586 0.939 0.795

Table 1: BLEU scores on E2E-NLG (E), TV, Laptop
(L), Hotel (H) and Restaurant (R) testset. w/o LM is
our model without language model task.

Model TGen Slug w/o LM NLG-LM

NIST 8.609 8.613 8.581 8.626

Table 2: NIST scores on E2E-NLG testset.

Finally, we linearly combine the two loss func-
tions into a single multi-task loss function:

L(θ) = LNLG(θ) + αLLM (θ) (12)

We depict our model structure in Figure 1. As
shown, the dictionary D is shared between the
NLG task and language modeling task.

4 Experiments

4.1 Datasets and settings

We evaluated the models on five datasets from dif-
ferent domains, covering restaurant booking, hotel
booking and retail. The largest dataset is from the
E2E-NLG task (Novikova et al., 2017), consisting
of 51.2K MR-utterance pairs in the restaurant do-
main. We also use the four datasets from RNN-
LG (Wen et al., 2016), including dialogue scenar-
ios in TV retails, laptop retails, hotel-booking and
restaurant-booking domains, with 14.1K, 26.5K,
8.7K and 8.5K samples respectively.

For fairness, we use the official evaluation
scripts from E2E-NLG and RNN-LG (Wen et al.,
2016) to assess models. We use the BLEU-4 (Pa-
pineni et al., 2002) and NIST (Przybocki et al.,
2009) metrics.

Delexicalization. In the experiment, we do not
delexicalize slots that have binary values or are
inappropriate for verbatim substitution. For in-
stance, in E2E-NLG datasets, we only delexical-
ize name and near slots. For TV dataset, we
delexicalize all slots except hasusbport. In Lap-
top dataset, we delexicalize all slots except isfor-
businesscomputing and request. In Hotel dataset,
we delexicalize all slots except acceptscredit-
cards, dogsallowed and hasinternet. In Restau-
rant dataset, we delexicalize all slots except kid-
sallowed and request.
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E2E-NLG TV Laptop Hotel Restaurant

Dropout rate 0.4 0.2 0.2 0.3 0.3
Learning rate 0.005 0.001 0.001 0.005 0.001
Batch size 20 20 20 20 20
Dictionary dimension 100 50 50 200 50
RNN hidden size 512 128 512 256 512

Table 3: Hyperparameters of NLG-LM in experiments.

Baseline. Our baseline models include TGen
(Dušek and Jurčı́ček, 2016), SC-LSTM (Wen
et al., 2015b), RALSTM (Tran and Nguyen, 2017)
and Slug (Juraska et al., 2018).

Training details. We use Adamax (Kingma and
Ba, 2014) as the optimizer. We use teacher forc-
ing, which means that during training, the decoder
is always presented with the previous ground-truth
token. The language modeling task is only used
during training, and it uses utterances from the
same batch as NLG task. The inference uses a
beam search of width 10. We use the multi-task
coefficient α = 0.5 in all experiments. The hyper-
parameters were chosen on the dev set with early
stopping, as shown in Table 3.

4.2 Result

We present our experimental results in Table 1 and
2. As shown, our model, NLG-LM, outperforms
the baseline models in all 5 datasets. In E2E-NLG
dataset, it achieves 2.2% higher BLEU score and
0.013 higher NIST score than Slug. In TV, Laptop,
Hotel and Restaurant datasets, NLG-LM greatly
improves previously best result by 7.6%, 6.1%,
4.1%, and 1.6%, respectively. We also ran our
model without the language modeling task as an
ablation study, denoted by w/o LM. As seen, lan-
guage modeling can improve the result by 0.8% to
6.1%, or on average 2.4%, which demonstrates the
effectiveness of multi-task learning.

In the appendix, we examined some predicted
samples generated from our model, which shows
that the addition of the language model makes the
generated responses more natural and variable.

Efficiency. We compared the training time of
NLG-LM with that of w/o LM. As shown in Ta-
ble 4, the additional language model only intro-
duces 23.6% more training time, since it does not
involve expensive attention computation. There-
fore, NLG-LM can offer more natural response
generation with comparable efficiency.

NLG-LM w/o LM

Per-batch 618.87s 500.64s

Table 4: Running time per batch of NLG-LM and w/o
LM on E2ENLG training set. The machine has an Intel
Xeon CPU E5 and a Tesla v100 GPU.

5 Conclusions

In this paper, we propose a novel multi-task learn-
ing method, NLG-LM. It incorporates a language
model task into the response generation process
as an unconditioned complementary process to
boost the naturalness of generated utterances. We
fit both tasks into a sequence-to-sequence struc-
ture under a multi-task learning scheme. Em-
pirical results show that NLG-LM significantly
outperforms previous methods in 5 large-scale
datasets with reasonable computational efficiency.
Ablation studies show the effectiveness of using
the language modeling task within a multi-task
scheme.
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