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Abstract

Learning general representations of text is a
fundamental problem for many natural lan-
guage understanding (NLU) tasks. Previ-
ously, researchers have proposed to use lan-
guage model pre-training and multi-task learn-
ing to learn robust representations. However,
these methods can achieve sub-optimal perfor-
mance in low-resource scenarios. Inspired by
the recent success of optimization-based meta-
learning algorithms, in this paper, we explore
the model-agnostic meta-learning algorithm
(MAML) and its variants for low-resource
NLU tasks. We validate our methods on the
GLUE benchmark and show that our proposed
models can outperform several strong base-
lines. We further empirically demonstrate that
the learned representations can be adapted to
new tasks efficiently and effectively.

1 Introduction

With the ability to learn rich distributed represen-
tations of data in an end-to-end fashion, deep neu-
ral networks have achieved the state of the arts in
a variety of fields (He et al., 2017; Vaswani et al.,
2017; Povey et al., 2018; Yu et al., 2018). For
natural language understanding (NLU) tasks, ro-
bust and flexible language representations can be
adapted to new tasks or domains efficiently. Aim-
ing at learning representations that are not exclu-
sively tailored to any specific tasks or domains, re-
searchers have proposed several ways to learn gen-
eral language representations.

Recently, there is a trend of learning universal
language representations via language model pre-
training (Dai and Le, 2015; Peters et al., 2018;
Radford et al., 2018). In particular, Devlin et al.
(2019) present the BERT model which is based
on a bidirectional Transformer (Vaswani et al.,
2017). BERT is pre-trained with both masked
language model and next sentence prediction ob-
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Figure 1: Differences between multi-task learning and
meta learning. Multi-task learning may favor high-
resource tasks over low-resource ones while meta-
learning aims at learning a good initialization that can
be adapted to any task with minimal training samples.
The figure is adapted from Gu et al. (2018).

jectives and exhibits strong performance on sev-
eral benchmarks, attracting huge attention from re-
searchers. Another line of research tries to apply
multi-task learning to representation learning (Liu
et al., 2015; Luong et al., 2015). Multi-task learn-
ing allows the model to leverage supervision sig-
nals from related tasks and prevents the model
from overfitting to a single task. By combining
the strengths of both language model pre-training
and multi-task learning, Liu et al. (2019) improve
the BERT model with multi-task learning and their
proposed MT-DNN model successfully achieves
state-of-the-art results on several NLU tasks.

Although multi-task learning can achieve
promising performance, there still exist some po-
tential problems. As shown in Figure 1, multi-
task learning may favor tasks with significantly
larger amounts of data than others. Liu et al.
(2019) alleviate this problem by adding an ad-
ditional fine-tuning stage after multi-task learn-
ing. In this paper, we propose to apply meta-
learning algorithms in general language represen-
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tations learning. Meta-learning algorithms aim at
learning good initializations that can be useful for
fine-tuning on various tasks with minimal train-
ing data, which makes them appealing alternatives
to multi-task learning. Specifically, we investi-
gate the recently proposed model-agnostic meta-
learning algorithm (MAML) (Finn et al., 2017)
and its variants, namely first-order MAML and
Reptile (Nichol et al., 2018), for NLU tasks.

We evaluate the effectiveness and general-
ization ability of the proposed approaches on
the General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2019). Exper-
imental results demonstrate that our approaches
successfully outperform strong baseline models
on the four low-resource tasks. In addition, we
test generalization capacity of the models by fine-
tuning them on a new task, and the results reveal
that the representations learned by our models can
be adapted to new tasks more effectively com-
pared with baseline models.

2 Proposed Approaches

In this section, we first briefly introduce some key
ideas of meta learning, and then illustrate how we
apply meta-learning algorithms in language repre-
sentations learning.

2.1 Background: Meta Learning

Meta-learning, or learning-to-learn, has recently
attracted researchers’ interests in the machine
learning community (Lake et al., 2015). The goal
of meta-learning algorithms is to allow fast adap-
tation on new training data. In this paper, we
mainly focus on optimization-based meta-learning
algorithms, which achieve the goal by adjusting
the optimization algorithm. Specifically, we inves-
tigate MAML, one of the most representative al-
gorithms in this category, and its variants for NLU
tasks.

MAML and its variants offer a way to learn
from a distribution of tasks and adapt to target
tasks using few samples. Formally, given a set of
tasks {771, - , Tk}, the process of learning model
parameters 6 can be understood as (Gu et al.,
2018):

0f = Learn(T}; MetaLearn(77, - -+ ,T})),

where 73 is the target task.

Hopefully, by exposing models to a variety of
tasks, the models can learn new tasks with few
steps and minimal amounts of data.

2.2 General Framework

In this part, we introduce the general framework
of the MAML approach and its variants, including
first-order MAML and Reptile.

Algorithm 1 Training procedure.

Pre-train model parameters ¢ with unlabeled
datasets.
while not done do

Sample batch of tasks {7;} ~ p(T')

for all 7; do

Compute 92@) with Eqn. 1.

end for

Update 6 with Eqn. 2.
end while
Fine-tune 6 on the target task.

We first describe the meta-learning stage. Sup-
pose we are given a model fy with parameters 6
and a task distribution p(7") over a set of tasks
{T,T5,--- , Ty}, at each step during the meta-
learning stage, we first sample a batch of tasks
{T;} ~ p(T), and then update the model parame-
ters by k (k > 1) gradient descent steps for each
task T; according to the equation:

k k—
0 =0V — aV n Li(fyun), (D)
where L; is the loss function for 7T; and « is a
hyper-parameter.

The model parameters 6§ are then updated by:

6 = MetaUpdate(6; {Qz(k)}). ()

We would illustrate the MetaUpdate step in the
following part. It should be noted that the data
used for the MetaUpdate step (Eqn. 2) is differ-
ent from that used for the first £ gradient descent
steps (Eqn. 1).

The overall training procedure is shown in Al-
gorithm 1. Basically, the algorithm consists of
three stages: the pre-training stage as in BERT, the
meta-learning stage and the fine-tuning stage.

2.3 The MetaUpdate Step

As demonstrated in the previous paragraph,
MetaUpdate is an important step in the meta-
learning stage. In this paper, we investigate three
ways to perform MetaUpdate as described in the
following parts.
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MAML The vanilla MAML algorithm (Finn
et al., 2017) updates the model with the meta-
objective function:

mln Z 9(k>

Ti~p(T)

Therefore, MAML would implement the
MetaUpdate step by updating 6 according to:

0=0-8 > VoLi(f,m),
T;~p(T) '
where [ is a hyper-parameter.

First-Order MAML Suppose 6(%) is obtained
by performing k inner gradient steps starting from
the initial parameter 6(°), we can deduce that:

k
Voo L(fo) [ [ Voti-160"”

=1

Voo L(fomy) =
k

= Voo Lfom) [ [T = aVian L(fyi-1))-
i=1

Therefore, MAML requires calculating second
derivatives, which can be both computationally
and memory intensive. First-Order MAML (FO-
MAML) ignores the second derivative part and
implement the MetaUpdate as:

0=0-8 > V,wL(6").

Ti~p(T)

Reptile Reptile (Nichol et al., 2018) is another
first-order gradient-based meta-learning algorithm
that is similar to joint training, as it implements the
MetaUpdate step as:

0=0+p

S o).

T;~p(T)

it z}‘

Basically, Reptile moves the model weights to-
wards new parameters obtained by multiple gradi-
ent descent steps. Despite the simplicity of Rep-
tile, it has been demonstrated to achieve competi-
tive or superior performance compared to MAML.

2.4 Choosing the Task Distributions

We experiment with three different choices of the
task distribution p(7"). Specifically, we propose
the following options:

e Uniform: sample tasks uniformly.

Model Test Dataset
CoLA | MRPC STS-B | RTE
BERT 52.1 | 88.9/84.8 | 87.1/85.8 | 66.4
MT-DNN 51.7 | 89.9/86.3 | 87.6/86.8 | 75.4
~ MAML || 534 | 89.5/85.8 | 88.0/87.3 | 76.4
FOMAML || 51.6 | 89.9/86.4 | 88.6/88.0 | 74.1
Reptile 53.2 | 90.2/86.7 | 88.7/88.1 | 77.0

Table 1: Results on GLUE test sets. Metrics differ per
task (explained in Appendix A) but the best result is
highlighted.

e Probability Proportional to Size (PPS): the
probability of selecting a task is proportional
to the size of its dataset.

e Mixed: at each epoch, we first sample tasks
uniformly and then exclusively select the tar-
get task.

3 Experiments

We conduct experiments on the GLUE
dataset (Wang et al., 2019) and only on En-
glish. Following previous work (Devlin et al.,
2019; Liu et al., 2019) we do not train or test
models on the WNLI dataset (Levesque et al.,
2012). We treat the four high-resource tasks,
namely SST-2 (Socher et al., 2013), QQP,1
MNLI (Williams et al., 2018), and QNLI (Ra-
jpurkar et al., 2016), as auxiliary tasks. The other
four tasks, namely CoLA (Warstadt et al., 2018),
MRPC (Dolan and Brockett, 2005), STS-B (Cera
et al., 2017), and RTE (Dagan et al., 2005) are
our target tasks. We also evaluate the general-
ization ability of our approaches on the SciTail
dataset (Khot et al.,, 2018). The details of all
datasets are illustrated in Appendix A.

We compare our models with two strong base-
lines: the BERT model (Devlin et al., 2019) and
the MT-DNN model (Liu et al., 2019). While the
former pre-trains the Transformer model on large
amounts of unlabeled dataset, the latter further im-
proves it with multi-task learning.

For BERT and MT-DNN, we use their publicly
available code to obtain the final results. The set-
ting of MT-DNN is slightly different from the set-
ting of BERT in terms of optimizer choices. We
implement our algorithms upon the BERTpAsE

! data.quora.com/First-Quora-DatasetRelease-Question-
Pairs
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Model | CoLA | MRPC | STS-B | RTE

Model | #Upt | o | CoLA | MRPC | STS-B | RTE

Reptile-PPS 61.6 90.0 90.3 | 83.0
Reptile-Uniform 61.5 84.0 90.3 | 75.7
Reptile-Mixed 2:1 | 60.3 87.8 90.3 | 71.0
Reptile-Mixed 5:1 | 61.6 85.8 90.1 | 74.7

Table 2: Effect of task distributions. We report the ac-
curacy or Matthews correlation on development sets.

model.> We use the Adam optimizer (Kingma and
Ba, 2015) with a batch size of 32 and learning
rates of 5e-5 to train the models for 5 epochs in
the meta-learning stage. We set the update step &
to 5, the number of sampled tasks in each step to 8
and o to le-3.

3.1 Results

We first use the three meta-learning algorithms
with PPS sampling and present in Table 1 the ex-
perimental results on the GLUE test set. Gener-
ally, the meta-learning algorithms achieve better
performance than the strong baseline models, with
Reptile performing the best.

Since the MT-DNN also uses PPS sampling, the
improvements suggest meta-learning algorithms
can indeed learn better representations compared
with multi-task learning. Reptile outperforming
MAML indicates that reptile is a more effective
and efficient algorithm compared with MAML in
our setting.

3.2 Ablation Studies

Effect of Task Distributions As we have men-
tioned above, we propose three different choices
of the task distribution p(T’) in this paper. Here
we train Reptile with these task distributions and
test models’ performance on the development set
as shown in Table 2.

For uniform sampling, we set the number of
training steps equal to that of the PPS method. For
mixed sampling, we try mix ratios of both 2:1 and
5:1. The results demonstrate that Reptile with PPS
sampling achieves the best performance, which
suggests that larger amounts of auxiliary task data
can generally lead to better performance.

Effect of Hyperparameters for Meta-Gradients
In this part, we test the effect of the number of
update steps k£ and the learning rate in the inner
learning loop. The experimental results on the

2BERTBASE and BERT | srgg differ at the number of hid-
den layers (12 vs. 24), hidden size (768 vs. 1024) and the
number of attention heads (12 vs. 16).

3 le-3 | 60.7 89.7 90.2 | 77.9
le-4 | 62.0 88.0 90.1 | 81.2
Reptile 5 le-3 | 61.6 90.0 90.3 | 83.0
le-2 | 60.1 87.8 89.5 | 739
7 le-3 | 57.8 88.7 90.0 | 814

Table 3: Effect of the number of update steps and the
inner learning rate o.
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Figure 2: Results on transfer learning. The target task
is SciTail which the model does not come across during
the meta-learning stage.

development sets are shown in Table 3. We find
that setting k to 5 is the optimal strategy and more
or fewer update steps may lead to worse perfor-
mance.

Smaller k£ would make the algorithms similar to
joint training as joint training is an extreme case
of Reptile where £ = 1, and thus cause the model
to lose the advantage of using meta-learning al-
gorithms. Similarly, Larger & can make the result-
ing gradients deviate from the normal ones and be-
come uninformative.

We also vary the inner learning rate o and in-
vestigate its impact. The results are listed in Ta-
ble 3. We can see that larger o may degrade the
performance because the resulting gradients devi-
ate a lot from normal ones. The above two abla-
tions studies demonstrate the importance of mak-
ing the meta-gradient informative.

3.3 Transferring to New Tasks

In this part, we test whether our learned repre-
sentations can be adapted to new tasks efficiently.
To this end, we perform transfer learning experi-
ments on a new natural language inference dataset,
namely SciTail.

We randomly sample 0.1%, 1%, 10% and 100%
of the training data and test models’ performance
on these datasets. Figure 2 reveals that our
model consistently outperforms the strong MT-
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DNN baseline across different settings, indicating
the learned representations are more effective for
transfer learning. In particular, the algorithm is
more effective when less data are available, es-
pecially compared to BERT, suggesting the meta-
learning algorithms can indeed be helpful for low-
resource tasks.

4 Related Work

There is a long history of learning general lan-
guage representations. Previous work on learn-
ing general language representations focus on
learning word (Mikolov et al., 2013; Pennington
et al., 2014) or sentence representations (Le and
Mikolov, 2014; Kiros et al., 2015) that are helpful
for downstream tasks. Recently, there is a trend
of learning contextualized word embeddings (Dai
and Le, 2015; McCann et al., 2017; Peters et al.,
2018; Howard and Ruder, 2018). One represen-
tative approach is the BERT model (Devlin et al.,
2019) which learns contextualized word embed-
dings via bidirectional Transformer models.
Another line of research on learning representa-
tions focus on multi-task learning (Collobert et al.,
2011; Liu et al., 2015). In particular, Liu et al.
(2019) propose to combine multi-task learning
with language model pre-training and demonstrate
the two methods are complementary to each other.
Meta-learning algorithms have received lots of
attention recently due to their effectiveness (Finn
et al., 2017; Fan et al., 2018). However, the po-
tential of applying meta-learning algorithms in
NLU tasks have not been fully investigated yet.
Gu et al. (2018) have tried to apply first-order
MAML in machine translation and Qian and Yu
(2019) propose to address the domain adaptation
problem in dialogue generation by using MAML.
To the best of our knowledge, the Reptile algo-
rithm, which is simpler than MAML and poten-
tially more useful, has been given less attention.

5 Conclusion

In this paper, we investigate three optimization-
based meta-learning algorithms for low-resource
NLU tasks. We demonstrate the effectiveness of
these algorithms and perform a fair amount of
ablation studies. We also show the learned rep-
resentations can be adapted to new tasks effec-
tively. Our study suggests promising applications
of meta-learning algorithms in the field of NLU.
Future directions include integrating more sophis-

ticated training strategies of meta-learning algo-
rithms as well as validating our algorithms on
other datasets.
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