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Abstract

Neural models for NLP typically use large
numbers of parameters to reach state-of-the-
art performance, which can lead to excessive
memory usage and increased runtime. We
present a structure learning method for learn-
ing sparse, parameter-efficient NLP models.
Our method applies group lasso to rational
RNNs (Peng et al., 2018), a family of mod-
els that is closely connected to weighted finite-
state automata (WFSAs). We take advan-
tage of rational RNNs’ natural grouping of the
weights, so the group lasso penalty directly
removes WFSA states, substantially reducing
the number of parameters in the model. Our
experiments on a number of sentiment anal-
ysis datasets, using both GloVe and BERT
embeddings, show that our approach learns
neural structures which have fewer parame-
ters without sacrificing performance relative
to parameter-rich baselines. Our method also
highlights the interpretable properties of ra-
tional RNNs. We show that sparsifying such
models makes them easier to visualize, and we
present models that rely exclusively on as few
as three WFSAs after pruning more than 90%
of the weights. We publicly release our code.1

1 Introduction

State-of-the-art neural models for NLP are heav-
ily parameterized, requiring hundreds of millions
(Devlin et al., 2019) and even billions (Rad-
ford et al., 2019) of parameters. While over-
parameterized models can sometimes be easier to
train (Livni et al., 2014), they may also introduce
memory problems on small devices and lead to
increased carbon emission (Strubell et al., 2019;
Schwartz et al., 2019).

In feature-based NLP, structured-sparse regular-
ization, in particular the group lasso (Yuan and

1https://github.com/dodgejesse/
sparsifying_regularizers_for_RRNNs
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(1)
3

w
(2)
1 w

(2)
2 w

(2)
3 ŵ
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Figure 1: Our approach learns a sparse structure (right
hand side) of a base rational RNN (left hand side)
where each hidden unit corresponds to a WFSA (in this
example, three hidden units, represented by the three
rows). Grayed-out, dashed states are removed from the
model, while retained states are marked in bold green.

Lin, 2006), has been proposed as a method to
reduce model size while preserving performance
(Martins et al., 2011). But, in neural NLP, some of
the most widely used models—LSTMs (Hochre-
iter and Schmidhuber, 1997) and GRUs (Cho
et al., 2014)—do not have an obvious, intuitive no-
tion of “structure” in their parameters (other than,
perhaps, division into layers), so the use of struc-
tured sparsity at first may appear incongruous.

In this paper we show that group lasso can be
successfully applied to neural NLP models. We
focus on a family of neural models for which the
hidden state exhibits a natural structure: rational
RNNs (Peng et al., 2018). In a rational RNN, the
value of each hidden dimension is the score of
a weighted finite-state automaton (WFSA) on (a
prefix of) the input vector sequence. This property
offers a natural grouping of the transition func-
tion parameters for each WFSA. As shown by
Schwartz et al. (2018) and Peng et al. (2018), a va-
riety of state-of-the-art neural architectures are ra-
tional (Lei et al., 2017; Bradbury et al., 2017; Foer-
ster et al., 2017, inter alia), so learning parameter-
efficient rational RNNs is of practical value. We
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also take advantage of the natural interpretation of
rational RNNs as “soft” patterns (Schwartz et al.,
2018).

We apply a group lasso penalty to the WFSA
parameters of rational RNNs during training,
where each group is comprised of the parameters
associated with one state in one WFSA (Fig. 1;
§2). This penalty pushes the parameters in some
groups to zero, effectively eliminating them, and
making the WFSA smaller. When all of the states
for a given WFSA are eliminated, the WFSA is
removed entirely, so this approach can be viewed
as learning the number of WFSAs (i.e., the RNN
hidden dimension) as well as their size. We then
retain the sparse structure, which results in a much
smaller model in terms of parameters.

We experiment with four text classification
benchmarks (§3), using both GloVe and BERT
embeddings. As we increase the regularization
strength, we end up with smaller models. These
models have a better tradeoff between the num-
ber of parameters and model performance com-
pared to setting the number of WFSAs and their
lengths by hand or using hyperparameter search.
In almost all cases, our approach results in models
with fewer parameters and similar or better perfor-
mance compared to our baselines.

In contrast to neural architecture search (Joze-
fowicz et al., 2015; Zoph and Le, 2017), which
can take several GPU years to learn an appropri-
ate neural architecture, our approach requires only
two training runs: one to learn the structure, and
the other to estimate its parameters. Other ap-
proaches either ignore the structure of the model
and only look at the value of individual weights
(Liu et al., 2019; LeCun et al., 1990; Lee et al.,
2019; Frankle and Carbin, 2019) or only use high-
level structures like the number of layers of the
network (Wen et al., 2016; Scardapane et al., 2017;
Gordon et al., 2018).

Finally, our approach touches on another ap-
pealing property of rational RNNs—their inter-
pretability. Each WFSA captures a “soft” version
of patterns like “such a great X”, and can be visu-
alized as such (Schwartz et al., 2018). By retain-
ing a small number of WFSAs, model structures
learned using our method can be visualized suc-
cinctly. In §4 we show that some of our sentiment
analysis models rely exclusively on as few as three
WFSAs.2

2That is, a rational RNN with hidden size 3.
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Figure 2: A 4-gram WFSA, from which we derive the
rational RNN (§2). The rational RNN’s hidden states
correspond to a set of WFSAs, each separately param-
eterized. We apply group lasso to each WFSA.

2 Method

We describe the proposed method. At a high level,
we follow the standard practice for using `1 regu-
larization for sparsification (Wen et al., 2016):

1. Fit a model on the training data, with the
group lasso regularizer added to the loss dur-
ing training (the parameters associated with
one state comprise one group).

2. After convergence, eliminate the states
whose parameters are zero.

3. Finetune the resulting, smaller model, by
minimizing the unregularized loss with re-
spect to its parameters.

In this work, we assume a single layer ratio-
nal RNN, but our approach is equally applica-
ble to multi-layer models. For clarity of the dis-
cussion, we start with a one-dimensional rational
RNN (i.e., one based on a single WFSA only). We
then generalize to the d-dimensional case (com-
puting the scores of d WFSAs in parallel).

Rational recurrent networks Following Peng
et al. (2018), we parameterize the transition func-
tions of WFSAs with neural networks, such that
each transition (main path or self loop) defines a
weighted function over the input word vector. We
consider a 5-state WFSA, diagrammed in Fig. 2.

A path starts at q0; at least four tokens must be
consumed to reach q4, and in this sense it cap-
tures 4-gram “soft” patterns (Peng et al., 2018;
Schwartz et al., 2018). In addition to q4, we also
designate q1, q2, and q3 as final states, allowing
for the interpolation between patterns of different
lengths.3 The self-loop transitions over q1, q2, q3,
and q4 aim to allow, but downweight, nonconsec-
utive patterns, as the self-loop transition functions
yield values between 0 and 1 (using a sigmoid
function). The recurrent function is equivalent to
applying the Forward dynamic programming algo-
rithm (Baum and Petrie, 1966).

3We found this to be more stable than using only q4.
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Promoting sparsity with group lasso We aim
to learn a sparse rational model with fewer WFSA
states. This can be achieved by penalizing the pa-
rameters associated with a given state, specifically
the parameters associated with entering that state,
by a transition from another state or a self-loop
on that state. For example, the parameters of the
WFSA in Fig. 2 (excluding the word embedding
parameters) are assigned to four nonoverlapping
groups, one for each non-starting state.

During training, the regularization term will
push all parameters toward zero, and some will
converge close to zero.4 After convergence, we
remove groups for which the `2 norm falls below
ε.5 The resulting smaller model is then finetuned
by continuing training without regularizing. With
our linear-structured WFSA, zeroing out the group
associated with a state in the middle effectively
makes later states inaccessible. While our ap-
proach offers no guarantee to remove states from
the end first (thus leaving no unreachable states),
in our experiments it always did so.

d-dimensional Case To construct a rational
RNN with d WFSAs (a d-dimensional model),
we stack d one-dimensional models, each of them
separately parameterized. The parameters of a
d-dimensional rational model derived from the
WFSA in Fig. 2 are organized into 4d groups, four
for each dimension. Since there is no direct inter-
action between different dimensions (e.g., through
an affine transformation), group lasso sparsifies
each dimension/WFSA independently. Hence the
resulting rational RNN can consist of WFSAs of
different sizes, the number of which could be
smaller than d if any of the WFSAs have all states
eliminated.

One can treat the numbers and sizes of WF-
SAs as hyperparameters (Oncina et al., 1993; Ron
et al., 1994; de la Higuera, 2010; Schwartz et al.,
2018). By eliminating states from WFSAs with
group lasso, we learn the WFSA structure while
fitting the models’ parameters, reducing the num-
ber of training cycles by reducing the number of
tunable hyperparameters.

4There are optimization methods that achieve “strong”
sparsity (Parikh and Boyd, 2013), where some parameters are
exactly set to zero during training. Recent work has shown
these approaches can converge in nonconvex settings (Reddi
et al., 2016), but our experiments found them to be unstable.

5We use 0.1. This threshold was lightly tuned in prelim-
inary experiments on the validation set and found to reliably
remove those parameters which converged around zero with-
out removing others.

3 Experiments

We run sentiment analysis experiments. We train
the rational RNN models (§2) with group lasso
regularization, using increasingly large regulariza-
tion strengths, resulting in increasingly compact
models. As the goal of our experiments is to
demonstrate the ability of our approach to reduce
the number of parameters, we only consider ra-
tional baselines: the same rational RNNs trained
without group lasso.6 We manually tune the num-
ber and sizes of the baselines WFSAs, and then
compare the tradeoff curve between model size
and accuracy. We describe our experiments below.
For more details, see Appendix A.

Data We experiment with the Amazon reviews
binary sentiment classification dataset (Blitzer
et al., 2007), composed of 22 product categories.
We examine the standard dataset (original mix)
comprised of a mixture of data from the different
categories (Johnson and Zhang, 2015).7 We also
examine three of the largest individual categories
as separate datasets (kitchen, dvd, and books),
following Johnson and Zhang (2015). The three
category datasets do not overlap with each other
(though they do with original mix), and are sig-
nificantly different in size (see Appendix A), so
we can see how our approach behaves with differ-
ent amounts of training data.

Implementation details To classify text, we
concatenate the scores computed by each WFSA,
then feed this d-dimensional vector of scores into
a linear binary classifier. We use log loss. We ex-
periment with both type-level word embeddings
(GloVe.6B.300d; Pennington et al., 2014) and
contextual embeddings (BERT large; Devlin et al.,
2019).8 In both cases, we keep the embeddings
fixed, so the vast majority of the learnable pa-
rameters are in the WFSAs. We train mod-
els using GloVe embeddings on all datasets. Due
to memory constraints we evaluate BERT embed-
dings (frozen, not fine-tuned) only on the smallest

6Rational RNNs have shown strong performance on the
dataset we experiment with: a 2-layer rational model with
between 100–300 hidden units obtained 92.7% classifica-
tion accuracy, substantially outperforming an LSTM baseline
(Peng et al., 2018). The results of our models, which are
single-layered and capped at 24 hidden units, are not directly
comparable to these baselines, but are still within two points
of the best result from that paper.

7http://riejohnson.com/cnn_data.html
8https://github.com/huggingface/

pytorch-pretrained-BERT
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dataset (kitchen).

Baselines As baselines, we train five versions of
each rational architecture without group lasso, us-
ing the same number of WFSAs as our regularized
models (24 for GloVe, 12 for BERT). Four of the
baselines each use the same number of transitions
for all WFSAs (1, 2, 3, and 4, corresponding to
2–5 states, and to 24, 48, 72, and 96 total transi-
tions). The fifth baseline has an equal mix of all
lengths (6 WFSAs of each size for GloVe, leading
to 60 total transitions, and 3 WFSAs of each size
for BERT, leading to 30 total transitions).

Each transition in our model is independently
parameterized, so the total number of transitions
linearly controls the number of learnable parame-
ters (in addition to the parameters in the embed-
ding layer).

Results Fig. 3 shows our classification test ac-
curacy as a function of the total number of WFSA
transitions in the model. We first notice that,
as expected, the performance of our unregular-
ized baselines improves as models are trained with
more transitions (i.e., more parameters).

Compared to the baselines, training with group
lasso provides a better tradeoff between perfor-
mance and number of transitions. In particular,
our heavily regularized models perform substan-
tially better than the unigram baselines, gaining
between 1–2% absolute improvements in four out
of five cases. As our regularization strength de-
creases, we naturally gain less compared to our
baselines, although still similar or better than the
best baselines in four out of five cases.

4 Visualization

Using our method with a high regularization
strength, the resulting sparse structures often con-
tain only a handful of WFSAs. In such cases,
building on the interpretability of individual WF-
SAs, we are able visualize every hidden unit, i.e.,
the entire model. To visualize a single WFSA B,
we follow Schwartz et al. (2018) and compute the
score of B on every phrase in the training corpus.
We then select the top and bottom scoring phrases
for B,9 and get a prototype-like description of the
pattern representing B.10

9As each WFSA score is used as a feature that is fed to a
linear classifier, negative scores are also meaningful.

10 While the WFSA scores are the sum of all paths deriving
a document (plus-times semiring), here we search for the max
(or min) scoring one. Despite the mismatch, a WFSA scores

transition1 transition2 transition3

Patt. 1

Top

not worth the timeSL </s>
not worth the 30SL </s>
not worth itSL </s>
not worth itSL </s>

Bottom

extremely pleased . . . SL </s>
highly pleased . . . SL </s>
extremely pleased . . . SL </s>
extremely pleased . . . SL </s>

Patt. 2

Top

miserable </s>
miserable . . . SL </s>
miserable . . . SL </s>
returned </s>

Bottom

superb </s>
superb </s>
superb </s>
superb choiceSL </s>

Patt. 3

Top

bad . . . SL ltd . . . SL buyer
bad . . . SL ltd . . . SL buyer
horrible . . . SL hl4040cn . . . SL expensive
left . . . SL ltd . . . SL lens

Bottom

favorite . . . SL ltd . . . SL lens
really . . . SL ltd . . . SL buyer
really . . . SL ltd . . . SL buyer
best . . . SL hl4040cn . . . SL expensive

Table 1: Visualization of a sparse rational RNN trained
on original mix containing only 3 WFSAs. For each
WFSA (i.e., pattern), we show the 4 top and bottom
scoring phrases in the training corpus with this WFSA.
Each column represents one main-path transition, plus
potential self-loops preceding it (marked like thisSL).
“. . . SL” marks more than 2 self loops. “</s>” marks
an end-of-document token.

Table 1 visualizes a sparse rational RNN trained
on original mix with only three WFSAs, (8 main-
path transitions in total).11 The table shows that
looking at the top scores of each WFSA, two of
the patterns respectively capture the phrases “not
worth X</s>” and “miserable/returned X</s>’’.
Pattern 3 is not as coherent, but most examples do
contain sentiment-bearing words such as bad, hor-
rible, or best. This might be the result of the tun-
ing process of the sparse rational structure simply
learning a collection of words, rather than coher-
ant phrases. As a result, this WFSA is treated as
a unigram pattern rather than a trigram. The low-
est scoring phrases show a similar trend. Ap-
pendix B shows the same visualization for another
sparse rational RNN containing only four WFSAs
and 11 main-path transitions, trained with BERT
embeddings.

We observe another interesting trend: two of the
three patterns prefer expressions that appear near
the end of the document. This could result from
the nature of the datasets (e.g., many reviews end

every possible path, and thus the max/min scoring path se-
lection is still valid. As our examples show, many of these
extracted paths are meaningful.

11The test performance of this model is 88%, 0.6% abso-
lute below the average of the five models reported in Fig. 3.
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Figure 3: Text classification with GloVe embeddings (four leftmost graphs) and BERT (rightmost): accuracy (y-
axis) vs. number of WFSA transitions (x-axis). Higher and to the left is better. Our method (dashed orange line,
varying regularization strength) provides a better tradeoff than the baseline (solid blue line, directly varying the
number of transitions). Vertical lines encode one standard deviation for accuracy, while horizontal lines encode
one standard deviation in the number of transitions (applicable only to our method).

with a summary, containing important sentiment
information), and/or our rational models’ recency
preference. More specifically, the first self loop
has weight 1, and hence the model is not penal-
ized for taking self loops before the match; in con-
trast, the weights of the last self loop take values
in (0, 1) due to the sigmoid, forcing a penalty for
earlier phrase matches.12

5 Conclusion

We presented a method for learning parameter-
efficient RNNs. Our method applies group
lasso regularization on rational RNNs, which are
strongly connected to weighted finite-state au-
tomata, and thus amenable to learning with struc-
tured sparsity. Our experiments on four text clas-
sification datasets, using both GloVe and BERT
embeddings, show that our sparse models pro-
vide a better performance/model size tradeoff. We
hope our method will facilitate the development of
“thin” NLP models, that are faster, consume less
memory, and are interpretable (Schwartz et al.,
2019).
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