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Abstract

Prior work on cross-lingual dependency pars-
ing often focuses on capturing the common-
alities between source and target languages
and overlooks the potential of leveraging lin-
guistic properties of the languages to facil-
itate the transfer. In this paper, we show
that weak supervisions of linguistic knowl-
edge for the target languages can improve a
cross-lingual graph-based dependency parser
substantially. Specifically, we explore several
types of corpus linguistic statistics and com-
pile them into corpus-wise constraints to guide
the inference process during the test time. We
adapt two techniques, Lagrangian relaxation
and posterior regularization, to conduct infer-
ence with corpus-statistics constraints. Ex-
periments show that the Lagrangian relaxation
and posterior regularization inference improve
the performances on 15 and 17 out of 19 target
languages, respectively. The improvements
are especially significant for target languages
that have different word order features from
the source language.

1 Introduction

Natural language processing (NLP) techniques
have achieved remarkable performance in a vari-
ety of tasks when sufficient training data is avail-
able. However, obtaining high-quality annota-
tions for low-resource language tasks is challeng-
ing, and this poses great challenges to process
low-resource languages. To bridge the gap, cross-
lingual transfer has been proposed to transfer mod-
els trained on high-resource languages (e.g., En-
glish) to low-resource languages (e.g., Tamil) to
combat the resource scarcity problem. Recent
studies have demonstrated successes of transfer-
ring models across languages without retraining
for NLP tasks, such as named entity recognition
(Xie et al., 2018), dependency parsing (Tiede-
mann, 2015; Agi¢ et al., 2014), and question

answering (Joty et al., 2017), using a shared
multi-lingual word embedding space (Smith et al.,
2017) or delexicalization approaches (Zeman and
Resnik, 2008; McDonald et al., 2013).

One key challenge for cross-lingual transfer is
the differences among languages; for example,
languages may have different word orders. When
transferring a model learned from a source lan-
guage to target languages, the performance may
drop significantly due to the differences. To tackle
this problem, various approaches have been pro-
posed to better capture the commonalities between
the source and the target languages (McDonald
et al., 2011; Guo et al., 2016; Téackstrom et al.,
2013; Agié, 2017; Ahmad et al., 2019); however,
they overlook the potential to leverage linguistic
knowledge about the target language to account
for the differences between the source and the tar-
get languages to facilitate the transfer.

In this paper, we propose a complementary ap-
proach that studies how to leverage the linguis-
tic knowledge about the target languages to help
the transfer. Specifically, we use corpus linguistic
statistics of the target languages as weak supervi-
sion signals to guide the test-time inference pro-
cess when parsing with a graph-based parser. This
approach is effective as the model only need to be
trained once on the source language and applied to
many target languages using different constraints
without retraining the model.

We argue that certain corpus linguistic statistics
such as the word order (e.g., how often an adjec-
tive appears before or after a noun) can be easily
obtained from available resources such as World
Atlas of Language Structures (WALS) (Dryer and
Haspelmath, 2013). To incorporate the corpus lin-
guistic statistics to a cross-lingual parser, we com-
pile them into corpus-wise constraints and adopt
two families of methods: 1) Lagrangian relax-
ation (LR) and 2) posterior regularization (PR) to
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solve the constrained inference problem. The al-
gorithms take the original graph-based parsing in-
ference as a sub-routine, and LR iteratively adjusts
the pair-wise potentials until the constraints are
(loosely) satisfied, while PR finds a feasible dis-
tribution and do inference based on that. The con-
strained inference framework is general and sup-
ports any knowledge that can be formulated as a
first-order logic (Roth and Yih, 2004).

We evaluate the proposed approach under the
single-source transfer setting using English as
the source language and test on 19 target lan-
guages covering a broad range of language fam-
ilies with low-resource languages such as Tamil
and Welsh. We demonstrate that by adding
three simple corpus-wise constraints derived from
WALS features, the performances improve in 15
and 17 out of 19 languages when using Lagrangian
relaxation and posterior regularization techniques,
respectively. The improvements are especially
substantial when the target language features are
distant from the source language. For example,
our framework improves the UAS score of Urdu
by 15.7%, and Tamil by 7.3%.!

2 Constrained Cross-Lingual Parsing

Our work focuses on the graph-based dependency
parser (McDonald et al., 2005) in the zero-shot
single-source transfer setting as in Ahmad et al.
(2019). However, the proposed algorithms can be
extended other transfer settings. Given a trained
model, we derive corpus-statistics constraints and
apply them to correct errors caused by word order
differences between the source and the target lan-
guage during the inference time. Figure 1 shows
an example of how constraints can influence the
inference results.

In this section, we first give a quick review
of the graph-based parser and introduce the nota-
tions. We then discuss how to formulate corpus-
wise constraints based on corpus linguistic statis-
tics for guiding the graph-based parser.

2.1 Background: Graph-Based Parser

A graph-based parser learns a scoring function for
every pair of words in a sentence and conducts in-
ference to derive a directed spanning tree with the
highest accumulated score. Formally, given the k-
th sentence Wi, = (w1, . .., WyL(k)) Where L(k)

'The code and data are  available at

https://github.com/MtSomeThree/
CrossLingualDependencyParsing.

denotes the length of the k-th sentence, a graph-
based parser learns a score matrix S*), where
SZ-(f) denotes the score to form an arc from word
wy; to word wy;. Let y;, be an indicator function
that y(¢,7) € {0, 1} denotes the arc from wy; to
wyj. The maximum directed spanning tree infer-
ence can be formulated as an integer linear pro-
gramming (ILP) problem:

. *® .
= arg max S i,7), 1
Yg gykeyk ; ij yk( j) ( )

where ) is the set of legal dependency trees of
sentence k. In recent years, neural network ap-
proaches (Kiperwasser and Goldberg, 2016; Wang
and Chang, 2016; Kuncoro et al., 2016; Dozat and
Manning, 2017) have been applied to modeling the
scoring matrix S*) and have achieved great per-
formance in dependency parsing.

From the probabilistic point of view, if we
assume for different 7, j, the edge probabilities
P(yx(i,7) = 1|wy) are mutually conditional in-
dependent, the probability of a whole parse tree
can be written as

P(yrlwi) = [ ] Plue(i, §) = 1w 0. (2)
i?j

If we set Si(f) = log P(yk(i,j) = 1lwy) + ZJ,
where Z; is a constant term, then Eq. (1) can be
regarded as the following maximum a posteriori
(MAP) inference problem:

¥ = arg max P(yi|wy
yj, = arg max P(yy[wy)

= arg max log P(yx(i,7) = 1|lw 1,7)-
gykeykizj g P(yk(i, 7) = Lwr)yk (i, j)

3)
2.2 Corpus-Wise Constraints

Given the inference problems as in equations (1)
and (3), additional constraints can be imposed to
incorporate expert knowledge about the languages
to help yield a better parser. Instance-level con-
straints have been explored in the literature of de-
pendency parsing, both in the monolingual (Dryer,
2007) and cross-lingual transfer (Tdckstrom et al.,
2013) settings. However, most word order features
for a language are non-deterministic and cannot be
compiled into instance-wise constraints.

In this work, we introduce corpus-wise con-
straints to leverage the non-deterministic features
for cross-lingual parser. We compile the follow-
ing two types of corpus-wise constraints based on
corpus linguistics statistics:
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e Unary constraints consider statistics regard-

ing a particular POS tag (POS).

e Binary constraints consider statistics regard-
ing a pair of POS tags (POS;, POS5).
Specifically, a unary constraint specifies the ratio
r of the heads of a particular POS appears on the
left of that POS.? Similarly, a binary constraint
specifies the ratio r of PO.S; being on the left of
POS5 when there is an arc between PO.S; and

POS;.

The ratios r for the constraints are called cor-
pus statistics, which can be estimated in one of the
following ways: a) leveraging existing linguistics
resources or consulting linguists; b) leveraging a
higher-resource language that is similar to the tar-
get language (e.g., Finnish and Estonian) to collect
the statistics. In this paper, we explore the first op-
tion and leverage the WALS features, which pro-
vide a reference for word order typology, to esti-
mate the ratios.

Compile Constraints From WALS Features.
For a particular language, once we collect the
corpus-statistics of a pair of POS tags, we can
formulate a binary constraint. There are different
ways to estimate the corpus-statistics. For exam-
ple, Ostling (2015) utilizes a small amount of par-
allel data to estimate the dominant word orders.
In this paper, we simply utilize a small subset of
WALS features that show the dominant order of
some POS pairs (e.g. adjective and noun) in a lan-
guage. They can be directly compiled into binary
constraints.

Similarly, we can estimate the ratio for unary
constraints based on WALS features. For a partic-
ular POS tag, we choose all WALS features related
to it to formulate a feature vector f. The mapping
from the vector f to the unary constraint ratio r is
learnable: for each language with annotated data,
we can get a WALS feature vector fj,,,, and a ratio
Tlang from the annotation. We only need a small
amount of data to estimate r;,,,, well. Given a set
of languages with feature vectors and estimated ra-
tios, we can learn the mapping by a simple linear
regression, and apply it to estimate the ratio of any
target language to compile a unary constraint.

2.3 Formulate Constraints

In the following, we mathematically formulate
the corpus-wise constraints. Note that these con-

2The ratio for the head being on the right of that POS is
thereby 1 — r.

277N

PROPN PROPN VERB AUX PUNCT

NOUN ADP NOUN
H W ARAT TeT 3ol g |
Enjoyment of expenditure .
Constraint: In an ADP-NOUN arc in Hindi, ADP
is more likely to be on the right.

Indian army  bears is

aalN

4 N
A
NOUN ADP NOUN PROPN PROPN VERB AUX PUNCT
H WE AR FAT 3o ¢

Enjoyment of expenditure  Indian army  bears s

Figure 1: An running example of Hindi. On the top
there is the inference result of a baseline model trained
on English. In English, ADP is mostly on the left of the
NOUN, so the potential of the correct ADP-NOUN arc
is lower. With the help of corpus-statistics constraints,
the potential is adjusted and the model gets correct in-
ference result as shown in the bottom. The dashed lines
highlight the difference.

straints are based on the statistics over the entire
corpus. For a unary constraint C’&POS), let P de-
notes a set of word with part-of-speech tag POS.
We define C;f := {(k, i, j)|wg; € PAi < j}as
the set of arcs where the head of word in P is on
its left and C,; := {(k,4,7)|wx; € P A1 > j},
conversely.

For a binary constraint C’éPOSl’POSZ), we de-
notes P, P» as a set of word with part-of-speech
tag POS;, POSs, respectively. We then define
C’lf as the set of arcs with two ends wy; € P; and
wyj € P, and wy; is on the left of wy;. We define
C, Similarly. Formally,

Cyf :={(k,i,j)|wki € PL ANwy; € Py Ai < j}
U{(k,j,1)|wr; € PL ANwgj € Pa ANi < 5},

C, ={(k,i,j)|wk; € Py Nwyj € Pa ANi > j}
U{(k,j,0)|wi; € PL ANwgj € Py Ni > 5}
For notational simplicity, we use C to denote
all constraints including both the unary and binary

ones. The ratio function R(C,Y") for a constraint
C given the parse trees Y can be defined as:

R(C,Y)= 2ok (i) (hiig)ec+ Yn(E: 7)
U Xk i) kigyectuo- Uk(iJ)

We want to enforce the ratio R(C,Y’) estimated
from Y to be consistent with a value r (see Sec.
2.2), which formulates a constraint

r—0<RCY)<r+6

where 6 is a tolerance margin. Note that the
instance-level hard constraint is a special case of
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Sentence wy,

1 Graph-Based Parser

Score Matrix
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Feasible Dist.
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1 MAP Inference

Dependency
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Constrained
Inference
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Figure 2: The pipelines of the baseline method (left),
Lagrangian relaxation (right) and posterior regulariza-
tion (middle). Lagrangian relaxation converts con-
strained inference to an unconstrained optimization
problem using Lagrange’s method. Posterior regular-
ization method is working on the distribution space.
For a given distribution, PR finds the closest feasible
distribution and conduct MAP inference.

the corpus-statistics constraint when » = 0 or
r=1.

Given a set of corpus-statistics constraints
C ={C1,Cs,...,Cy,} with corresponding corpus
statistics r = {r1, 72, ..., 7}, the objective of the
constrained inference is:

* .
P D D jeny S D) )
s.t. r;—0; SR(C“Y)SH—FQZ,ZE [N],

where ) denotes the set of all possible dependency
trees. As all the constraints can be written as a
linear inequality with respect to yx(7,7). Eq. (4)
is an ILP.

3 Inference with Corpus-Statistics
Constraints

The ILP problem in Eq. (4) is in general an NP-
hard problem; especially, it involves variables as-
sociated with the entire corpus. Without con-
straints, Eq. (4) can be decoupled into K sub-
problems, and the inference with respect to each
sentence can be solved independently as in Eq.
(1). In this way, an efficient inference algorithm
such as maximum directed spanning tree algo-
rithm (Chu and Liu, 1965) can be used.

However, with the corpus-wise constraints, di-
rectly solving Eq. (4) is infeasible. Therefore, we
explore two algorithms for inference with corpus-
statistics constraints: Lagrangian relaxation and

posterior regularization (Ganchev et al., 2010).
The Lagrangian relaxation algorithm introduces
Lagrangian multipliers to relax the constraint op-
timization problem to an unconstrained optimiza-
tion problem, and estimates the Lagrangian mul-
tipliers with gradient-based methods. The poste-
rior regularization algorithm uses the constraints
of the target language to define a feasible set of
parse tree distributions, and find a feasible distri-
bution that is closest to the parse tree distribution
trained on the source language by minimizing the
KL-divergence. The constrained inference prob-
lem can then be converted into an MAP inference
problem on the best feasible distribution. Figure
2 illustrates the procedure of the original infer-
ence, Lagrangian relaxation, and posterior regu-
larization.

3.1 Lagrangian Relaxation

Lagrangian relaxation has been applied in various
NLP applications (Rush and Collins, 2012, 2011).
In Eq. (4), each constraint C; involves two in-
equality constraints: R(C;,Y) —r; + 6 > 0,
and ; + 60 — R(C;,Y) > 0. Instead of treat-
ing these two constraints separately, we consider
a heuristic to optimize with equality constraints
R(C;,Y) = 14,0 € [N] and terminate earlier
when constraints in Eq. (4) are satisfied. De-
spite this approach does not guarantee the solu-
tion is optimal if all the constraints are satisfied as
the original Lagrangian relaxation algorithm does,
in practice, the inference converges faster (as the
number of Lagrangian multipliers is half) and the
parsing performance maintains.

In the following, we derive the constrained
inference algorithm for corpus-statistics con-

straints. First, we rewrite the equality constraint
R(C,Y) = r by substituting R(C,Y) with
Eq. (2.3):

(1- T)Xk: > Yk (i, J)

(i,9):(k,i,j)€C;

ko (i,):(k,i,g)eC;

We use F(C) to denote the left-hand-side of
Eq. (5), which is linear w.r.t. y;. Then, the La-
grangian relaxation of the constrained inference
problem can be written as:

ZZ% 200

L(Y, X\;C)

Z/\F
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Algorithm 1 Lagrangian Relaxation for Con-
straint Inference
Input: Constraints C = {C;}Y,, corresponding
ratio r = {r;}Y,, tolerance margin § = {6;}Y ,,
learning rate decay 7, initial learning rate o
Output: parse trees Y

I o< oy
2: \j <0, 1 € [N]
3: repeat
4 Y + argmaxycy L(Y, \;C)
50 7+ R(C;,Y), i € [N]
6:  if Vi, abs(r; — 7;) < 0 then
7: return Y
8: i — Oé(’l% — ’I“i), 1 € [N]
9: < nNo
10: until MAX_ITER times
11: return Y

where A; is called Lagrangian multiplier. It is
well-known that we can solve the dual form of the
constrained inference problem:

max min L(Y, \;C).

YEY A>0
To solve the dual form, we initialize \; to be 0.

At iteration t, we firstly conduct an constraint-
augmented inference with a fixed \(®):

A~

Yyt — LY. \®.0). 6
max (Y, A" 0) (6)

As F(C) is a linear function w.r.t yz, we com-
bine it with Sfjk )yk(z’, 7). In this way, the inference
problem Eq. (6) can be treated as a special case
of Eq. (1) with a different scoring matrix S(*).
In this way, we can treat the inference on every
sentence independently and leverage existing in-
ference techniques.

After solving the constraint-augmented infer-
ence, we compute the ratio of every constraint
78 = R(Cy, Y®), and use gradient ascent al-
gorithm to update the Lagrangian multipliers

ATY =00 a0 — 7).

Here o*) denote the step size at iteration . The
algorithm is shown in Algorithm 1.

3.2 Posterior Regularization

From a probabilistic point of view, the parser
model learns parameters 6 to realize Eq. (2). Dur-
ing the inference, the model predict a probabil-
ity distribution py (Y| W) over possible parse trees

given a sentence. The posterior regularization al-
gorithm first defines a feasible set of the proba-
bility distributions w.r.t the given constraints, and
looks for the closest feasible distribution ¢*(Y) to
the model distribution py(Y|W). The best parse
tree is given by arg maxy ¢*(Y). Specifically, we
define the feasible set as:

Q={q(Y)|ri—0; <R(Ci, q(Y)) <ri+0;,i € [N]},

Zkzz V:(k.,i,j c+Qk(i1j)
where R(C,q) = S Z(i,;):Z;,i,;):;‘eﬁLuC* G’
with g (i7 .7) = EYNq(Y) [yk(l7 J)] :

To measure the distance between two distribu-
tion, we use the KL-divergence, and find the best
feasible distribution ¢*(Y):

¢ (Y) = arg gréiQn KL(q(Y)[lpa(Y[W)). (1)

If the feasible set has the expectation form:

{g|Ey~q[o(Y)] < b}, ®

Eq. (7) has a simple close form solution (Ganchev
etal., 2010):

. po(Y|W)exp(=\* - ¢(Y))
Y) = 9
q*(Y) 700 )
where \* is the solution of
A= —-b-A—-log Z(A
arg max 0g Z(A),
(10)

ZN = po(Y'|W)exp(=A" - 4(Y'))
v

In the rest of this section, we first show that the
feasible set () we considered above can be refor-
mulated in the form of Eq. (8), and then we dis-
cuss how to solve Eq. (10). To show that the in-
equality R(C, ¢(Y)) < r, in () can be formulated
in the form of Eq. (8), we set

oc(Y) = yili, j)bc(k, i, ),
k,i,5
and
1—7r (kyi,j)eCt

oc(k,i,j)=q —r  (k,i,j)eC~
0 (k,i,j)¢ CTUC™.

1D

Similarly, we can derive R(C, ¢(Y)) > r, into the
same form and rewrite () as

Q={q(Y) | Ey~q0(Y) < 0},
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Algorithm 2 Posterior Regularization

Input: Constraints C = {C;}Y,, corresponding
ratio r = {r;}¥,, tolerance margin 6 = {0;} Y,
Output: parse trees Y

1: po(yx(i,j) = 1) < normalize (exp (Sfﬁ))
¢ < defined by Eq. (11)
Ai <0, 1€ [N]
repeat
estimate g <— 0log Z(\)/0A in a batch
update A basedon g
until MAX_ITER times
for each (k,,j) do
qx (i, j) < defined by Eq. (12)
Y < MAP inference based on q
. return Y

R A A T

_ =
—_ O

where ¢ = (¢c,, ¢y, -, Py ) 1s a collection of
the constraints. The detailed derivations can be
found in Appendix A.

We solve Eq. (10) by sub-gradient descent’.
Noting that there can be exponential number of
terms in Z(\), we firstly need to factorize Z(\)
from corpus level to instance level and arc level,
and compute the gradient. The technical details
are in Appendix A. With the optimal A\*, we can
compute the feasible distribution ¢*(Y) given py
and W. Noting that the solution Eq. (9) can also
be factorized to arc-level:

QI:(ia ]) X pQ(yk(ia .7) ’Wk> eXp(—)\* ’ ¢(k7 i, j))7

(12)
here ¢j(i,7) denote the arc-level distribution
¢*(yx(i,j) = 1) satisfying Eq. (3). We then
do MAP inference based on ¢, which is actually
a minimal spanning tree problem same as before.
Algorithm 2 summarizes the process.

4 Experiments

In this section, we evaluate the proposed al-
gorithms by transferring an English dependency
parser to 19 target languages covering 13 language
families of real low-resource languages. We first
introduce the experimental setup including data
selection and constraint details and then discuss
the results as well as in-depth analysis.

4.1 Setup

Model and Data We train the best performing
Att-Graph parser proposed in Ahmad et al. (2019)

3In implementation, we use stochastic gradient descent
with Adam optimizer (Kingma and Ba, 2015)

on English and transfer it to 19 target languages
in UD Tree Bank v2.2 (Nivre et al., 2018).* The
model takes words and predicted POS tags as in-
put, and achieve transfer by leveraging pre-trained
multi-lingual FastText (Bojanowski et al., 2017)
embeddings that project the word embeddings
from different languages into the same space us-
ing an offline transformation method (Smith et al.,
2017; Conneau et al., 2018). The SelfAtt-Graph
model uses a Transformer (Vaswani et al., 2017)
with relative position embedding as the encoder
and a deep biaffine scorer (Dozat and Manning,
2017) as the decoder. We follow the setting in
Ahmad et al. (2019) to train and tune only on the
source language (English) and directly transfer to
all the target languages. We modify their decoder
to incorporate constraints with the proposed con-
strained inference algorithms during the transfer
phase without retraining the model. All the hyper-
parameters are specified in Appendix Table 4 to-
gether with hyper-parameters for the inference al-
gorithms in Appendix Table 5.

Constraints We consider two types of con-
straints: 1) instance-level projective constraints
for avoiding creating crossing arcs in the de-
pendency trees, 2) corpus-statistics constraints
constructed by the process described in Sec-
tion 2.2. We consider the following three corpus-
statistics constraints: C1 = (NOUN), C2 =
(NOUN,ADP), C3 = (NOUN, ADJ); intu-
itively, C'1 concerns about the ratio of nouns be-
ing on the right of their heads; C'2 concerns about
the ratio of nouns being on the left of adposi-
tions among all noun-adposition arcs; C'3 con-
cerns about the ratio of nouns being on the left of
adjectives among all noun-adjective arcs.

For binary constraints, C2 and C'3 can be di-
rectly compiled from WALS feature 85 A and 87A
respectively. We encode “dominant order” spec-
ified in WALS as the ratio being always greater
than 0.75 (i.e., r = 0.875 and 8 = 0.125). If there
is no dominant order or the feature is missing, we
set 7 = 0.5 and § = 0.25. Some WALS features
like 82A,83A are also about word order, but we
need to specify the arc types to utilize them. For
simplicity, we only consider forming constraints
from the POS tags in this paper. To estimate the

“We make the selection to prioritize the coverage of lan-
guage families and low resource languages. The language
family information can be found in Table 1.

SWe use predicted POS tags provided in UD v2.2.
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Family Lang.| Features| Baseline Lagrangian Relaxation | Posterior Regularization
Oracle WALS AWALS | Oracle WALS AWALS

IE.Germanic | en 1,1,1 90.5 903 904 -0.1 90.4  90.6 +0.1
IE.Indic ur -1,-1,1 18.3 352 340 +157 350 337 +15.4
IE.Indic hi -1,-1,1 34.3 524 534  +19.1 513  49.1 +14.8
Dravidian ta -1,-1,1 36.1 428 434 +7.3 43.1  43.0 +6.9
Turkic tr -1,-1,1 31.2 352 37.1 +5.9 351 363 +5.1
Afro-Asiatic ar 1,1,-1 38.5 473 453 +6.8 458 437 +5.2
Afro-Asiatic he 1, 1,-1 55.7 58.8  57.6 +1.9 583 57.6 +1.9
Austronesian id I, 1,-1 493 53.1 523 +3.0 523 519 +2.6
Korean ko -1,-1,1 34.0 37.1 37.2 +3.2 36.3 36.4 +2.4
IE.Celtic cy I, 1,-1 473 542  51.7 +4.4 53.8  50.0 +2.7
IE.Romance ca 1,1,-1 73.9 749 738 -0.1 749 747 +0.8
IE.Romance fr I, 1,-1 77.8 79.1  78.7 +0.9 79.0  79.0 +1.2
Uralic et 1,-1,1 65.3 65.5 65.8 +0.5 65.7  66.0 +0.7
Uralic fi 1,-1,1 66.7 67.1 67.0 +0.3 66.9 67.1 +0.4
IE.Slavic hr 1,1,1 62.2 63.7 632 +1.0 63.6 634 +1.2
IE.Slavic bg 11,1 79.6 79.7  79.2 +0.0 79.7  79.7 +0.1
IE.Baltic Iv 1,1,1 70.3 70.7  69.5 -0.8 70.5  69.9 -0.4
IE.Latin la 2,77 474 48.0 45.6 -1.8 48.1 473 -0.1
IE.Germanic | da 1,1,1 76.6 76.6  76.5 -0.1 76.6  76.6 +0.0
IE.Germanic nl 0,1,1 67.5 676 675 +0.0 679 67.9 +0.4
Average Performance | 543 | 584 578 435 | 581 575 431

Table 1: Cross-lingual transfer performances for dependency parsing on 19 languages from 13 different fami-
lies, with the performance on the source language (English) as a reference. Performances are reported per UAS
(we observe similar trends for LAS and details can be found in the appendix Table 7). We compare the baseline
model (Ahmad et al., 2019) with our two algorithms (Lagrangian relaxation and posterior regularization) consid-
ering the oracle constraints, and the corpus-statistics constraints compiled from WALS. Columns AWALS denote
the improvements bring by leveraging WALS feature as constraints. We also create a Features column to show
three WALS features [83A,85A,87A] for each language. The values {1, -1, 0, ?} stand for the same as English,
opposite to English, no dominant order, and feature missing, respectively.

ratio for unary constraint C'l, we use the WALS
features 82.A,83A,85A,86A,87A,88A, 89 A that
are related to NOU N to form feature vectors, and
do regression on languages in the test set except
the target language to predict the constraint ratio.
The process guarantees the target language remain
unseen during the ratio estimation process. The
ratios on the regression training languages are es-
timated by sampling 100 sentences in the training
set per language.

We also consider an oracle setting where we
collect a “ground-truth” ratio of each constraint for
the target language to estimate an upper bound of
our inference algorithms. In the oracle setting, we
estimate the ratio on the whole training corpus of
the target language and set the margin to § = 0.01.

4.2 Parsing Performances

We first compare the performances of the cross-
lingual dependency parser with or without con-

straints. Table 1 illustrates the results for the 19
target languages we selected,® along with the per-
formance on the source language (English). The
performance on English is not as high as the de-
pendency parsers specialized for English, because
to achieve transfer, we have to freeze the pre-
trained multi-lingual word embeddings. Yet this
parser achieved the best single-source transfer per-
formances according to Ahmad et al. (2019).

As is shown in Table 1, the improvements by
our constrained inference algorithms are dramatic
in a few languages that have very distinct word
order features from the source language. For ex-
ample, the parsing performance of Hindi (hi) im-
proves about 15% in UAS with WALS features
via both Lagrangian relaxation and posterior reg-
ularization inference. The improvements are less

We also run on all languages in Ahmad et al. (2019) for
completeness and observe similar trends. The results can be
found in Appendix Table 7.
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obvious for languages that are in the same fam-
ily as English such as Danish(da) and Dutch(nl).
This is expected as the corpus linguistic statistics
of these languages are similar to English thus the
constraints are mostly satisfied with the baseline
parser. Comparing Lagrangian relaxation and pos-
terior regularization, we find posterior regulariza-
tion being more robust and less sensitive to the er-
rors in the corpus-statistics estimation, while La-
grangian relaxation gives a higher improvement
on average. Overall, the two proposed constrained
inference algorithms improved the transfer perfor-
mance by 3.5% and 3.1% per UAS on average on
19 target languages.

For languages like Finnish (fi) and Estonian (et),
the WALS setting works even better than the ora-
cle. We suspect the reason being the large margin
we set in the WALS setting. When the estimated
corpus-statistics is different from the real ratio
in the test set, the large margin relaxes the con-
straints, thus could result in better performances.

Discussion. Despite the major experiments and
analysis are conducted using English as the only
source language, our approach is general and does
not have restriction on the choice of the source lan-
guage(s). To verify this claim, we run experiments
with Hebrew as the source language. Under the or-
acle setting, Lagrangian relaxation and posterior
regularization improve the baseline by 4.4% and
4.1%, respectively.

We observed that if we compile WALS features
into hard constraints (i.e., set » = 0 or 1), the con-
straint inference framework only improves perfor-
mance on half of the languages. For example, in
Estonian (et), the performance drops about 3%.
This is because WALS only provides the domi-
nant order. Therefore, treating WALS as hard con-
straints introduces error to the inference.

Finally, we assume if we can access to native
speakers, the corpus-statistics can be estimated by
a few partial annotations of parse trees. In our sim-
ulation, using less than 300 arcs, we can achieve
the same performance as using the oracle.

4.3 Contributions of Individual Constraints

We analyze the contribution of each constraint
demonstrated in Table 2. Here we use the or-
acle setting to reduce the noise introduced by
corpus-statistics estimation errors. The results are
based on Lagrangian relaxation inference. As
shown in Table 2, Despite some languages have

Model UAS coverage A
baseline  54.3 N/A N/A
+Proj. 54.6 N/A +0.3
+Proj.+C1  57.0 0.24 +2.4
+Proj.+C2  55.7 0.08 +1.1
+Proj.+C3 55.0 0.07 +0.4
oracle 58.4 N/A +4.1

Table 2: Ablation study: average UAS of baseline
model with different sets of constraints. Proj. represent
projective constraints. C1-C3 and oracle are introduced
in 4.1. The improvements for projective constraint and
oracle are compared to baseline. For the other three
constraint sets the improvement is compared to model
with projective constraint.

Const. statistics improvement
+Proj. N/A +0.1

C1 0.30/0.36/0.94 +6.9

C2 0.00/0.06/1.00 +11.3

C3 0.14/0.27/0.12 +0.5

All N/A +18.1

Table 3: Contribution of individual constraints and
their statistics in Hindi. The second column lists the ra-
tios estimated from oracle in English/ baseline in Hindi/
oracle in Hindi, respectively. The improvement is mea-
sured in UAS. The improvement of constraints is com-
puted same as Table 2

non-projective dependencies, we observed perfor-
mance improvements on almost all the languages
when the projective constraint is enforced. All the
constraints we formulated have positive contribu-
tions to the performance improvements. C1 =
(NOUN) brings the largest gain probably be-
cause its widest coverage.

Table 1 shows that the performance of Hindi im-
proves from 34% to over 51% per UAS for both
inference algorithms. To better understand where
the improvements come from, we conduct an anal-
ysis to breakdown the contribution of each indi-
vidual constraint for Hindi. Table 3 shows the re-
sults. We can see that since the corpus linguis-
tic statistics between Hindi and English are dis-
tinct, the baseline model only achieves low perfor-
mance. With the constrained inference, especially
the postposition constraint (C2), the proposed in-
ference algorithm bring significant improvement.

To verify the effectiveness of the constraints,
we analyze the relation between the performance
improvements and corpus statistics ratio gaps be-
tween the source and the target languages. To
quantify the ratio gap, we weight constraints by
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their coverage rate and compute the weighted av-
erage of the ratio difference between source and
target languages. Results show that the perfor-
mance improvement is highly related to the ra-
tio gap. The Pearson Correlation Coefficient is
0.938. The figure showing the correlation be-
tween performance gap (as per UAS) and the cor-
pus statistics ratio gap is in the Appendix Figure 3.

5 Related Work

Cross-Lingual Transfer for Parsing Many ap-
proaches have been developed to transfer a de-
pendency parser. However, they mainly focus on
better capture information from the source lan-
guage(s). McDonald et al. (2011); Guo et al.
(2016); Tackstrom et al. (2013); Chen et al. (2019)
consider transferring a parser trained on multi-
ple source languages. Agi¢ (2017); Lin et al.
(2019) selects good source languages by com-
paring part-of-speech tags sequences. Sggaard
(2011); Téckstrom et al. (2013) chooses suitable
data points from the source language. Pires et al.
(2019) uses multilingual BERT to leverage lan-
guage features from multiple languages. Ahmad
et al. (2019) design an order-free model to take
out the order features from the source language.
Xiao and Guo (2014); Guo et al. (2015) learn
an alignment from source words to target words.
Ponti et al. (2018) learn an anisomorphism from
the source parsing tree to target. Rasooli and
Collins (2019) reorder the source data before train-
ing. In contrast, we focus on incorporating linguis-
tic properties in the target languages.

Constrained Inference for Parsing Several
previous studies show that adding constraints in
inference time improves the performance of mod-
els. Grave and Elhadad (2015) consider incorpo-
rating constraints to promote popular types of arcs
in an unsupervised setting. Naseem et al. (2010);
Lietal. (2019) train a parser with constraints com-
piled from the frequency of particular arcs. Com-
pared with the previous work, we focus on cross-
lingual transfer with word order constraints.
Finally, prior studies have noticed that the word
order information is significant for parsing and
use it as features (Ammar et al., 2016; Naseem
et al., 2012; Rasooli and Collins, 2017; Zhang and
Barzilay, 2015; Dryer, 2007). Tickstrom et al.
(2013) further propose to decompose these fea-
tures from models for adapting target languages.
Wang and Eisner (2018a) use the statistics of sur-

face part-of-speech (POS) tags of target languages
to learn the word order. Wang and Eisner (2018b)
use POS tags of target languages together with a
similar language, and design a stochastic permu-
tation process to synthetic the word order. How-
ever, none of them consider using the word order
features as constraints.

Incorporating Constraints In NLP Tasks
Constraints are widely incorporated in variety of
NLP tasks. To name a few, Roth and Yih (2004)
propose to formulate constrained inferences in
NLP as integer linear programming problems. To
solve the intractable structure, Rush and Collins
(2012) decompose the structure and incorporate
constraints on some composite tasks. To improve
the performance of a model, Chang and Collins
(2011); Peng et al. (2015) incorporate constraints
on exact decoding tasks and inference tasks on
graphical models, and Chang et al. (2013); Dalvi
(2015); Martins (2015) incorporate corpus-level
constraints on semi-supervised multilabel classi-
fication and coreference resolution. Zhao et al.
(2017) incorporate corpus-level constraints to
avoid amplifying gender bias on visual semantic
role labeling and multilabel classification. In
contrast to previous work, we incorporate corpus-
level constraints to facilitate dependency parser in
the cross-lingual transfer setting.

6 Conclusion

We propose to leverage corpus-linguistic statis-
tics to guide the inference of cross-lingual depen-
dency parsing. We compile these statistics into
corpus-statistic constraints and design two infer-
ence algorithms on top of a graph-based parser
based on Lagrangian relaxation and posterior reg-
ularization. Experiments on 19 languages show
that our approach improves the performance of
the cross-lingual parser substantially. In the fu-
ture, we plan to study the design and incorporation
of fine-grained constraints considering multipule
languages for cross-lingual transfer. We also plan
to adapt this constrained inference framework to
other cross-lingual structured prediction problems,
such as semantic role labeling.
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