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Abstract

Pre-training Transformer from large-scale raw
texts and fine-tuning on the desired task have
achieved state-of-the-art results on diverse
NLP tasks. However, it is unclear what the
learned attention captures. The attention com-
puted by attention heads seems not to match
human intuitions about hierarchical structures.
This paper proposes Tree Transformer, which
adds an extra constraint to attention heads of
the bidirectional Transformer encoder in order
to encourage the attention heads to follow tree
structures. The tree structures can be automat-
ically induced from raw texts by our proposed
“Constituent Attention” module, which is sim-
ply implemented by self-attention between
two adjacent words. With the same training
procedure identical to BERT, the experiments
demonstrate the effectiveness of Tree Trans-
former in terms of inducing tree structures,
better language modeling, and further learning
more explainable attention scores'.

1 Introduction

Human languages exhibit a rich hierarchical struc-
ture which is currently not exploited nor mir-
rored by the self-attention mechanism that is
the core of the now popular Transformer archi-
tecture. Prior work that integrated hierarchi-
cal structure into neural networks either used re-
cursive neural networks (Tree-RNNs) (C.Goller
and A.Kuchler, 1996; Socher et al., 2011; Tai
et al., 2015) or simultaneously generated a syn-
tax tree and language in RNN (Dyer et al.,
2016), which have shown beneficial for many
downstream tasks (Aharoni and Goldberg, 2017;
Eriguchi et al., 2017; Strubell et al., 2018; Zare-
moodi and Haffari, 2018). Considering the re-
quirement of the annotated parse trees and the

'The source code is publicly available at https://
github.com/yaushian/Tree-Transformer.

costly annotation effort, most prior work relied on
the supervised syntactic parser. However, a su-
pervised parser may be unavailable when the lan-
guage is low-resourced or the target data has dif-
ferent distribution from the source domain.

Therefore, the task of learning latent tree struc-
tures without human-annotated data, called gram-
mar induction (Carroll and Charniak, 1992; Klein
and Manning, 2002; Smith and Eisner, 2005), has
become an important problem and attractd more
attention from researchers recently. Prior work
mainly focused on inducing tree structures from
recurrent neural networks (Shen et al., 2018a,b) or
recursive neural networks (Yogatama et al., 2017;
Drozdov et al., 2019), while integrating tree struc-
tures into Transformer remains an unexplored di-
rection.

Pre-training Transformer from large-scale raw
texts successfully learns high-quality language
representations. By further fine-tuning pre-trained
Transformer on desired tasks, wide range of NLP
tasks obtain the state-of-the-art results (Radford
et al.,, 2019; Devlin et al., 2018; Dong et al.,
2019). However, what pre-trained Transformer
self-attention heads capture remains unknown. Al-
though an attention can be easily explained by ob-
serving how words attend to each other, only some
distinct patterns such as attending previous words
or named entities can be found informative (Vig,
2019). The attention matrices do not match our
intuitions about hierarchical structures.

In order to make the attention learned by
Transformer more interpretable and allow Trans-
former to comprehend language hierarchically, we
propose Tree Transformer, which integrates tree
structures into bidirectional Transformer encoder.
At each layer, words are constrained to attend to
other words in the same constituents. This con-
straint has been proven to be effective in prior
work (Wu et al., 2018). Different from the prior
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work that required a supervised parser, in Tree
Transformer, the constituency tree structures is au-
tomatically induced from raw texts by our pro-
posed “Constituent Attention” module, which is
simply implemented by self-attention. Motivated
by Tree-RNNs, which compose each phrase and
the sentence representation from its constituent
sub-phrases, Tree Transformer gradually attaches
several smaller constituents into larger ones from
lower layers to higher layers.
The contributions of this paper are 3-fold:

e Our proposed Tree Transformer is easy to
implement, which simply inserts an addi-
tional “Constituent Attention” module im-
plemented by self-attention to the original
Transformer encoder, and achieves good per-
formance on the unsupervised parsing task.

e As the induced tree structures guide words
to compose the meaning of longer phrases
hierarchically, Tree Transformer improves
the perplexity on masked language modeling
compared to the original Transformer.

e The behavior of attention heads learned
by Tree Transformer expresses better inter-
pretability, because they are constrained to
follow the induced tree structures. By visu-
alizing the self-attention matrices, our model
provides the information that better matchs
the human intuition about hierarchical struc-
tures than the original Transformer.

2 Related Work

This section reviews the recent progress about
grammar induction. Grammar induction is the task
of inducing latent tree structures from raw texts
without human-annotated data. The models for
grammar induction are usually trained on other
target tasks such as language modeling. To obtain
better performance on the target tasks, the mod-
els have to induce reasonable tree structures and
utilize the induced tree structures to guide text en-
coding in a hierarchical order. One prior attempt
formulated this problem as a reinforcement learn-
ing (RL) problem (Yogatama et al., 2017), where
the unsupervised parser is an actor in RL and the
parsing operations are regarded as its actions. The
actor manages to maximize total rewards, which
are the performance of downstream tasks.

PRPN (Shen et al., 2018a) and On-LSTM (Shen
et al., 2018b) induce tree structures by introducing

a bias to recurrent neural networks. PRPN pro-
poses a parsing network to compute the syntactic
distance of all word pairs, and a reading network
utilizes the syntactic structure to attend relevant
memories. On-LSTM allows hidden neurons to
learn long-term or short-term information by the
proposed new gating mechanism and new activa-
tion function. In URNNG (Kim et al., 2019b), they
applied amortized variational inference between a
recurrent neural network grammar (RNNG) (Dyer
etal., 2016) decoder and a tree structures inference
network, which encourages the decoder to gen-
erate reasonable tree structures. DIORA (Droz-
dov et al., 2019) proposed using inside-outside dy-
namic programming to compose latent represen-
tations from all possible binary trees. The repre-
sentations of inside and outside passes from same
sentences are optimized to be close to each other.
Compound PCFG (Kim et al., 2019a) achieves
grammar induction by maximizing the marginal
likelihood of the sentences which are generated by
a probabilistic context-free grammar (PCFG) in a
corpus.

3 Tree Transformer

Given a sentence as input, Tree Transformer in-
duces a tree structure. A 3-layer Tree Trans-
former is illustrated in Figure 1(A). The build-
ing blocks of Tree Transformer is shown in Fig-
ure 1(B), which is the same as those used in
bidirectional Transformer encoder, except the pro-
posed Constituent Attention module. The blocks
in Figure 1(A) are constituents induced from the
input sentence. The red arrows indicate the self-
attention. The words in different constituents are
constrained to not attend to each other. In the O-
th layer, some neighboring words are merged into
constituents; for example, given the sentence “the
cute dog is wagging its tail”, the tree Transformer
automatically determines that “cute” and “dog”
form a constituent, while “its” and “tail” also form
one. The two neighboring constituents may merge
together in the next layer, so the sizes of con-
stituents gradually grow from layer to layer. In the
top layer, the layer 2, all words are grouped into
the same constituent. Because all words are into
the same constituent, the attention heads freely at-
tend to any other words, in this layer, Tree Trans-
former behaves the same as the typical Trans-
former encoder. Tree Transformer can be trained
in an end-to-end fashion by using “masked LM”,
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Figure 1: (A) A 3-layer Tree Transformer, where the blocks are constituents induced from the input sentence. The
two neighboring constituents may merge together in the next layer, so the sizes of constituents gradually grow
from layer to layer. The red arrows indicate the self-attention. (B) The building blocks of Tree Transformer. (C)

Constituent prior C for the layer 1.

which is one of the unsupervised training task used
for BERT training.

Whether two words belonging to the same con-
stituent is determined by “Constituent Prior” that
guides the self-attention. Constituent Prior is de-
tailed in Section 4, which is computed by the
proposed Constituent Attention module in Sec-
tion 5. By using BERT masked language model as
training, latent tree structures emerge from Con-
stituent Prior and unsupervised parsing is thereby
achieved. The method for extracting the con-
stituency parse trees from Tree Transformer is de-
scribed in Section 6.

4 Constituent Prior

In each layer of Transformer, there are a query ma-
trix ) consisting of query vectors with dimension
dj, and a key matrix K consisting of key vectors
with dimension dj. The attention probability ma-
trix is denoted as F, which is an N by N matrix,
where N is the number of words in an input sen-
tence. Ej;; is the probability that the position i
attends to the position j. The Scaled Dot-Product
Attention computes the F as:

T

E = softmax( ), (1)
where the dot-product is scaled by 1/d. In Trans-
former, the scaling factor d is set to be /dy.

In Tree Transformer, the E is not only deter-
mined by the query matrix () and key matrix K,
but also guided by Constituent Prior C' generat-
ing from Constituent Attention module. Same as
E, the constituent prior C' is also a N by N ma-
trix, where C; ; is the probability that word w; and

word w; belong to the same constituency. This
matrix is symmetric that C; ; is same as C; ;. Each
layer has its own Constituent Prior C. An exam-
ple of Constituent Prior C' is illustrated in Fig-
ure 1 (C), which indicates that in layer 1, “the cute
dog” and “is wagging its tail” are two constituents.

To make each position not attend to the position
in different constituents, Tree Transformer con-
strains the attention probability matrix F by con-
stituent prior C' as below,

T

E = C © softmax( y

) 2

where © is the element-wise multiplication.
Therefore, if C;; has small value, it indicates
that the positions ¢ and j belong to different con-
stituents, where the attention weight E; ; would be
small. As Transformer uses multi-head attention
with h different heads, there are h different query
matrices () and key matrices K at each position,
but here in the same layer, all attention heads in
multi-head attention share the same C. The multi-
head attention module produces the output of di-
mension d,,ode; = h X dj.

5 Constituent Attention

The proposed Constituent Attention module is
to generate the constituent prior C. Instead of
directly generating C, we decompose the prob-
lem into estimating the breakpoints between con-
stituents, or the probability that two adjacent
words belong to the same constituent. In each
layer, the Constituent Attention module generates
a sequence a = {ay,...,a;,...,an}, where a; is
the probability that the word w; and its neighbor
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Figure 2: The example illustration about how neigh-
boring attention works.

word w;1 are in the same constituent. The small
value of a; implies that there is a breakpoint be-
tween w; and w;1, so the constituent prior C' is
obtained from the sequence a as follows. Cj ; is
the multiplication of all a;<;; between word w;
and word w;:

j—1
Cij =[] ar- (3)
k=i
In (3), we choose to use multiplication instead of
summation, because if one of a;<;; between two
words w; and wj; is small, the value of C; ; with
multiplication also becomes small. In implemen-
tation, to avoid probability vanishing, we use log-
sum instead of directly multiplying all a:

Cij = 62?;1 log(ax) (4)

The sequence a is obtained based on the follow-
ing two mechanisms: Neighboring Attention and
Hierarchical Constraint.

5.1 Neighboring Attention

We compute the score s; ;.1 indicating that w;
links to w;41 by scaled dot-product attention:
oy = LNL ®
d
where g; is a link query vector of w; with d;,04e;
dimensions, and k; 1 is a link key vector of w;1
with d;;04¢; dimensions. We use ¢; - ki1 to rep-
resent the tendency that w; and w;1 belong to the
same constituent. Here, we set the scaling factor
d to be %. The query and key vectors in (5)
are different from (1). They are computed by the
same network architecture, but with different sets
of network parameters.

For each word, we constrain it to either link to
its right neighbor or left neighbor as illustrated in
Figure 2. This constraint is implemented by ap-
plying a softmax function to two attention links of
W;.

Dii+1,Dii—1 = softmax(s;i+1,5ii-1), (6)

where p; ;41 is the probability that w; attends to
Wi4+1, and (pi,iJrl +pi,i71) = 1. We find that with-
out the constraint of the softmax operation in (6)
the model prefers to link all words together and
assign all words to the same constituency. That is,
giving both s; ;11 and s; ;1 large values, so the at-
tention head freely attends to any position without
restriction of constituent prior, which is the same
as the original Transformer. Therefore, the soft-
max function is to constraint the attention to be
sparse.

As p; i+1 and p;y1; may have different values,
we average its two attention links:

a; = \/Piji+1 X Pit1i- @)

The a; links two adjacent words only if two words
attend to each other. a; is used in the next subsec-
tion to obtain a;.

5.2 Hierarchical Constraint

As mentioned in Section 3, constituents in the
lower layer merge into larger one in the higher
layer. That is, once two words belong to the same
constituent in the lower layer, they would still be-
long to the same constituent in the higher layer. To
apply the hierarchical constraint to the tree Trans-
former, we restrict afﬂ to be always larger than agc_l
for the layer | and word index k. Hence, at the

layer [, the link probability aﬁc is set as:
al. = aﬁ;l +(1- aifl)d%, (8)

where aﬁ;l is the link probability from the previ-
ous layer [ — 1, and di is obtained from Neighbor-
ing Attention (Section 5.1) of the current layer /.
Finally, at the layer [, we apply (4) for computing
C! from a'. Initially, different words are regarded
as different constituents, and thus we initialize a,;l
as zero.

6 Unsupervised Parsing from Tree
Transformer

After training, the neighbor link probability a can
be used for unsupervised parsing. The small value
of a suggests this link be the breakpoint of two
constituents. By top-down greedy parsing (Shen
etal., 2018a), which recursively splits the sentence
into two constituents with minimum a, a parse tree
can be formed.

However, because each layer has a set of a!, we
have to decide to use which layer for parsing. In-
stead of using a from a specific layer for parsing

1064



Algorithm 1 Unsupervised Parsing with Multiple
Layers

1: a < link probabilities

2: m <+ minimum layer id > Discard the a
from layers below minimum layer

3: thres < 0.8 > Threshold of breakpoint

4: procedure BUILDTREE(, s, €) > [: layer
index, s: start indeX, e: end index

5: if ¢ — s < 2 then> The constituent cannot
be split

6: return (s, e)

7 span < ai<i<e

8: b « argmin(span) > Get breakpoint

9: last < max(l — 1, m) > Get index of last
layer

10: if aé > thres then

11: if [ = m then

12: return (s, e)

13: return BuildTree(last, s, e)

14: treel < BuildTree(last, s,b)
15: tree2 <— BuildTree(last,b+ 1,¢)
16: return (treel, tree2) > Return tree

(Shen et al., 2018b), we propose a new parsing al-
gorithm, which utilizes a from all layers for un-
supervised parsing. As mentioned in Section 5.2,
the values of a are strictly increasing, which indi-
cates that a directly learns the hierarchical struc-
tures from layer to layer. Algorithm 1 details how
we utilize hierarchical information of a for unsu-
pervised parsing.

The unsupervised parsing starts from the top
layer, and recursively moves down to the last layer
after finding a breakpoint until reaching the bot-
tom layer m. The bottom layer m is a hyperparam-
eter needed to be tuned, and is usually set to 2 or
3. We discard a from layers below m, because we
find the lowest few layers do not learn good rep-
resentations (Liu et al., 2019) and thus the parsing
results are poor (Shen et al., 2018b). All values of
a on top few layers are very close to 1, suggesting
that those are not good breakpoints. Therefore, we
set a threshold for deciding a breakpoint, where a
minimum a will be viewed as a valid breakpoint
only if its value is below the threshold. As we find
that our model is not very sensitive to the threshold
value, we set it to be 0.8 for all experiments.

7 Experiments

In order to evaluate the performance of our pro-
posed model, we conduct the experiments detailed
below.

7.1 Model Architecture

Our model is built upon a bidirectional Trans-
former encoder. The implementation of our Trans-
former encoder is identical to the original Trans-
former encoder. For all experiments, we set the
hidden size d,,,qe; Of Constituent Attention and
Transformer as 512, the number of self-attention
heads & as 8, the feed-forward size as 2048 and
the dropout rate as 0.1. We analyze and discuss
the sensitivity of the number of layers, denoted as
L, in the following experiments.

7.2 Grammar Induction

In this section, we evaluate the performance of our
model on unsupervised constituency parsing. Our
model is trained on WSJ training set and WSJ-all
(i.e. including testing and validation sets) by us-
ing BERT Masked LM (Devlin et al., 2018) as un-
supervised training task. We use WordPiece (Wu
et al.,, 2016) tokenizer from BERT to tokenize
words with a 16k token vocabulary. Our best re-
sult is optimized by adam with a learning rate of
0.0001, 81 = 0.9 and B> = 0.98. Following the
evaluation settings of prior work (Htut et al., 2018;
Shen et al., 2018b)2, we evaluate F1 scores of our
model on WSJ-test and WSJ-10 of Penn Treebank
(PTB) (Marcus et al., 1993). The WSJ-10 has
7422 sentences from whole PTB with sentence
length restricted to 10 after punctuation removal,
while WSJ-test has 2416 sentences from the PTB
testing set with unrestricted sentence length.

The results on WSJ-test are in Table 1. We
mainly compare our model to PRPN (Shen et al.,
2018a), On-Istm (Shen et al., 2018b) and Com-
pound PCFG(C-PCFG) (Kim et al., 2019a), in
which the evaluation settings and the training data
are identical to our model. DIORA (Drozdov
etal.,2019) and URNNG (Kim et al., 2019b) use a
relative larger training data and the evaluation set-
tings are slightly different from our model. Our
model performs much better than trivial trees (i.e.
right and left-branching trees) and random trees,
which suggests that our proposed model success-
fully learns meaningful trees. We also find that

https://github.com/yikangshen/
Ordered-Neurons
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Model Data F1,.c00n Flioas Model Data F1,.ci0n Floas
PRPN WSJ-train 35.0 42.8 PRPN WSJ-train 70.5 71.3
On-lstm WSJ-train 47.7 49.4 On-lstm WSJ-train 65.1 66.8
C-PCFG WSJ-train 55.2 60.1 C-PCFG WSJ-train 70.5 -
Tree-T,L=12 WSJ-train 48.4 50.2 Tree-T,L=10 WSJ-train 66.2 67.9
Tree-T,.L=10 WSJ-train 49.5 51.1 DIORA NLI 67.7 68.5
Tree-T,L=8 WSJ-train 48.3 49.6 Tree-T,L=10 WSJ-all 66.2 68.0
Tree-T.L=6  WSJ-train 474 48.8 CCM WSIJ-10 - 71.9
DIORA NLI 55.7 56.2 DMV+CCM  WSIJ-10 - 77.6
URNNG Billion - 52.4 UML-DOP WSIJ-10 - 82.9
Tree-T,L=10  WSJ-all 50.5 52.0 Random - 31.9 32.6
Random - 21.6 21.8 LB - 19.6 19.6
LB - 9.0 9.0 RB - 56.6 56.6
RB - 39.8 39.8

Table 1: The F1 scores on WS]J-test. Tree Trans-
former is abbreviated as Tree-T, and L is the num-
ber of layers(blocks). DIORA is trained on multi-NLI
dataset (Williams et al., 2018). URNNG is trained on
the subset of one billion words (Chelba et al., 2013)
with 1M training data. LB and RB are the left and
right-brancing baselines.

on friday
were selling

some market makers again

traders said

Figure 3: A parse tree induced by Tree Transformer.
As shown in the figure, because we set a threshold in
Algorithm 1, the leaf nodes are not strictly binary.

increasing the layer number results in better per-
formance, because it allows the Tree Transformer
to model deeper trees. However, the performance
stops growing when the depth is above 10. The
words in the layers above the certain layer are
all grouped into the same constituent, and there-
fore increasing the layer number will no longer
help model discover useful tree structures. In Ta-
ble 2, we report the results on WSJ-10. Some of
the baselines including CCM (Klein and Manning,
2002), DMV+CCM (Klein and Manning, 2005)
and UML-DOP (Bod, 2006) are not directly com-
parable to our model, because they are trained us-
ing POS tags our model does not consider.

In addition, we further investigate what kinds
of trees are induced by our model. Following
URNNG, we evaluate the performance of con-

Table 2: The F1 scores on WSJ-10. Tree Transformer
is abbreviated as Tree-T, and L is the number of layers
(blocks).

Label Tree-T URNNG PRPN
NP 67.6 39.5 63.9
VP 38.5 76.6 273
PP 52.3 55.8 55.1
ADJP 24.7 33.9 42.5
SBAR 36.4 74.8 28.9
ADVP 551 50.4 45.1

Table 3: Recall of constituents by labels. The re-
sults of URNNG and PRPN are taken from Kim et al.
(2019b).

stituents by its label in Table 3. The trees in-
duced by different methods are quite different.
Our model is inclined to discover noun phrases
(NP) and adverb phrases (ADVP), but not easy
to discover verb phrases (VP) or adjective phrases
(ADJP). We show an induced parse tree in Fig-
ure 3 and more induced parse trees can be found
in Appendix.

7.3 Analysis of Induced Structures

In this section, we study whether Tree Trans-
former learns hierarchical structures from layers to
layers. First, we analyze the influence of the hy-
perparameter minimum layer m in Algorithm. 1
given the model trained on WSJ-all in Table 1.
As illustrated in Figure 4(a), setting m to be 3
yields the best performance. Prior work discov-
ered that the representations from the lower lay-
ers of Transformer are not informative (Liu et al.,
2019). Therefore, using syntactic structures from
lower layers decreases the quality of parse trees.
On the other hand, most syntactic information is
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Figure 4: Performance of unsupervised parsing.

missing when a from top few layers are close to 1,
so too large m also decreases the performance.

To further analyze which layer contains richer
information of syntactic structures, we evaluate
the performance on obtaining parse trees from a
specific layer. We use a' from the layer [ for
parsing with the top-down greedy parsing algo-
rithm (Shen et al., 2018a). As shown in Fig-
ure 4(b), using a3 from the layer 3 for parsing
yields the best F1 score, which is 49.07. The re-
sult is consistent to the best value of m. However,
compared to our best result (52.0) obtained by Al-
gorithm 1, the Fl-score decreases by 3 (52.0 —
49.07). This demonstrates the effectiveness of
Tree Transformer in terms of learning hierarchi-
cal structures. The higher layers indeed capture
the higher-level syntactic structures such as clause
patterns.

7.4 Interpretable Self-Attention

This section discusses whether the attention heads
in Tree Transformer learn hierarchical structures.
Considering that the most straightforward way of
interpreting what attention heads learn is to visu-
alize the attention scores, we plot the heat maps of
Constituent Attention prior C' from each layer in
Figure 5.

In the heat map of constituent prior from first
layer (Figure 5(a)), as the size of constituent is
small, the words only attend to its adjacent words.
We can observe that the model captures some sub-
phrase structures, such as the noun phrase “delta
air line” or “american airlines unit’. In Fig-
ure 5(b)-(d), the constituents attach to each other
and become larger. In the layer 6, the words from
“involved” to last word “lines” form a high-level

Model L Params Perplexity
Transformer 8 40M 48.8
Transformer 10 46M 48.5
Transformer 10-B 67M 49.2
Transformer 12 52M 48.1
Tree-T 8 44M 46.1
Tree-T 10 51M 45.7
Tree-T 12 58M 45.6

Table 4: The perplexity of masked words. Params is
the number of parameters. We denote the number of
layers as L. In Transformer L = 10 — B, the increased
hidden size results in more parameters.

adjective phrase (ADJP). In the layer 9, all words
are grouped into a large constituent except the
first word “but”. By visualizing the heat maps
of the constituent prior from each layer, we can
easily know what types of syntactic structures are
learned in each layer. The parse tree of this exam-
ple can be found in Figure 3 of Appendix. We also
visualize the heat maps of self-attention from the
original Transformer layers and one from the Tree
Transformer layers in Appendix A. As the self-
attention heads from our model are constrained
by the constituent prior, compared to the original
Transformer, we can discover hierarchical struc-
tures more easily.

Those attention heat maps demonstrate that: (1)
the size of constituents gradually grows from layer
to layer, and (2) at each layer, the attention heads
tend to attend to other words within constituents
posited in that layer. Those two evidences support
the success of the proposed Tree Transformer in
terms of learning tree-like structures.
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Figure 5: The constituent prior heat maps.

7.5 Masked Language Modeling

To investigate the capability of Tree Transformer
in terms of capturing abstract concepts and syn-
tactic knowledge, we evaluate the performance on
language modeling. As our model is a bidirec-
tional encoder, in which the model can see its
subsequent words, we cannot evaluate the lan-
guage model in a left-to-right manner. We evaluate
the performance on masked language modeling
by measuring the perplexity on masked words?.
To perform the inference without randomness, for
each sentence in the testing set, we mask all words
in the sentence, but not at once. In each masked
testing data, only one word is replaced with a
“[MASK]” token. Therefore, each sentence cre-
ates the number of testing samples equal to its

— > log(p)
3The perplexity of masked words is ¢ "mask , where p

is the probability of correct masked word to be predicted and
Nmask 18 the total number of masked words.

length.

In Table 4, the models are trained on WSJ-train
with BERT masked LM and evaluated on WSJ-
test. All hyperparameters except the number of
layers in Tree Transformer and Transformer are
set to be the same and optimized by the same opti-
mizer. We use adam as our optimizer with learn-
ing rate of 0.0001, 81 = 0.9 and B2 = 0.999. Our
proposed Constituent Attention module increases
about 10% hyperparameters to the original Trans-
former encoder and the computational speed is 1.2
times slower. The results with best performance
on validation set are reported. Compared to the
original Transformer, Tree Transformer achieves
better performance on masked language modeling.
As the performance gain is possibly due to more
parameters, we adjust the number of layers or in-
crease the number of hidden layers in Transformer
L = 10 — B. Even with fewer parameters than
Transformer, Tree Transformer still performs bet-
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ter.

The performance gain is because the induced
tree structures guide the self-attention processes
language in a more straightforward and human-
like manner, and thus the knowledge can be bet-
ter generalized from training data to testing data.
Also, Tree Transformer acquires positional infor-
mation not only from positional encoding but also
from the induced tree structures, where the words
attend to other words from near to distant (lower
layers to higher layers)*.

7.6 Limitations and Discussion

It is worth mentioning that we have tried to initial-
ize our Transformer model with pre-trained BERT,
and then fine-tuning on WSJ-train. However, in
this setting, even when the training loss becomes
lower than the loss of training from scratch, the
parsing result is still far from our best results. This
suggests that the attention heads in pre-trained
BERT learn quite different structures from the
tree-like structures in Tree Transformer. In ad-
dition, with a well-trained Transformer, it is not
necessary for the Constituency Attention module
to induce reasonable tree structures, because the
training loss decreases anyway.

8 Conclusion

This paper proposes Tree Transformer, a first at-
tempt of integrating tree structures into Trans-
former by constraining the attention heads to at-
tend within constituents. The tree structures are
automatically induced from the raw texts by our
proposed Constituent Attention module, which
attaches the constituents to each other by self-
attention. The performance on unsupervised pars-
ing demonstrates the effectiveness of our model in
terms of inducing tree structures coherent to hu-
man expert annotations. We believe that incorpo-
rating tree structures into Transformer is an im-
portant and worth exploring direction, because it
allows Transformer to learn more interpretable at-
tention heads and achieve better language model-
ing. The interpretable attention can better explain
how the model processes the natural language and
guide the future improvement.

*We do not remove the positional encoding from the
Transformer and we find that without positional encoding the
quality of induced parse trees drops.
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