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Abstract

We introduce a novel discriminative word
alignment model, which we integrate into a
Transformer-based machine translation model.
In experiments based on a small number of
labeled examples (∼1.7K–5K sentences) we
evaluate its performance intrinsically on both
English-Chinese and English-Arabic align-
ment, where we achieve major improvements
over unsupervised baselines (11–27 F1). We
evaluate the model extrinsically on data pro-
jection for Chinese NER, showing that our
alignments lead to higher performance when
used to project NER tags from English to Chi-
nese. Finally, we perform an ablation analysis
and an annotation experiment that jointly sup-
port the utility and feasibility of future manual
alignment elicitation.

1 Introduction

Neural-network-based models for Machine Transla-
tion (MT) have set new standards for performance,
especially when large amounts of parallel text (bi-
text) are available. However, explicit word-to-word
alignments, which were foundational to pre-neural
statistical MT (SMT) (Brown et al., 1993), have
largely been lost in neural MT (NMT) models. This
is unfortunate: while alignments are not necessary
for NMT systems, they have a wealth of appli-
cations in downstream tasks, such as transferring
input formatting, incorporating lexica, and human-
in-the-loop translation. Crucially, they are cen-
tral to cross-lingual dataset creation via projection
(Yarowsky et al., 2001), where token-level anno-
tations in a high-resource language are projected
across alignments to a low-resource language; us-
ing projection, datasets have been created for a vari-
ety of natural language processing tasks, including
named-entity recognition (NER), part-of-speech
tagging, parsing, information extraction (IE), and
semantic role labeling (Yarowsky et al., 2001; Hwa
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Figure 1: One application of alignments is to project
annotations (e.g., Named Entities) across bitexts. Here
we see a lack of correspondence between FastAlign
(red) alignments and gold alignments (blue).

et al., 2005; Riloff et al., 2002; Padó and Lapata,
2009; Xi and Hwa, 2005). This paradigm allows
researchers to address a lack of annotated multilin-
gual resources and changing ontologies with mini-
mal annotation effort.

The introduction of attention (Bahdanau et al.,
2014) has allowed NMT to advance past decoding
from a single sentence-level vector representation
and has been crucial in supporting fluent, mean-
ingful translations, especially of longer sentences.
However, despite their intuitive analogy to word
alignments, attention-based alignments typically
do not correspond very closely to gold-standard
human annotations and suffer from systematic er-
rors (Koehn and Knowles, 2017; Ghader and Monz,
2017), falling short of the promise to jointly learn
to align and translate. This problem has only been
exacerbated by the introduction of deeper models
containing multiple attention layers and heads (e.g.
Vaswani et al. (2017)). There have been several
attempts to mitigate this discrepancy, mostly with
a view to improving the quality of output transla-
tions (Alkhouli et al., 2016, 2018; Chen et al., 2016;
Liu et al., 2016) – though some work has focused
specifically on alignment (Legrand et al., 2016;
Zenkel et al., 2019). We confirm that the poor per-
formance of encoder-decoder attention for Recur-
rent Neural Networks (RNNs) found by Koehn and
Knowles (2017) and Ghader and Monz (2017) can
also be observed in the self-attentional Transformer
model (Vaswani et al., 2017), further motivating an
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approach focusing explicitly on alignment quality.
We introduce a novel alignment module that

learns to produce high-quality alignments after
training on 1.7K to 4.9K human-annotated align-
ments for Arabic and Chinese, respectively. While
our module is integrated into the state-of-the-art
Transformer model (Vaswani et al., 2017), the im-
plementation is architecture-neutral, and can there-
fore be applied to RNN-based models (Schwenk,
2012; Kalchbrenner and Blunsom, 2013; Sutskever
et al., 2014) or fully convolutional models (Gehring
et al., 2017). Our experiments on English-Chinese
and English-Arabic bitext show that our model
yields major improvements of 11 and 27 alignment
F1 points (respectively) over baseline models; ab-
lation experiments indicate with only half the data
minor improvements can be observed for Chinese,
and that the amount of annotated alignment data
has a far greater impact on alignment score than the
amount of unlabelled bitext used for pre-training.

Furthermore, our NER projection trials demon-
strate a major downstream improvement when us-
ing our alignments over FastAlign. Taken together,
these results motivate the further annotation of
small amounts of quality alignment data in a variety
of languages. We demonstrate that such annotation
can be performed rapidly by untrained L2 (second
language) speakers.

2 Related work

Statistical Alignment Generative alignment
(Brown et al., 1993) models the posterior over a
target sequence t given a source sequence s as:

p(t|s) =
∑
a

∏
i

p(ti|ai, t<i, s)︸ ︷︷ ︸
lexical model

p(ai|a<i, t<i, s)︸ ︷︷ ︸
alignment model

Such models are asymmetrical: they are learned
in both directions and then heuristically combined.

Discriminative alignment models, on the other
hand, directly model p(a|s, t), usually by extract-
ing features from the source and target sequences
and training a supervised classifier using labelled
data. A comprehensive account of methods and
features for discriminative alignment can be found
in Tomeh (2012).

Neural Machine Translation The attentional
encoder-decoder proposed by Bahdanau et al.
(2014) greatly improved the initial sequence-to-
sequence architecture; rather than conditioning
each target word on the final hidden unit of the
encoder, each target word prediction is conditioned

on a weighted average of all the encoder hidden
units. However, the weights in the average do not
constitute a soft alignment, as confirmed by Koehn
and Knowles (2017) and Ghader and Monz (2017).
Our findings align with those of Ghader and Monz
(2017), who provide a detailed analysis of where
attention and alignment diverge, offering possible
explanations for the modest results obtained when
attempting to bias attention weights towards align-
ments. For example, Chen et al. (2016) introduce
a loss over the attention weight that penalizes the
model when the attention deviates from alignments;
this yields only minor BLEU score improvements.1

Neural Alignment Models Legrand et al. (2016)
develop a neural alignment model that uses a con-
volutional encoder for the source and target se-
quences and a negative-sampling-based objective.
Tamura et al. (2014) introduce a supervised RNN-
based aligner which conditions each alignment
decision on the source and target sequences as
well as previous alignment decisions. Alkhouli
et al. (2018) extend the Transformer architecture
for alignment by adding an additional alignment
head to the multi-head encoder-decoder attention,
biasing the attention weights to correspond with
alignments. Similarly, Zenkel et al. (2019) intro-
duce a single-layer attention module (akin to the
standard Transformer decoder) which predicts the
target word conditioned on the encoder and decoder
states, following the intuition that a source word
should be aligned to a target word if it is highly
predictive of the target word. Unlike our model, all
of these models are asymmetrical and are trained
without explicit alignment data.

Following the generative formulation of the
alignment problem, Alkhouli et al. (2016) present
neural lexical translation and alignment models,
which they train using silver-standard alignments
obtained from GIZA++. A similar training strategy
is used in Alkhouli and Ney (2017), who bias an
RNN attention module with silver-standard align-
ments for use as a lexical model. In the same vein,
Peter et al. (2017) improve the attention module by
allowing it to peek at the next target word.

Note that unlike our framework, none of the mod-
els mentioned make use of existing gold-standard
labeled data. Following Legrand et al. (2016)
and Zenkel et al. (2019) we focus exclusively on
alignment quality. A similar approach is taken

1This may also be a result of noisy training data, as they
use unsupervised alignments as training data for their models.
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by Ouyang and McKeown (2019), who introduce
a pointer network-based model for monolingual
phrase alignment which allows for the alignment
of variable-length phrases.

3 Model

NMT systems typically use an encoder-decoder
architecture, where one neural network (the en-
coder) learns to provide another network (the de-
coder) with a continuous representation of the in-
put sequence of words in the source language,
s1, . . . , sN , from which the decoder can accurately
predict the target sequence t1, . . . , tM . The inter-
mediate representations of the encoder and decoder
are known as hidden states. After training, the hid-
den states of the encoder (S1, . . . , SN ) and decoder
(T1, . . . , TM ) contain information about their co-
indexed source and target words as well as their
respective contexts; this can be thought of as a
rough approximation of the semantic content of the
source and target words. In an MT model (such as
the Transformer-based model used here) the states
of the encoder and decoder networks also bear in-
formation on cross-lingual correspondence.

From these representations, we can derive a natu-
ral formulation of the alignment problem: words of
the source language should be aligned to the words
in the target language that convey roughly the same
meaning in the translated sentence i.e. their con-
textual vector-based meaning representations are
similar.

We use the dot product as an unnormalized mea-
sure of distance between each pair of vectors Si
and Tj . In order to apply a distance metric, the
two vectors are projected into a shared space via
a shared three-layer feed-forward neural network
with tanh activations and a linear output layer, pro-
ducing source and target matrices S′

1, . . . , S
′
N and

T ′
1, . . . , T

′
M .2 This is given by:

S′
i = W3(tanh(W2(tanh(W1Si))))

T ′
j = W3(tanh(W2(tanh(W1Tj))))

Taking the matrix product of the projected source
and target sequences along their shared dimension
yields a matrix A of N × M semantic “links”,
where each element Aij is an un-normalized dis-
tance between vectors S′

i and T ′
j , i.e. A =

[S′
1, . . . , S

′
N ] · [T ′

1, . . . , T
′
M ]T

These distances will be passed through a sig-
moid function, normalizing them to probabili-

2We use 512 hidden units in each layer.

ties p(aij |s, t). However, alignments are context-
sensitive: the decision to align source word i to tar-
get word j may affect the probability of aligning the
neighbors of i and j. Therefore, before applying
the sigmoid function to the matrix A we convolve
it with a shared weight matrix, yielding a matrix
A′, which encodes the relationships between align-
ments; this is given by A′ = Wconv ∗ A, where ∗
is the convolution operator. This can be thought of
as a way of conditioning each alignment decision
on its neighbors, modeling p(ai,j |s, t, ai′ 6=i,j′ 6=j).
This step is crucial—without a 3× 3 convolution,
F1 results hover below 50.

Finally, we apply the sigmoid function to A′ and
treat each alignment decision as a separate binary
classification problem, using binary cross entropy
loss: ∑

i<N,j<M

(
âij log

(
p(aij |s, t)

)
+(

1− âij
)

log
(
1− p(aij |s, t)

))
where âij = 1 if source word i is aligned to target
word j in the gold-standard data, and 0 otherwise.
Note that the convolution step ensures these are not
independent alignment decisions.

When training our model, we begin by pre-
training an MT model on unlabelled bitext; the
weights of this model are used to initialize the en-
coder and decoder in the alignment model. To
obtain an alignment at test time, the source and
target word sequences are encoded and presented
to the aligner.

4 Alignment Experiments

4.1 Baselines
We compare against two baselines: alignments
obtained from FastAlign (Dyer et al., 2013), and
attention-based alignments. FastAlign is a fast log-
linear reparameterization of IBM Model 2 (Brown
et al., 1993).

Unlike in the RNN case, where a single atten-
tion layer intervenes between the encoder and de-
coder, Transformers make use of multi-head and
multi-layer attention. Our attentional alignments
are obtained by averaging across all heads of the
final multi-head encoder-decoder attention layer.

Both of these methods allow for fast online de-
coding, making them comparable to our model,
and both have been used for word alignment; more-
over, FastAlign is a standard choice for projection
(Arthur et al., 2016; Fu et al., 2014; Eger et al.,
2018; Agić et al., 2016; Sharoff, 2018).
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Our model extends the Sockeye implementation
of the Transformer model (Hieber et al., 2017).3

Following Dyer et al. (2013), FastAlign hyperpa-
rameters were tuned by training on 10K training ex-
amples, evaluating on a 100-sentence subset of the
validation split. The grow-diag-final-and heuristic
was used for symmetrization. Thresholds for both
attention alignment and our model were tuned on
the same 100-sentence validation subset.

4.2 Data
Chinese character-tokenized bitext and alignments
were sourced from the GALE Chinese-English Par-
allel Aligned Treebank (Li et al., 2015); Arabic
data was obtained from the GALE Arabic-English
Parallel Aligned Treebank (Li et al., 2013). Both
GALE datasets are based on broadcast news cor-
pora; gold-standard alignments were produced by
multiple trained human annotators, with several
checks for quality including redundant annotation,
review by senior annotators, and automatic heuris-
tics. The GALE corpora satisfy the following crite-
ria:

1. Quality: although some problems were de-
tected in the GALE alignments (e.g. mis-
matched bitext, formatting errors, etc.), the
multiple levels of quality control suggest a
high level of overall quality.

2. Size: while other gold-standard alignment cor-
pora exist (Europarl, etc.) these are typically
on the order of ∼500 sentences; conversely,
GALE is large enough to be used as a training
set in a neural setting.

3. Annotations: GALE is annotated with a vari-
ety of labels, and a subset of the Chinese por-
tion of GALE was annotated for NER as part
of the OntoNotes corpus (Weischedel et al.,
2013).

Sentences were split into train, test, and validation
portions and cleaned by removing extraneous anno-
tations (e.g. timestamp tags, etc.). Corpus statistics
are given in Table 1.

The discriminative models (referred to as Dis-
cAlign) were initialized with weights from an MT
model pre-trained on 4 million sentences, which
were tokenized using the Moses tokenizer (Koehn

3We pre-train a 6-layer model with the Adam optimizer
(Kingma and Ba, 2014) using a learning rate of 0.0002, 8-
headed multi-head attention, 2048-dimensional feed-forward
layers, and 512-dimensional encoder/decoder output layers.
We include weight-tying (Press and Wolf, 2017) between the
source and target embedding layers. All other MT hyperpa-
rameters were set to the Sockeye defaults.

Language train dev test
AR 1687 299 315
ZH 4871 596 636

Table 1: Num. annotated alignment sentence pairs.

et al., 2007). Chinese data was drawn from the
WMT 2017 En-Zh bitext, while the Arabic data
was sourced from local resources; both Chinese
and Arabic models were trained with a 60K-word
vocabulary. For FastAlign, the GALE train split
was concatenated to the pretraining bitext, while
for both the discriminative and attentional mod-
els the GALE data was used to finetune a model
pre-trained on bitext alone.

Contemporary MT systems use subword units
to tackle the problem of out-of-vocabulary low-
frequency words. This is often implemented by
byte-pair encoding (BPE) (Sennrich et al., 2016).
We applied a BPE model with 30K merge opera-
tions to all of our data for the BPE experimental
condition. Training alignments were expanded by
aligning all subwords of a given source word to all
the subwords of the target word to which the source
word aligns. At test time, following Zenkel et al.
(2019), to reduce BPE alignments to regular align-
ments, we considered a source and target word to
be aligned if any of their subwords were aligned.4

This heuristic was used to evaluate all BPE models.
With the task of projection for NER data in mind

(Yarowsky et al., 2001), we evaluate all models on
Chinese NER spans. These spans were obtained
from the OntoNotes corpus, which subsumes the
GALE Chinese corpus. Due to formatting dif-
ferences, only a subset of the GALE sentences
(287 validation, 189 test) were recoverable from
OntoNotes.

We evaluate our models using macro-F1 score,
as Fraser and Marcu (2007) showed that alignment
error rate does not match human judgments. F1
scores were obtained using the macro-F1 scorer
provided by FastAlign.

4.3 Results

Our model outperforms both baselines for all lan-
guages and experimental conditions. Table 2 shows
that our model performs especially well in the
NER setting, where we observe the largest improve-

4Note that this step is necessary in order to make the pro-
duced and reference alignments comparable; to evaluate align-
ments, the sequences must be identical, or the evaluation is
ill-posed.
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Figure 2: (a) Dev. F1 as function of training corpus size
(log scale), contrast against FastAlign F1 (dashed). (b)
Dev. precision (blue) and recall (orange) at different
thresholds.

Method P R F1
Avg. attention. 36.30 46.17 40.65
Avg. attention (BPE) 37.89 49.82 43.05
Avg. attention (NER) 16.57 35.85 22.66
FastAlign 80.46 50.46 62.02
FastAlign (BPE) 70.41 55.43 62.03
FastAlign (NER) 83.70 49.54 62.24
DiscAlign 72.92 73.91 73.41
DiscAlign (BPE) 69.36 67.11 68.22
DiscAlign (NER) 74.52 77.05 75.78
DiscAlign (NER) +prec. 84.69 58.41 69.14

Table 2: Precision, Recall, and F1 on Chinese GALE
test data. BPE indicates “with BPE”, and NER denotes
restriction to NER spans.

Method P R F1
Avg. attention. 8.46 32.50 13.42
Avg. attention (BPE) 10.11 17.27 12.75
FastAlign 62.26 51.06 56.11
FastAlign (BPE) 62.74 51.25 56.42
DiscAlign 91.30 75.66 82.74
DiscAlign (BPE) 87.05 76.98 81.71

Table 3: Precision, Recall, and F1 on Arabic GALE
test data.

ment over FastAlign (∆ = 14). By increasing the
threshold α above which p(ai,j |s, t) is considered
an alignment we can obtain high-precision align-
ments, exceeding FastAlign’s precision and recall.
The best threshold values on the development set
were α = 0.13 and α = 0.14 for average attention
on data with and without BPE (respectively) and
α = 0.15 for the discriminative settings (α = 0.5
was used for the high-precision “+prec” setting).

Table 3 further underscores these findings; we
observe an even more dramatic increase in perfor-

Figure 3: Chinese F1 performance with respect to the
amount of unlabelled pretraining bitext (y axis) and the
number of sentences annotated for alignment (x axis);
increasing the number of annotated sentences has a
far greater impact on the F1 score than increasing the
amount of bitext.

mance on Arabic, despite the fact that the model
is trained on only 1.7K labelled examples. Fur-
thermore, we see that average attention performs
abysmally in Arabic. The best thresholds for Ara-
bic differed substantially from those for Chinese:
for average attention (with and without BPE) the
values were α = 0.05 and α = 0.1, while for
the discriminative aligner they were α = 0.94 and
α = 0.99 (compared to 0.15 for Chinese). This is
reflected in the high precision of the discriminative
aligner.

Figure 2(a) shows the relationship between the
number of training examples and validation F1 per-
formance for Chinese, with the performance of
FastAlign overlaid as a benchmark. We observe
that with a little over half the training examples
(2500), we perform comparably to FastAlign.

In Figure 3, we demonstrate that labelled align-
ment data has a greater impact than the amount
of pre-training bitext. For example, halving the
number of pre-training examples from 8 million
to 4 million only reduces F1 by 3.69, but halving
the number of labelled finetuning examples while
keeping the number of pre-training sentences con-
stant at 8 million lowers the performance by 9.44
F1.

Analysis Taken together, Table 2 and Figure 2
support the use of discriminative alignment models
in settings where test data is presented in an on-
line fashion as well as in cases where high-quality
alignments matter. Most importantly, the results
in the NER condition highlight the applicability of
our model to dataset projection for NER.
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Figure 2(b) also shows that by varying the mini-
mum threshold α on p(aij |s, t), we can manipulate
the precision-recall tradeoff, giving our model an
advantage in scenarios where high precision align-
ments are required (e.g., dataset projection) as well
as in ones where high recall is preferred (e.g., cor-
rection by human annotators).

Our results underscore the poor performance
of attentional alignments. One factor driving the
low F1 scores observed may be the Transformer’s
design: each attention head in the Transformer’s
multi-head attention layer learns to attend to differ-
ent aspects of the encoder states; thus, averaging
across all heads is likely to yield even noisier results
than the RNN model, where there is effectively
only one attention head. Another reason attention
performs poorly may be that attention heads are
learning task- and dataset- specific patterns that
do not match alignments but nevertheless provide
useful cues for translation. This would support
the observations of Ghader and Monz (2017), who
find that for certain parts of speech (e.g. verbs)
alignment is very poorly correlated with translation
loss.

These findings illustrate the benefit of supervised
training for alignment, suggesting further annota-
tion of gold-standard alignments is warranted, with
an emphasis on alignment quality.5 In particular,
Figure 3 indicates that labelled alignment data is
far more valuable than bitext, meaning that efforts
should be focused on annotating existing bitext for
alignment; FastAlign’s performance (when trained
on the entire 4 million-sentence training bitext and
the alignment bitext) can be surpassed after pre-
training the translation model on only 400K sen-
tences of unlabelled bitext and the full alignment
set (4871 sentences).

5 NER Experiments

In Table 2 we evaluated the quality of our model’s
alignments intrinsically, showing that they dramat-
ically outperform the baseline models, especially
for NER spans. To show that these improvements
translate to downstream performance, we conduct
projection experiments for NER using the Chinese
and English data from the OntoNotes 5.0 corpus.

Projection Dataset projection, as defined by
Yarowsky et al. (2001), is a method of obtaining

5In addition to the preprocessing steps required to clean
the data, a bilingual speaker pointed out several systematic
deviations from the alignment protocol by GALE annotators.

data in a low resource language by leveraging exist-
ing bitext and high-resource annotations. As shown
(for a single sentence) in Figure 1, a set of sen-
tences in a high-resource language for which there
exist task-specific token-level annotations (e.g. an
English NER dataset) is translated into the target
language. Using alignments, the annotations are
“projected” from the source text to the target; each
target token receives the label of the source token
it is aligned to (or a default label if the token is
unaligned). This produces an annotated resource
in the target language which can be used to train or
pre-train a model.

Data We project the English OntoNotes NER
training data (53K sentences) by first translating it
to Chinese using our BPE translation model, and
then aligning the source and target sequences us-
ing FastAlign and our best discriminative model.
We create two datasets, one where the tags have
been projected using FastAlign alignments and
another using the higher-quality DiscAlign align-
ments. OntoNotes contains gold-labelled NER data
for 18 tag types in both Chinese and English. The
official splits6 were used. Because there are fewer
training examples for Chinese than English, two
NER models were trained, one with the same num-
ber of projected sentences as there were gold Chi-
nese sentences (36K), and the second using the full
English dataset (53K sentences) projected to Chi-
nese. The data was pre-processed in following the
same procedure as §4

NER Model Given the recent successes of con-
textual encoders for sequence modeling, especially
for NER, we make use of a pre-trained BERT
model (Devlin et al., 2018), where the NER la-
bel is determined by the softmax output of a linear
layer situated on top of the encoder.7 Each model
was trained for 4 to 8 epochs.

We explore the performance of the BERT NER
model when trained on both gold-standard and pro-
jected datasets. In addition, we analyze its per-
formance when trained on decreasing amounts of
gold data, and contrast those results with the per-
formance of a model pre-trained on projected data
and fine-tuned with gold data.

6http://conll.cemantix.org/2012/data.
html

7An NER model was adapted from http://github.
com/kamalkraj/BERT-NER to use a pre-trained Chinese
model and allow for incremental checkpointing.

http://conll.cemantix.org/2012/data.html
http://conll.cemantix.org/2012/data.html
http://github.com/kamalkraj/BERT-NER
http://github.com/kamalkraj/BERT-NER
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Method # train P R F1
Zh Gold 36K 75.46 80.55 77.81
FastAlign 36K 38.99 36.61 37.55
FastAlign 53K 39.46 36.65 37.77
DiscAlign 36K 51.94 52.37 51.76
DiscAlign 53K 51.92 51.93 51.57

Table 4: F1 results on OntoNotes test for systems
trained on data projected via FastAlign and DiscAlign.

# train P R F1
500 41.43 57.97 48.07
1000 58.52 68.05 62.72
2500 68.30 74.93 71.35
4871 72.00 76.90 74.30
10K 73.13 78.79 75.77

Table 5: OntoNotes test set performance when trained
on subsamples of the Chinese gold NER data.

# gold P R F1 ∆F1
500 63.16 68.90 65.74 17.67
1000 66.39 72.23 69.13 6.41
2500 69.57 75.52 72.33 0.98
4871 71.11 76.38 73.60 -0.7
10K 72.52 78.32 75.24 -0.53
full 75.04 80.18 77.45 -0.36

Table 6: OntoNotes test performance when pre-trained
on projected data and finetuned on varying amounts of
Chinese gold NER data. ∆ F1 compares these values
to corresponding rows in Table 5.

5.1 Results & Analysis

Table 4 shows that while NER systems trained on
projected data do categorically worse than an NER
system trained on gold-standard data, the higher-
quality alignments obtained from DiscAlign lead
to a major improvement in F1 when compared to
FastAlign.

For many tasks, an English resource (i.e. the
English portion of the OntoNotes data) exists along
with bitext between English and a given target lan-
guage, but very few resources are available in the
target language. Table 5 shows that projection out-
performs a system trained on gold data when there
is very little gold data available (500 sentences);
as the amount of data increases, these gains disap-
pear. However, Table 6 indicates that projected data
provides a useful pre-training objective for NER,
making low-data NER models perform about as
well as if they had been trained on twice as much

gold data.
Figure 4 shows that for nearly all classes, es-

pecially rare ones, pre-training on projected data
improves downstream results when there is little
annotated data. This is partly due to the fact some
classes (e.g. LANGUAGE, ORDINAL, etc.) may
appear very rarely in the 500-sentence training set
(≤ 21 times). Note that all classes appear at least 5
times in the training data. However, these classes
are far more common in the much larger projected
dataset. In addition, the major gains seen in tags
with higher support in the gold data (e.g. MONEY,
LOCATION) suggest that pre-training the NER
model on projected data does more than merely
expose the model to unseen classes.

6 Human Evaluation

In §4 we established that our discriminatively-
trained neural aligner outperforms unsupervised
baselines, especially on NER spans; in §5 we ver-
ified that the alignments it produces can be pro-
ductively applied a downstream IE task (NER) via
dataset projection.

However, unlike these unsupervised baselines,
our aligner requires labelled data on the order of
thousands of sentences, and thus cannot be applied
to language pairs for which no labelled alignment
data exists (most languages). We contend that us-
ing a web-based crowdsourcing interface 8, align-
ment annotation can be performed rapidly by an-
notators with minimal experience; to justify this
claim, we conduct a small timed experiment using
untrained human annotators. Six L2 Chinese speak-
ers (L1 English) were asked to annotate English-
Chinese bitext for alignment. These sentences were
taken from the GALE development portion of the
OntoNotes dataset. Note that these annotators had
no experience in annotating data for alignment, and
had approximately equivalent amounts of Chinese
instruction. Annotators were introduced to the task
and the alignment interface, and then given 50 min-
utes to align the sentences as accurately as possi-
ble. They were divided into two groups, with each
group annotating a different partition of sentences.

6.1 Results & Analysis

Table 7 shows that alignment can be performed
rapidly, at 4.4 sentences per minute. The annota-
tors achieve high overall precision for alignment,
but fall short on recall. When only alignments of

8https://github.com/hltcoe/tasa

https://github.com/hltcoe/tasa
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Figure 4: Comparing F1 across different tag types when a model is trained on 500 gold NER sentences to when it
is pre-trained on projected data and then finetuned on 500 gold sentences, ranked by number of train examples.

Model sents/m P R F1
Human 4.4 90.09 62.85 73.92
DiscAlign - 74.54 72.15 73.31
Hu. (NER) - 87.73 71.02 78.24
DA (NER) - 77.37 67.69 71.94

Table 7: Sentences per minute and average scores
against gold-labelled data for sentences annotated for
alignment by human annotators (Hu.), compared to Dis-
cAlign (DA) on the same sentences.

NER spans are considered, their F1 score improves
considerably. Additionally, human annotators out-
perform DiscAlign when evaluated on the same
sentences.

These are promising results, as they indicate that
entirely untrained L2 annotators can rapidly anno-
tate data. Their relatively low recall scores might
be due to their lack of training, and given more
extensive training and guidelines we would expect
them to improve.

7 Conclusion & Future Work

We described a model extension to NMT which
supports discriminative alignment, where fewer
than 5K Chinese and 1.7K Arabic labelled sen-
tences lead to better F1 scores in all tested scenarios
than standardly employed mechanisms. By eval-
uating the model on both Arabic and Chinese we
demonstrated that our model’s improvements gener-
alize across typologically divergent languages. We
showed that in Chinese our model’s performance
is particularly strong for NER spans.

We projected a dataset for NER from English

to Chinese using our alignments, verifying that
our model’s higher alignment quality led to down-
stream improvements; our aligner’s intrinsic im-
provements result in major gains over FastAlign
in a downstream NER evaluation. Comparing the
performance of our projected dataset with a gold-
standard dataset, we showed that a large projected
dataset can outperform a small labelled one, and
that projection can be leveraged as a method of
data augmentation for low-resource settings.

Finally, we showed that untrained L2 annotators
can rapidly annotate bitext for alignment, and yield
promising results for both full alignment and NER-
specific annotation, confirming that we can collect
additional data in a variety of languages.

Based on our findings that:
• discriminative alignments outperform com-

mon unsupervised baselines in two typologi-
cally divergent languages
• this performance boost leads to major down-

stream improvements on NER
• only a small amount of labelled data is needed

to realize these improvements
• and that these labelled examples can be ob-

tained from L2 speakers with minimal training
we conclude with a call for additional annotation
efforts in a wider variety of languages. While mul-
tilingual datasets directly annotated for a given task
typically lead to the highest-performing systems
(see Table 4) these datasets are task-specific and not
robust to ontology changes. In contrast, the frame-
work of projection via discriminatively-trained
alignments which we present is task-agnostic (any
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token-level annotations can be projected) and re-
quires only one source-side dataset to be annotated.

Future work will explore different sets of lan-
guages paired with new, higher-quality elicited
alignments of existing bitext. We will also explore
architecture modifications to allow for task-specific
annotation, training, and inference for a given IE
task, where only certain spans are of interest (i.e.
training our aligner only on NER-span alignments).
We expect that asking annotators to only align
Named Entities (or some other token type) will
greatly increase the annotation speed. These ex-
periments will extend beyond NER to other token-
level tasks such as coreference resolution and event
detection.
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Joël Legrand, Michael Auli, and Ronan Collobert.
2016. Neural network-based word alignment
through score aggregation. In Proceedings of the
First Conference on Machine Translation: Volume 1,
Research Papers, pages 66–73. Association for Com-
putational Linguistics.

Xuansong Li, Stephen Grimes, Safa Ismael, Stephanie
Strassel, Mohamed Maamouri, and Ann Bies. 2013.
GALE Arabic-English parallel aligned treebank –
broadcast news part 1; LDC2013T14.

Xuansong Li, Stephen Grimes, Stephanie Strassel, Xi-
aoyi Ma, Nianwen Xue, Mitch Marcus, and Ann
Taylor. 2015. GALE Chinese-English parallel
aligned treebank–training; LDC2015T06.

Lemao Liu, Masao Utiyama, Andrew Finch, and Ei-
ichiro Sumita. 2016. Neural machine translation
with supervised attention. In Proceedings of COL-
ING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages
3093–3102.

Jessica Ouyang and Kathleen McKeown. 2019. Neu-
ral network alignment for sentential paraphrases. In
Proceedings of the 57th Conference of the Associ-
ation for Computational Linguistics, pages 4724–
4735.
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