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Abstract

Entity alignment aims to find entities in differ-
ent knowledge graphs (KGs) that refer to the
same real-world object. An effective solution
for cross-lingual entity alignment is crucial for
many cross-lingual AI and NLP applications.
Recently many embedding-based approaches
were proposed for cross-lingual entity align-
ment. However, almost all of them are based
on TransE or its variants, which have been
demonstrated by many studies to be unsuitable
for encoding multi-mapping relations such as
1-N, N-1 and N-N relations, thus these meth-
ods obtain low alignment precision. To solve
this issue, we propose a new embedding-based
framework. Through defining dot product-
based functions over embeddings, our model
can better capture the semantics of both 1-1
and multi-mapping relations. We calibrate em-
beddings of different KGs via a small set of
pre-aligned seeds. We also propose a weighted
negative sampling strategy to generate valu-
able negative samples during training and we
regard prediction as a bidirectional problem in
the end. Experimental results (especially with
the metric Hits@I) on real-world multilingual
datasets show that our approach significantly
outperforms many other embedding-based ap-
proaches with state-of-the-art performance.

1 Introduction

Knowledge bases in the form of knowledge graphs
(KGs) contain lots of facts of the real world.
In recent years, KGs have been successfully ex-
plored to serve many Al and NLP applications
such as question answering, information extrac-
tion, semantic search and recommender systems.
Multilingual KGs such as BabelNet (Navigli and
Ponzetto, 2012), YAGO3 (Mahdisoltani et al.,
2013) and DBpedia (Lehmann et al., 2015) play
essential roles in many cross-lingual applications.
However, for multilingual KGs, each language-
specific part is constructed by different parties
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with different data sources. Thus these language-
specific KGs contain different but complementary
facts. To support cross-lingual applications, it is
essential for us to integrate these language-specific
KGs into a unified KG. Fortunately, existing inter-
lingual links (ILLs) that link equivalent entities or
relations can help us to achieve this goal. How-
ever, as Chen et al. (2017) and Sun et al. (2017)
pointed out, the existing cross-lingual alignments
usually account for a small proportion of the total.
Therefore, it is valuable to find more cross-lingual
entity alignment pairs to bridge the language gap
in multilingual KGs.

Entity alignment is the task of finding entity
pairs in different KGs that refer to the same real-
world object. An effective solution for entity
alignment is vital for integrating multiple KGs. In
this paper, we focus on cross-lingual entity align-
ment. Our goal is to find more cross-lingual entity
alignments based on existing alignment seeds.

Various methods have been explored for cross-
lingual entity alignment. Traditional approaches
rely on machine translation or feature engineer-
ing to find cross-lingual matching pairs. The
effectiveness of these methods heavily depends
on the quality of translations and defined fea-
tures. Recently, many embedding-based ap-
proaches were proposed for cross-lingual entity
alignment. Embedding-based approaches em-
bed entities and relations as low-dimensional vec-
tors, such that the similarity between entities
or relations can be calculated via their vectors.
For example, MTransE (Chen et al., 2017) em-
beds entities and relations separately in each
KG and then learns the cross-lingual transitions
between different language-specific embedding
spaces. JAPE (Sun et al., 2017) encodes both
structures of KGs and types of attribute values.
GCN-EA (Wang et al., 2018) employs GCNs as
its embedding model to encode entities.
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Though these methods have made great
progress in cross-lingual entity alignment, there
are still several key issues worth study. To the
best of our knowledge, almost all of the existing
methods encode knowledge in KGs based on the
well-known TransE (Bordes et al., 2013) and its
variants (Sun et al., 2017; Zhu et al., 2017). Given
a relational triple 7 = (h,r,t), where r repre-
sents a specific relation between the head entity
h and the tail entity ¢, TransE and its variants ex-
pect vy + U — U = 0, where v}, v;. and v; de-
note the embeddings for h, r and ¢, respectively.
However, as Wang et al. (2014) and Ebisu and
Ichise (2018) pointed out: 1) TransE and its vari-
ants neglect some mapping properties of relations;
and 2) TransE and its variants force entity embed-
dings to be on a sphere in the embedding space,
which conflicts with the expectation of TransE
and warps embeddings obtained by TransE. Thus
TransE and its variants don’t do well in modeling
multi-mapping relations, such as 1-N, N-1 and N-
N relations.

As the majority of relations in real KGs are
multi-mapping relations, previous entity align-
ment approaches obtain low accuracy, especially
with the metric Hits@[. And the gap between
alignment results with the metric Hits@/ and
Hits@10 in these methods is large. This means
previous methods can cluster similar entities to-
gether, however, they don’t have enough ability
to distinguish which is the true counterpart. Al-
though following works such as TransH (Wang
et al.,, 2014), TransR (Lin et al., 2015b) and
TransD (Ji et al., 2015) have extended TransE on
modeling multi-mapping relations, we experimen-
tally found these methods also have low perfor-
mances for cross-lingual entity alignment. And
though the GCN-based approach avoids the flaw
in TransE and its variants, GCN-EA (Wang et al.,
2018) only encodes entities in KGs. It doesn’t dis-
tinguish among relations and the absence of rela-
tion embeddings results in low alignment preci-
sion, t0o.

Besides, most previous works use uniform sam-
pling to generate negative samples during train-
ing, which often generates too many easy exam-
ples that contribute little to learning embeddings.
Although Boot-EA (Sun et al., 2018) proposes a
truncated method to select hard negative samples
based on the semantic similarity, it only consid-
ers hard examples (easy ones are truncated) that
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only account for a small proportion of all exam-
ples, which can lead to overfitting and low accu-
racy in practice (since easy examples are also use-
ful).

To address the above issues, we propose a new
embedding-based framework to do cross-lingual
entity alignment in this paper. Motivated by the
success of multiplicative approaches (Yang et al.,
2015; Trouillon et al., 2016) in knowledge rep-
resentation learning, we propose a new embed-
ding approach for multilingual KGs. The score
function of our method is based on multiplica-
tion instead of subtraction. Unlike TransE and
its variants giving a strong constraint to embed-
dings, dot products of embeddings in our method
scale well and can naturally handle both 1-1 and
multi-mapping relations. Besides, we propose a
weighted sampling strategy to pay more attention
to harder examples than easier ones during the pro-
cess of negative samples generating. We summa-
rize the main contributions of this paper as fol-
lows:

e We propose a new KG embedding framework
to jointly embed entities and relations from
different KGs into a unified embedding space
using a small set of pre-aligned alignment

pairs obtained from inter-lingual links.

We discuss the problem that generating too
many easy negative examples during train-
ing hurts alignment performance and then
we propose a weighted sampling strategy for
hard negative example generation.

We regard the alignment prediction as a bidi-
rectional selection problem, and we propose
to combine ranking matrices from both direc-
tions to align entities.

We evaluate the proposed approach on three
real-world cross-lingual datasets. Experi-
mental results (especially with the metric
Hits@ ) show that our approach significantly
outperforms four representative embedding-
based methods for cross-lingual entity align-
ment.

2 Related Work

2.1 KG Embedding

In the past few years, many KG embedding meth-
ods have been proposed for modeling the se-
mantics of KGs. TransE (Bordes et al., 2013)



interprets a relation as the translation from its
head entity to its tail entity and achieves great
success in many Al-related tasks. Following
TransE, TransH (Wang et al., 2014), TransR (Lin
et al., 2015b) and TransD (Ji et al., 2015) were
proposed to extend TransE on modeling multi-
mapping relations. PTransE (Lin et al., 2015a)
and RTransE (Garcia-Duran et al., 2015) extend
TransE on modeling multi-step relation paths.
There are also non-translation-based methods.
ComplEx (Trouillon et al., 2016) learns embed-
dings via defining product-based functions over
embeddings. And some methods utilizing extra re-
sources, i.e. visual information (Xie et al., 2017)
and entity descriptions (Xie et al., 2016; Xiao
et al., 2017), were also proposed to improve em-
bedding performance.

2.2 Cross-lingual Entity Alignment

Conventional methods for cross-lingual entity
alignment rely on machine translation and hand-
crafted features, which often need extra resources
as input and are difficult to reuse. By contrast,
embedding-based approaches are simple and easy
to reuse. In recent years, many embedding-based
methods have been proposed and achieved promis-
ing results in cross-lingual entity alignment.

Due to the simplicity and effectiveness of
TransE, almost all of the existing cross-lingual en-
tity alignment works employ TransE or its vari-
ants to encode knowledge. JE (Hao et al., 2016)
employs a modified TransE to encode entities and
relations. It bridges different KGs by adding a
loss of alignment seeds in its objective function.
MTransE (Chen et al., 2017) encodes entities and
relations for each language-specific KG separately
based on TransE, and then employs five strate-
gies to learn cross-lingual transitions through pre-
aligned triples. JAPE (Sun et al., 2017) learns
structure embedding using a variant of TransE
which adds weight to negative samples in its ob-
jective function. It also borrows the idea from
Skip-gram model to learn attribute correlations
and then leverages attribute correlations to refine
structure embedding. To overcome the hetero-
geneity and language gap between different KGs,
JAPE only considers the range types of attribute
values, with the specific attribute values discarded.

There are also some efforts have been devoted

to solving the problem of lacking enough train-
ing data. IPTransE (Zhu et al., 2017) and Boot-
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EA (Sun et al., 2018) propose to expand train-
ing set from alignment results iteratively. KD-
CoE (Chen et al., 2018) performs co-training of
a KG embedding model and an entity description
embedding model.

Besides, GCN-EA (Wang et al., 2018) employs
GCNs to embed entities and attributes as low-
dimensional vectors.

Different from the above methods, in this paper,
we propose a new approach to jointly learn embed-
dings for both entities and relations from different
KGs.

3 Problem Formulation

We begin with the problem definition. A knowl-
edge graph (KG) usually contains a large number
of triples in the form of (h,r,t), where r repre-
sents a relation between the head entity /& and the
tail entity £. Formally, a KG can be represented as
KG = (E,R,T), where E, R, T are the set of
entities, relations and triples respectively.

Now suppose we have two heterogenous and
language-specific KGs to be aligned, where
KG1 = (El, Rl, Tl) and KGQ = (EQ, RQ, TQ).
And in many cases, we already have a set of pre-
aligned entities S. = {(e1,e2)|e1 € E1,e2 € Ea}
and relations S, = {(r1,72)|r1 € Ri,72 € Ra}
as alignment seeds. The task of entity alignment is
to automatically find new entity alignments based
on the existing alignment seeds.

4 The Proposed Approach

Our approach consists of two steps. The first step
is to learn embeddings for entities and relations,
and we will introduce a new method to do this
task. The second step is to align entities between
the two input KGs based on the learned embed-
dings. In this section, we will introduce the two
parts in details.

4.1 Multilingual KG Embedding

DistMA: The goal of KG embedding is to embed
entities and relations into a unified vector space
such that low-dimensional vectors of entities or
relations can represent their semantics. A power-
ful KG embedding approach should embed similar
entities or relations to have similar embeddings,
such that the semantics of knowledge graphs can
be well captured.

The most widely used approaches to encode
entities and relations by previous works are



TransE (Bordes et al., 2013) and its variants.
Given one triple 7 = (h,r,t) in a knowledge
graph, TransE and its variants define the energy
function for this triple as £(7) = [|v},+0;—t[[1 /2,
where v}, Uy, 7; € R? represent the d-length vec-
tors for h, r and ¢ respectively. Then they optimize
margin-based ranking losses so that the energy for
positive triples is lower than negative ones. As dis-
cussed in Section 1, they don’t do well in model-
ing multi-mapping relations, we need to explore
new approaches to better capture the semantics of
multi-mapping relations.

In this paper, we propose a new approach to
encode both entities and relations in knowledge
graphs. Our approach defines the energy function
for a triple T as:

Ey(h,r,t) = (0, v7) + (07, 01) + (0h, 07) (1)

where (-, -) denotes the inner product.

Besides, instead of using a margin-based loss
function, we employ the logistic loss with Lo reg-
ularization on model parameters ©. The objective
function is defined as:

O1=— > logo(Ei(h,r,t))

(h,rt)eT+
- >

logo(—1- By(,r,t") + \|O|3
(Wt ET—

(2)

where o is the sigmoid function. T and T~ are
positive and negative triples set, respectively. A
is a hyper-parameter that controls the influence of
regularization. The value of o(E(h,r,t)) mea-
sures the plausibility of the triple (h,r,t). This
means our method expects positive triples to have
high energy scores and negative ones to have low
scores. Compared with TransE and its variants,
dot products of embeddings scale well and can
naturally handle both 1-1 and multi-mapping rela-
tions, which is helpful for capturing the semantics
of KGs. We define the negative triples set T~ as:

T = {(W,r,t)|h € E} U

(hor ) € B}, (hrt) eTH O

where E denotes the set of entities.

ComplEx: The energy function of DistMA
doesn’t distinguish between head entities and tail
entities. This means DistMA can model symmet-
ric relations like similar_to, has_friend well but
maybe unfriendly to some antisymmetric relations
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like is_father_of, part_of. To improve the abil-
ity of our model to encode such relations, we uti-
lize the ComplEx (Trouillon et al., 2016). Instead
of real-valued vectors, ComplEx gives complex-
valued vectors to entities and relations. That is, for
each entity e or relation r, let w, € C* or ), € CF
be the corresponding complex-valued vector, i.e.
w, = Re(w,) + ilm(w,) with Re(w,) € RF
and Im(w,) € RF being the real and imaginary
parts of w,, where R, C represent the real and
complex vector spaces respectively, and ¢ denotes
the square root of -1. Then the energy for a triple
(h,r,t) is defined as follows:

Es(h,r,t) = Re({wh, W, w)) 4)

where (-, -, -) denotes the generalized inner prod-
uct and w; represents the conjugate of w;: w; =
Re(w;) — iIm(wy;). One can easily verify that
Equation (4) can be expanded and written as:

EQ(h, T, t) :<R€( _’h), Re

With this energy function, we use the same Equa-
tion (2) to calculate loss O as O1.

Joint Embedding: With ComplEx, we refine
the final energy function for each triple as:

E(ha r, t) = El(hvra t) +E2(h7 r, t) (6)

Then the final loss O to optimize can be defined
by Equation (2) using Equation (6) as the energy
function.

We will evaluate each part of our method in the
experiments.

Parameter Sharing: The aforementioned em-
bedding model is trained separately in each KG.
As our final goal is to align entities between two
KGs, we need to calibrate the embeddings of the
two KGs into a unified embedding space based
on the existing seed alignment. A natural and ef-
fective assumption is: the pre-aligned pair should
share embedding to bridge different KGs. Under
this assumption, the semantic loss between equiv-
alent entity or relation pair is zero. This idea has
also been mentioned in Sun et al. (2017) and Zhu
etal. (2017).



4.2 Weighted Negative Sampling

Most previous works (Bordes et al., 2013; Sun
et al., 2017; Zhu et al., 2017; Wang et al., 2018)
use uniform sampling to generate negative triples
T—, that is, replacing the head or tail entity of
a positive triple with a random entity. Despite
the simplicity of this method, it can be blind
in many cases. For example, suppose we have
a positive triple (David Hilbert, nationality,
Germany) and randomly replace the tail en-
tity with an arbitrary entity. Maybe we can get
one negative triple (David Hilbert, nationality,
Barack Obama). This is not a good choice be-
cause such a ridiculous triple contributes little to
learning embeddings. Since such an obviously
false triple is “too easy” and can easily obtain
low plausibility during training. In contrast, a
negative triple like (David Hilbert, nationality,
France) is more valuable, since F'rance has sim-
ilar semantics with Germany, but France can’t
replace Germany. Such a negative triple can help
the model to learn the underlying semantics differ-
ence between entities rather than types solely.

We propose a weighted sampling strategy to
generate valuable negative samples. Take the tail
entity for example, given a positive triple (h,r,t),
we replace ¢ with ¢ obtained from the following
probability distribution:

exp(sim(t,t'))

Y ecr €xp(sim(t,e))

(7
where F denotes the entity set and sim(-, -) calcu-
lates the similarity between two entities. Here we
employ the cosine similarity measure. This means
our sampling method is more likely to replace one
entity with its similar entities. Since these entities
have strong semantic correlations with the original
entity but don’t express the original entity, which
helps the model learn to distinguish. Note that our
method also generates a few easy examples, which
are also useful for learning embeddings.

P((h,r,t)|(h,r,t)) =

4.3 Bidirectional Alignment

We regard alignment prediction as a ranking prob-
lem. That is, suppose we need to align the entities
in KG; to Ko, for each entity ¢; in KGy , we
rank each entity e; in K G5 based on the similar-
ity between e; and e;. The similarity can be cal-
culated via their embeddings, which we define by
cosine similarity measure as follows:

(8)

sim(e;, e5) = ([ve;]1, [ve, 1)
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where [-]; denotes the normalized vector. Finally,
we will get a similarity matrix S;2 between the
two KGs. Then we can get a ranking matrix Mj2
for KG with M2(4, j) denoting the index of e;
in the ranking list of e;.

One thing that hurts the alignment precision is
the difference of knowledge distribution between
different KGs. Considering the following fact dur-
ing the entity alignment process. Suppose we se-
lect the first ranked entity e; in the ranking list of
e; to be the counterpart of e;. It is reasonable be-
cause, from the view of ¢;, e; is the most similar
entity in K (GG2. However, this can be misleading
sometimes. For example, from the view of e;, ¢;
may not rank first in the ranking list of e;, and
even rank at dozens. In such a case, we don’t think
e; 1s the desired candidate for e;. This means, in-
stead of single direction in previous works, that the
alignment prediction process should consider both
directions of KGs. We combine ranking matrices
from both directions to accomplish this goal.

From both views of K(G; and K G5, we refine
the ranking matrix M9 as:

Mo = Mjs + MY )

where M3, denotes the transpose of the ranking
matrix of KGs.

4.4 Implementation Details

We initialize all embeddings for both DistMA
and ComplEx based on the uniform distribution.
We set d = 150 for DistMA and k£ = 75 for
ComplEx so that the length of embeddings in
DistMA and ComplEx are all equal to 150. Be-
fore predicting, we concatenate the embeddings
in DistMA and ComplEx such that each entity
is represented as a 300-dimensional vector in the
end. Besides, during training, we sample ten
negative triples for each positive one. Since the
weighted negative sampling is time-consuming,
to speed it up, we calculate Equation (7) every
five epochs. We use the self-adaptive optimiza-
tion method Adam (Kingma and Ba, 2015) for all
trainings and we implement our model with Ten-
sorflow !

5 Evaluation

5.1 Datasets

We evaluate our proposed method on DBP15K
datasets (Sun et al., 2017; Wang et al., 2018).

"https://www.tensorflow.org/
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The datasets contain three cross-lingual real-
world datasets: DBPz g gn (Chinese to English),
DBPrr_gn (French to English), DBPj4_gn
(Japanese to English). In which each was built
with 15 thousand ILLs from multilingual versions
of DBpedia. The average number of entities, rela-
tions and relational triples of the three datasets are
166,255/4,291/420,025 respectively.

5.2 Baseline Methods

We select four representative methods as baselines
for cross-lingual entity alignment. These methods
can be categorized as:

e Translation-based methods where relations
are modeled as translation operators in the
embedding space, including JE (Hao et al,,
2016), MTransE (Chen et al., 2017) and
JAPE (Sun et al., 2017). For MTransE, it de-
velops five variants in its alignment model,
where the fourth obtains the best results ac-
cording to the experiments of its authors.
Thus, we choose this variant to represent
MTransE. For JAPE, it learns both structure
and attribute embeddings. We report the re-
sults of its full model.

To the best of our knowledge, GCN-
EA (Wang et al, 2018) is the only
one method employing non-translation-based
embedding technique. GCN-EA uses GCNs
as its encoding network to encode entities and
attributes. We report the results of its full
model.

5.3 Evaluation Metrics

By convention, we use Hits@k and Mean Recipro-
cal Rank (MRR) as our metrics. Hits @k measures
the percentage of correctly aligned entities ranked
in the top-k. Generally, Hits@ [ indicates preci-
sion. MRR is the average of the reciprocal ranks
of all test instances. Higher Hits@k and MRR in-
dicate better performance.

54

We select hyper-parameters with the following
values: learning rate n € {0.001, 0.003, 0.005,
0.01, 0.1}, Lo regularization factor A € {le—5,
le—4, 5e—4, le—3}, batch size B € {2000,
5000, 10000, 20000, 30000}. The optimal hyper-
parameters are: n = 0.005, A = le—4 and B =
20000. We use these values in all experiments.

Model Selection
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The total number of epochs is set to 3000, within
which we test alignment every ten epochs and save
embeddings when obtaining better Hits@ [ perfor-
mances.

5.5 Results and Analysis

Following Sun et al. (2017) and Wang et al.
(2018), we use 30% of the gold standards for
training and the rest 70% for testing. The results
of four compared baselines and our approach are
shown in Table 1. Among the four baselines, JAPE
and GCN-EA obtain better results, since seman-
tic loss happens when learning the translations be-
tween embedding spaces in the other two methods.
GCN-EA is the most powerful method. It doesn’t
encode relations but it achieves a better perfor-
mance except for the dataset DBP15K 7z _pn.

However, we can easily see our method sig-
nificantly outperforms all the four baselines, es-
pecially with the metric Hist@ I, which indicates
our method can better capture the semantics of
different KGs. As discussed in Section 1, base-
line methods all obtain low performance. And
the Hits@3 results of our method are comparable
to the Hits@ 10 results of all the baselines. Be-
sides, we observe that the gap between the results
with metrics Hits@ ] and Hits@ 10 of our method
is much smaller than the other methods (average
20.24% vs. 29.34%), which means our method
has stronger ability to distinguish between target
counterparts and error ones which have strong se-
mantic similarity with target counterparts.

We also find the results after applying bidirec-
tional alignment have a large improvement com-
pared with single directional alignment under all
the metrics, especially for Hits@ . This is due to
the fact that entity alignment is essentially a bidi-
rectional selection process. Bidirectional selection
can soften the impact of unbalanced data distribu-
tion between different KGs, making the alignment
prediction more reasonable.

Evaluation of Weighted Negative Sampling:
Here we come to evaluate the effectiveness of
our proposed weighted negative sampling strat-
egy. We compare with uniform sampling with the
negative sampling rate neg = 1 and neg = 10 (1
and 10 negative triples per positive triple), respec-
tively. Table 2 shows the testing results with met-
rics Hits@ [ and MRR.

We summarize Table 2 in three aspects. Firstly,
we can see that both sampling methods obtain



ZH - EN

EN -ZH

DBP15Kzp_gn

Hits@1 Hits@3 Hits@10 Hits@50|Hits@1 Hits@3 Hits@10 Hits@50

*JE 21.27 - 42.77 56.74 | 19.52 - 39.36 53.25

*MTransE 30.83 - 61.41 79.12 | 24.78 - 5242 70.45

*JAPE 41.18 - 74.46  88.90 | 40.15 - 71.05 86.18

TGCN-EA 41.25 - 74.38 86.23 | 36.49 - 69.94 82.45

Ours 65.46 78.13  86.11 9156 | 6473 7756 85.79 91.20

Ours(Bid.) 68.07 7933 86.74 9175 | 67.72 79.38 86.57 91.51
JA—EN EN - JA

DBP15K,4_pN

Hits@1 Hits@3 Hits@10 Hits@50|Hits@1 Hits@3 Hits@10 Hits@50

*JE 18.92 - 39.97 54.24 | 17.80 - 38.44  52.48

*MTransE 27.86 - 57.45 7594 | 23.72 - 4992 6793

*JAPE 36.25 - 68.50 85.35 | 38.37 - 67.27 82.65

fGCN-EA 39.91 - 7446  86.10 | 38.42 - 71.81 83.72

Ours 62.84 7594 8490 9135 | 62.27 7533 84.71 91.32

Ours(Bid.) 65.53 77.50 8590 91.60 | 6522 7735 85.77 91.61
FR—EN EN - FR

DBP15Krr_gEn

Hits@1 Hits@3 Hits@10 Hits@50|Hits@1 Hits@3 Hits@10 Hits@50

*JE 15.38 - 38.84  56.50 | 14.61 - 37.25 54.01
*MTransE 24.41 - 55.55 74.41 | 21.26 - 50.60  69.93
*JAPE 32.39 - 66.68 83.19 | 32.97 - 65.91 82.38
fGCN-EA 37.29 - 74.49  86.73 | 36.77 - 73.06  86.39
Ours 64.30 78.76 8792 9390 | 63.50 7839  87.83 93.94
Ours(Bid.) 67.70 80.84 89.01 94.32 | 67.34 8099 89.05 94.21

Table 1:

Results comparison. (* marks the results copied from Sun et al. (2017). { marks the results reported by

its authors. - marks the unreported results. Bid. indicates bidirectional alignment.)

better performance with the increase of the neg-
ative sampling rate. This shows that more neg-
ative samples can assist model to better capture
the semantics of KGs. Secondly, we can find
that, compared with uniform negative sampling,
our weighted sampling strategy gets better perfor-
mance for all the three datasets. This is because
our sampling method can generate more valuable
negative samples to assist model to learn correct
embeddings. Besides, we observe our method is
more effective with a smaller negative sampling
rate (neg = 1). Because when neg is large, it is
likely to generate a few valuable negative samples
though using uniform sampling. But when neg
is small, the uniform sampling method can’t gen-
erate enough valuable samples, which seriously
hurts the final performance. However, our sam-
pling strategy can pay more attention to valuable
samples, generating many valuable negative sam-
ples even when the amount of total samples is
small.

Ablation Study: For ablation study, we sepa-

rate two variants from our approach. The first one
only optimizes the objective function O, called
DistMA. And the second one only optimizes Oa,
called ComplEx. Table 3 shows the results of the
two variants and the overall method.

As expected, Table 3 shows that each variant
gets better results compared with four baselines.
The DistMA can model symmetric relations well
and the ComplEx can improve the ability in mod-
eling antisymmetric relations. The overall method
gets the best results due to its strong ability in
modeling both relations.

Training with Different Sizes of Seed Align-
ment: We further investigate how the size of the
training data affects the performance of our pro-
posed approach. Here we use different proportions
of seed alignment, which ranges from 20% to 50%
with step 10%. And we choose two strong base-
lines JAPE and GCN-EA for comparison. Fig-
ure 1 illustrates the Hits@ [ results of the three ap-
proaches.

From Figure 1 we can see that the results for
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Variants /H—-EN FEN-ZH | JA-EN EN-JA | FR—-FEN EN-FR

Hits@1 MRR Hits@1 MRRHits@ 1 MRR Hits@1 MRRHits@1 MRR Hits@1 MRR
neg=1, unif. | 62.36 0.709 62.14 0.707| 59.79 0.686 59.78 0.686| 59.69 0.697 59.66 0.697
neg=1, weig. | 63.85 0.716 63.96 0.716| 62.23 0.701 61.91 0.698 61.17 0.705 61.10 0.704
neg=10, unif. | 66.86 0.742 66.41 0.740| 64.98 0.726 64.60 0.724| 66.11 0.747 65.56 0.743
neg=10, weig.| 68.07 0.748 67.72 0.746| 65.53 0.727 65.22 0.725| 67.70 0.755 67.34 0.752

Table 2: Evaluation of weighted negative sampling. (unif. indicates the uniform negative sampling and weig.

indicates our weighted sampling strategy)

Variants ZH - EN JA—EN FR—-EN
Hits@3 Hits@10 MRR |Hits@3 Hits@10 MRR |Hits@3 Hits@10 MRR
DistMA | 73.50 83.66 0.672| 71.09  82.09 0.646| 72.57 83.97 0.656
ComplEx| 73.82 80.82 0.692| 69.29  78.10 0.653| 70.85 80.81 0.652
Overall | 79.33 86.74 0.748| 77.50 8590 0.727| 80.84  89.01 0.755

Table 3: Ablation study.

proportion

(a) ZH — EN

proportior

(b) JA— EN

n proportion

(c) FR—- EN

Figure 1: Hits@ ] w.r.t. proportion of seed alignment.

all the three approaches become better with the
increase of proportion of training data, because
more seed alignment can provide more informa-
tion to bridge different KGs. And we can also
see that our approach consistently outperforms the
other two methods under different proportions.
Moreover, only with 20% seed alignment, our ap-
proach achieves comparable performances for all
the three datasets with the other two methods us-
ing 50% seed alignment. When using 30% seed
alignment, our approach largely outperforms the
other two methods using 50% seed alignment. All
these results show the robustness and effectiveness
of our method.

Hits@1 Results by Mapping Properties of
Relations: To better know how effective our
method is for different relations, compared with
JAPE (Sun et al., 2017), we evaluate the improve-
ment of Hits@ [ results by mapping properties of
relations. To do this, we first divide all relations
into 1-N, N-1, 1-1 and N-N relations 2. Then we

?Following Wang et al. (2014), for each relation r, we
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evaluate the Hits@ ] alignment results for head en-
tities and tail entities of the four kinds of relations
respectively.

The results are shown in Table 4. We can see
that the result of N-N relations has the greatest im-
provement (with 111.4% average relative increase
for head entities and 93.6% for tail entities). In
addition, there are two points are also remarkable:
the head entities of N-1 relations (96.2%) and the
tail entities of 1-N relations (79.3%), which sug-
gests the superiority of our method in modeling
multi-mapping relations.

6 Conclusion and Future Work

This paper presents a simple and effective em-
bedding framework for multilingual KGs which
successfully improves the performance of cross-

compute the average number of tails per head ({ph,) and the
average number of head per tail (hpt,). If tph, > 1.5 and
hpt, < 1.5, ris treated as 1-N; if {ph, < 1.5 and hpt, >
1.5, r is treated as N-1; if tph, < 1.5 and hpt,. < 1.5, ris
treated as 1-1; if tph, > 1.5 and hpt, > 1.5, ris treated as a
N-N.



Position | Rel. ZH — EN JA=EN FR- BN Improv.(Avg.)
JAPE| Ours |Improv.|JAPE| Ours |Improv. | JAPE| Ours |Improv.

1-N |49.25|69.47| 41.1% |37.03|64.91| 75.3% |39.03|75.82| 94.3% 70.2%
Head N-141.50|71.44| 72.1% |32.57(63.32| 94.4% |30.57|67.86|122.0% 96.2%
1-1146.77|70.67| 51.1% |42.15|69.36| 64.6% |36.19(72.72|100.9% 72.2%
N-N|34.73|67.34| 93.9% |31.03|62.58|101.7%|26.80|63.97|138.7%| 111.4%
1-N |45.44|73.58| 61.9% |36.19(66.81| 84.6% |38.59(73.83| 91.3% 79.3%
Tail N-1{59.68|79.84| 33.8% |49.38|74.34| 50.6% |46.85|75.65| 61.5% 48.6%
1-1 (46.92|72.44| 54.4% |47.40|72.77| 53.5% (36.17|73.62(103.5% 70.5%
N-N|[41.42169.03| 66.6% |34.5167.86| 96.7% |31.48|68.49(117.5% 93.6%

Table 4: Comparison of JAPE and our model in Hizs@ [ results by mapping properties of relations.

lingual entity alignment. We also propose a
weighted sampling strategy to generate hard nega-
tive examples during training. Moreover, we pro-
pose to align entities from both directions. Exper-
imental results on real-world datasets show that
our method significantly outperforms four com-
petitors, especially with the metric Hits@ 1.

Our proposed embedding framework can be
easily applied to other tasks, i.e. link prediction
and triple classification. And the idea of weighted
negative sampling can be helpful for many Al and
NLP tasks such as relation extraction and classifi-
cation. For future work, we plan to explore more
powerful KG embedding methods. And we also
have the idea of using categorical attributes or hi-
erarchical types to guide the negative sampling
process.
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