
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 673–683,
Hong Kong, China, November 3–7, 2019. c©2019 Association for Computational Linguistics

673

Learning to Speak and Act in a Fantasy Text Adventure Game

Jack Urbanek1 Angela Fan1,2 Siddharth Karamcheti1 Saachi Jain1 Samuel Humeau1
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Abstract

We introduce a large-scale crowdsourced text
adventure game as a research platform for
studying grounded dialogue. In it, agents can
perceive, emote, and act whilst conducting di-
alogue with other agents. Models and humans
can both act as characters within the game. We
describe the results of training state-of-the-art
generative and retrieval models in this setting.
We show that in addition to using past dia-
logue, these models are able to effectively use
the state of the underlying world to condition
their predictions. In particular, we show that
grounding on the details of the local environ-
ment, including location descriptions, and the
objects (and their affordances) and characters
(and their previous actions) present within it
allows better predictions of agent behavior and
dialogue. We analyze the ingredients neces-
sary for successful grounding in this setting,
and how each of these factors relate to agents
that can talk and act successfully.

1 Introduction

There has been remarkable progress in language
modeling (Jozefowicz et al., 2016; Devlin et al.,
2018; Radford et al., 2019) and building dialogue
agents (Dinan et al., 2019a). Nevertheless, the
current state of the art uses only the statistical
regularities of language data, without explicit un-
derstanding of the world that the language de-
scribes. This work is built on the hypothesis that
dialogue agents embodied in a rich and cohesive
(but tractable) world can more easily be trained to
use language effectively than those only exposed
to standard large-scale text-only corpora.

To that end, we introduce the LIGHT1 research
platform. LIGHT is a multi-player fantasy text ad-
venture world designed for studying situated di-
alogue, and allows interactions between humans,

1 Learning in Interactive Games with Humans and Text.

models as situated agents, and the world itself. It
consists of a large crowdsourced game world (663
locations, 3462 objects and 1755 characters) de-
scribed entirely in natural language. Within that
game world, we collect a large set (11k episodes)
of character-driven human-human crowdworker
interactions involving actions, emotes, and dia-
logue, with the aim of training models to engage
humans in a similar fashion. Our complete frame-
work is made publicly available in ParlAI (http:
//parl.ai/projects/light).

We use the collected dataset to investigate how
a model can both speak and act grounded in per-
ception of its environment and dialogue from other
speakers. This is done by evaluating state-of-the-
art models on our task and evaluating the effects
of providing additional grounding. In particular,
we adapt the BERT contextual language model
(Devlin et al., 2018) to the task of dialogue in
two ways: as a bi-ranker, which is fast and prac-
tical as a retrieval model, and as a cross-ranker
which is slower at inference time but allows more
feature cross-correlation between context and re-
sponse. Both models outperform existing meth-
ods. Our ablation analysis shows the importance
of each part of the grounding (location, objects,
characters, other’s actions, self-actions) in terms
of the ability to both understand and use language.
While models that use grounding show clear im-
provements, our best performing models are still
unable to perform at human level, making our
setup a suitable challenge for future research.

2 Related Work

Most recent work in dialogue exploring genera-
tive or retrieval models for goal-directed (Hen-
derson et al., 2014; Bordes et al., 2017) or chit-
chat tasks (Vinyals and Le, 2015; Sordoni et al.,
2015; Zhang et al., 2018) is not situated, or even

http://parl.ai/projects/light
http://parl.ai/projects/light


674

grounded in perception. Models typically take the
last few utterances from the dialogue history as
input, and output a new utterance. While some
goal-directed setups may use external knowledge
bases (e.g. flight data for airline booking), dia-
logues tend to implicitly refer to an external world
during the conversations without explicit ground-
ing to objects or actions.

Several position papers have proposed virtual
embodiment as a strategy for language research
(Brooks, 1991; Kiela et al., 2016; Gauthier and
Mordatch, 2016; Mikolov et al., 2016; Lake et al.,
2017). Single-player text adventure game frame-
works for training reinforcement learning agents
exist, i.e., Narasimhan et al. (2015) and TextWorld
(Côté et al., 2018), but these do not have human
dialogue within the game. Similar single player
text adventure games have also been used to study
referring expressions (Gabsdil et al., 2001, 2002)
and parsing (Koller et al., 2004). Yang et al.
(2017) and Bordes et al. (2010) also proposed
small world setups for instruction following or la-
beling, but these are much more restricted than
the large multi-player text adventure game envi-
ronment with rich dialogue that we propose here.

A number of visual, rather than text, platforms
have been proposed such as House3D (Wu et al.,
2018b), HoME (Brodeur et al., 2017), MINOS
(Savva et al., 2017), Matterport3D (Chang et al.,
2017) and AI2-THOR (Kolve et al., 2017), and
the Minecraft MALMO project (Johnson et al.,
2016), but they typically are suited to reinforce-
ment learning of actions, and involve templated
language for navigation or question answering
tasks, if at all (Oh et al., 2017; Yi et al., 2018).

Other examples are instruction-following in the
Neverwinter Nights game (Fleischman and Roy,
2005), studies of emotional response in adventure
games (Fraser et al., 2018), dialogue about soccer
videogames (Pasunuru and Bansal, 2018), plac-
ing blocks appropriately given a final plan (Wang
et al., 2016) and a more open ended building task
using a grid of voxels (Wang et al., 2017). In the
latter two cases the communication is one-sided
with only the human issuing instructions, rather
than dialogue, with the agent only able to act.

There are also setups that consider static lan-
guage and perception, for example image caption-
ing (Lin et al., 2014), video captioning (Yu et al.,
2016), visual QA (Antol et al., 2015) and visual
dialogue (Das et al., 2017; Shuster et al., 2018;

Mostafazadeh et al., 2017). While grounded, the
agent has no ability to act in these tasks. Talk the
Walk (de Vries et al., 2018) introduces a navi-
gation game that involves action, perception and
two-way dialogue, but is limited to small grids.

In summary, compared to many setups, our
framework allows learning from both actions and
(two-way) dialogue, while many existing simula-
tions typically address one or the other but not
both. In addition, being based on a gaming setup,
our hope is that LIGHT can be fun for humans
to interact with, enabling future engagement with
our models. All utterances in LIGHT are pro-
duced by human annotators, thus inheriting prop-
erties of natural language such as ambiguity and
coreference, making it a challenging platform for
grounded learning of language and actions.

3 LIGHT Environment and Task Setup

LIGHT is a large-scale, configurable text ad-
venture environment for research on learning
grounded language and actions. It features both
humans and models as agents situated (symboli-
cally) within a multi-player fantasy MUD (multi-
user dungeon)-like (Dieterle, 2009) environment.
The environment is moderated by a simple game
engine which passes dialogue and emote turns
between characters and allows actions to cause
transitions of the world state. It is in this uni-
modal (text-only), environment that we consider
the agents to be situated.

To facilitate natural human-sourced (fantasy)
situations described by natural language, almost
the entire environment is crowdsourced, including
locations, objects and their affordances, characters
and their personalities, and most importantly char-
acter interactions: dialogues and actions. These
components are collected through a series of an-
notation tasks that we will now describe. These
tasks are designed so that they can be combinatori-
ally recombined. Data quality was maintained by
requiring annotators to take a test (see Appendix
D). Overall statistics of the collected elements are
given in Table 1. This environment can then be
used to both train agents, and to evaluate them in
situ via their online interactions.

Locations We first crowdsourced a set of 663
game location settings from a base set of 37 cat-
egories (countryside, forest, inside/outside castle,
shore, graveyard, bazaar, . . . – full list in Ap-
pendix H) which were selected by us to pro-
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Split Test Test
Train Valid Seen Unseen

Locations 589 352 499 74
Objects 2658 1412 1895 844
Characters 1369 546 820 360

Dialogues 8538 500 1000 739
Utterances 110877 6623 13272 9853
Emotes 17609 1156 2495 1301
Actions 20256 1518 3227 1880

Vocabulary Size 32182 11327 11984 9984
Utterance Length 18.3 19.2 19.4 16.2

Table 1: LIGHT dataset statistics.

vide both inspiration and cohesion to annotators.
Workers were provided a category and asked to
create a description, backstory, names of con-
nected locations, and contained objects and char-
acters. See Table 2a for an example. Many de-
scriptions are quite detailed, and there are clear
semantics between entities (e.g. alligators being
in swamps, cacti in a desert).

As all remaining tasks build upon the locations
created in this first step, we selected 6 location cat-
egories (underwater aquapolis, frozen tundra, su-
pernatural, magical realm, city in the clouds, and
netherworld) designed to be distinct from the oth-
ers to provide an isolated set of locations, charac-
ters, and objects for testing. These will be used to
build what we refer to as an unseen test set.

Each location is collected independently, with
the eventual aim that they can be glued together
as desired to randomize world generation. In this
work, we consider actions and dialogues within a
single location, so building a world map is not nec-
essary. However, we will show that the environ-
ment has considerable influence on the dialogue,
actions and grounded learning of models.

Objects We crowdsourced 3462 objects, each
with a textual description, and a set of affordances
(whether it is a container, can be picked up, has
a surface, is a weapon, is wearable, is food, is a
drink). See Table 2c for examples. As before,
we sourced this list of objects to annotate from the
ones annotated for the locations and characters.

Characters We crowdsourced 1755 game char-
acters from animals to trolls and orcs to humans of
various types (wizards, knights, village clerk). See
Table 2b for detailed examples. Each character has
a textual description, a persona (defined as a set of
3-5 profile sentences describing their traits, mod-

eled after the Persona-Chat dataset (Zhang et al.,
2018)), and a set of objects that are currently be-
ing carried, wielded, or worn. We sourced this list
of characters to annotate from the ones provided
in the location creation task.

Actions and Emotes There are a set of actions
in the game consisting of physical manipulations,
and a set of emotes that display feelings to other
characters, in line with existing MUDs.

Physical actions include get, drop, put, give,
steal, wear, remove, eat, drink, hug and hit, each
taking either one or two arguments, e.g. put robes
in closet. Every action has an explicit unambigu-
ous effect on the underlying game state, and can
only be executed if constraints are met, e.g. if the
agent is holding the robes in the latter example.
These constraints are what indirectly provide an
agent with object affordances, as the list of possi-
ble actions provides all ways the agent can interact
with their environment (Gibson, 1977).

Emotes include applaud, blush, cringe, cry,
dance, frown . . . , sulk, wave, wink (22 in total)
and have no effect on the game state other than to
notify nearby characters of the emote, which can
have effects on their behavior. See Appendix E for
further detailed descriptions.

Interaction Now that we have a fully realized
underlying environment, we can attempt to learn
and evaluate agents that can act and speak within
it. For this, we collect a human-human dataset of
episodic interactions within the environment.

For each dialogue, we place two characters in
a random location (either two characters that were
already assigned to it, or else randomly assigned
characters), complete with the objects assigned to
the location and to those characters. Each char-
acter has access to their persona, the location de-
scription, and the objects present, and the inter-
action episode begins. The two characters take
turns within the episode, and can execute one ac-
tion (physical action or emote) and produce one
dialogue utterance on each turn. We crowdsourced
10,777 dialogues. Examples are given in Figure 1
and Appendix Figures 10-16.

Seen and Unseen Test Sets We provide two dis-
tinct test sets. The seen test set consists of dia-
logues set in the same world (set of locations) as
the training set, thus also consists of characters,
objects, and personas that can appear in the train-
ing data. In contrast, the unseen test set is com-
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Category: Graveyard

Description: Two-and-a-half walls of the finest, whitest stone stand here, weathered by the passing of countless seasons.
There is no roof, nor sign that there ever was one. All indications are that the work was abruptly abandoned.
There is no door, nor markings on the walls. Nor is there any indication that any coffin has lain here... yet.

Backstory: Bright white stone was all the fad for funerary architecture, once upon a time. It’s difficult to understand
why someone would abandon such a large and expensive undertaking. If they didn’t have the money to
finish it, they could have sold the stone, surely - or the mausoleum itself. Maybe they just haven’t
needed it yet? A bit odd, though, given how old it is. Maybe the gravedigger remembers... if he’s sober.

Neighbors: Dead Tree, south, following a dirt trail behind the mausoleum
Fresh Grave, west, walking carefully between fallen headstones

Characters: gravedigger, thief, peasant, mouse, bat

Objects: wall, carving, leaf, dirt

(a) Example room created from the room collection and labelling tasks.

Character: Thief Gravedigger

Persona: I live alone in a tent in the woods. I steal food I am low paid labor in this town. I do a job that many
from the townspeople and coal from the people shun because of my contact with death.
blacksmith. The village police can not find me I am very lonely and wish I had someone
to put me in jail. to talk to who isn’t dead.

Description: The thief is a sneaky fellow who takes from the You might want to talk to the gravedigger, specially
people and does so in a way that disturbs the if your looking for a friend, he might be odd but you
livelihood of the others. will find a friend in him.

Carrying: meat, potatoes, coal shovel

Wearing: dark tunic, cloak nothing annotated

Wielding: knife nothing annotated

(b) Example characters annotated via character collection tasks.

Object Description Tags

shovel The shovel is made of metal and silver. It is quite sturdy and appears new. gettable, wieldable

wall The wall is pure white, the richest of which you have ever seen. none

(c) Example objects annotated via object collection tasks

Table 2: Example entities from the LIGHT environment. Each was collected via tasks described in Section 3.

prised of dialogues collected on the unseen set of
locations (described in 3). The unseen test set al-
lows for evaluation of generalization capability to
unseen topics in a similar domain and as we shall
see, provides a more challenging test for current
techniques.

4 Learning Methods

We consider a variety of models that can predict
actions, emotes and dialogue, and explore the im-
portance of grounding upon the location, objects,
and other characters within the setting. For all
models, we represent context as a large text se-
quence with a special token preceding each input
type (persona, setting, self emote, partner emote,
etc.). We work with two model classes: ranking
models that output the maximal scoring response
from a set of potential candidate responses and
generative models that decode word by word.

Ranking Candidates Each of the three tasks
has a different method for determining candidates.
Dialogue candidates are the ground truth and 19
randomly chosen candidates. Action candidates
are usually the list of all possible actions, how-
ever in a no-affordance ablation we provide all
well-formed actions over the current environment
(which may include things that can’t be executed
like ”wear paint can”). Emote candidates are the
22 possible emotes.

Baseline Ranking Methods We report a Ran-
dom baseline (selecting a random candidate from
the candidates) and an Information Retrieval (IR)
baseline that uses word overlap with TF/IDF
weighting. We use Starspace (Wu et al., 2018a)
which learns a bag-of-words embedding for con-
text and candidates to maximize the inner product
of the true label using a ranking loss. Lastly, we
use fastText (Joulin et al., 2016) to classify which
emote should be predicted next as there are only
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Persona 1: Servant Persona 2: King

I come from the lower class. I do what I am told I am a king of the whole empire. I give rules and
without question. I can not read. I have not seen pursuit them. I am brave and fearless.
my family in a long time.

Carrying: a duster, a small bucket, a rag Carrying: a crown, a scepter
Wearing: a shirt

Setting: The main foyer is massive. A grand staircase sits to the back of the foyer leading to the upstairs.
At the front of the foyer stand two servants ready to help anyone who comes to visit. To the left of the
room there is a doorway leading into a corridor. To the right there is a door leading to another corridor
for the King’s servants. At the foot of the stairs there is a bearskin rug that is staring at you almost as
if still hungry. The walls are lined with portraits of the king and his family.
Servant: my humble king. What am I to do to serve you?
King: Ahhh. My loyal servant. Polish my scepter.
Action: give scepter to servant

Servant: Yes my lord. I will polish it immediately. Am I to return it to you personally?
Action: put scepter in small bucket

King: Yes. Yes. Of course. Also check the jewels in my crown. They seem loose.
Action: give crown to servant

Servant: But sire I am not qualified to do that. Would you prefer I take it to someone?
King: Oh fine then.
Emote: gesture sigh

Servant: I am sorry sir the rug startled me
Action: drop crown

King: Haha! That’s bear I slain on my latest hunting trip. He’s a mighty beast!
Emote: gesture laugh

Servant: and if I may ask where did you go hunting sire?
King: The great woods of course. This bear was stealing children in the kingdom. Surely you heard about it.
Servant: sire. I have not been outside of these walls in quiet some time. I have not seen my family in ages.
King: Such is the life of a servant I suppose. How’s that scepter looking?
Servant: it is almost ready sire. and the crown who would you like me to take it to?
Action: get scepter from small bucket

King: Here just give it back. I’ll have the queen find someone.

Figure 1: Example dialogue from the LIGHT dataset.

22 classes. Finally, we compare the performance
of our best models to human performance on each
of the prediction tasks.

Transformer Memory Network We use the
transformer memory-based ranking model from
Dinan et al. (2019b). It uses a transformer
(Vaswani et al., 2017) to produce separate repre-
sentations (memory slots) for each sentence from
the grounding information (setting, persona, ob-
jects). It then performs attention given the di-
alogue context over the memories to produce a
context embedding, which is used to score can-
didates via the dot product with the transformer-
based representation of the candidate. At training
time, other samples in the batch are used as nega-
tive candidates. For emote prediction, we train by
ranking against the full set of possible emotes as
there are only 22 distinct classes.

BERT Bi-Ranker and Cross-Ranker We adapt
the BERT pretrained language model (Devlin
et al., 2018) to the tasks of dialogue and action
prediction. We explore two architectures for lever-
aging BERT. First, we use the BERT-based Bi-
Ranker to produce a vector representation for the
context and a separate representation for each can-

didate utterance. This representation is obtained
by passing the first output of BERT’s 12 layers
through an additional linear layer, resulting in an
embedding of dimension 768. It then scores can-
didates via the dot product between these embed-
dings and is trained using a ranking loss.

Second, the BERT-based Cross-Ranker instead
concatenates the context with each candidate ut-
terance, similar to Wolf et al. (2019). Then,
each candidate is scored by computing a soft-
max over all candidates. Unlike the BERT-based
Bi-Ranker, the concatenation of the context with
each individual candidate allows the model to at-
tend to the context when encoding each candi-
date, building a context-dependent representation
of each candidate. In contrast, the Bi-Ranker can
use self-attention to build the candidate and con-
text representations, but cannot modify their rep-
resentation based upon the context. However, the
Cross-Encoder is far more computationally expen-
sive (∼11,000 slower than the Bi-Ranker for dia-
logue retrieval) as each concatenated representa-
tion must be recomputed, while the Bi-Ranker can
cache the candidates for reuse (see Appendix B).
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Query: chicken pirate coffin rake tavern meadow

ob
je

ct
s

chicken coop Pirate swords the remains shovel Ale bottles flower pot
eggs dock remains garden beer fruit
a pen for the chickens cargo bones a garden mug of mead An enchanted amulet.
chimney ship bones of the innocent Hand carved stone a large ornate table citrus fruit
corn seagulls on the dock adventurer’s remains garden bench beer keg fruit trees

ch
ar

ac
te

rs

chickens boat captain spirits of our ancestors gardener tavern owner a deer
fox trying to steal chickens captain mourner stable hand bartender a songbird
farmers merchant zombies Garden dog Goblin King’s bartender fruit bats
The farmers boat workers families stable boy A serving wench parent
farmer workers bandit A stable boy Serving wench butterfly

lo
ca

tio
ns

Chicken Pen Pirate Ship Old Crypt Across the King’s Garden The werewolves tavern Lush meadow
Corn field Dock at the Port sacristy Hidden garden Tavern of Browntavia Flower Field
Farmer’s house Loading Dock Disposal area The garden courtyard Port Tavern flower garden
Large Farm Fishing Dock inside temple crypt Church garden The bar Mushroom Hut
Pig Pen crew berthing Sacrifice Chamber Tool Shed bazaar outside the royal city Archery zone

ac
tio

ns

get chicken hug pirate put torch in coffin get rake hug tavern owner get flower from meadow
hug chicken hit pirate get torch from coffin drop Rake give food item to tavern owner put flower in Meadow
hit chicken steal sword from pirate put bone in coffin steal Rake from gardener give telescope to tavern owner give Flower to a deer
give cowbell to chicken steal cargo from pirate get bone from coffin give Rake to thing drink drink give Flower to deer
steal sword from chicken give cargo to pirate hit archaeologist give Rake to person drop drink steal Flower from a deer

vo
ca

bu
la

ry

bock crew archaeologist vegetable drink flower
tasty ye robber carved drinks amulet
bawk port crypt alice regular songbird
moo sea loss hook item wasp
egg seas adventures exorcisms tip an

Table 3: Neighboring Starspace phrase embeddings (no pretraining from other data) for different types of entities
and actions. The first row are arbitrarily chosen queries (chicken, pirate, coffin, rake, tavern, meadow), and the
subsequent rows are their nearest objects, agents, locations, actions and vocabulary in embedding space.

Generative Models Similarly to the ranking set-
ting, we use the Transformer Memory Network
from Dinan et al. (2019b) to encode the context
features (such as dialogue, persona, and setting).
However, to predict an action, emote, or dialogue
sequence, we use a Transformer architecture to de-
code while attending to the encoder output.

For the task of action generation, the set of can-
didates for ranking models to rank the true action
sequence against is constrained by the set of valid
actions. For example, the character cannot pick up
book if there is no book. In the generative model,
we compute the log likelihood for the set of possi-
ble candidates and normalize to constrain the out-
put space to valid actions to improve the results.

4.1 Implementation

We implement models using PyTorch in ParlAI
(Miller et al., 2017). Ranking Transformer mod-
els are pretrained on Reddit data (Mazaré et al.,
2018) and fine-tuned. We use the BERT (Devlin
et al., 2018) implementation provided by Hugging
Face2 with pre-trained weights, then adapted to
our Bi-Ranker and Cross-Ranker setups. Genera-
tive models are pretrained on the Toronto Books
Corpus and fine-tuned except for emote predic-
tion which does not leverage pretraining. We ap-
ply byte-pair encoding (Sennrich et al., 2016) to
reduce the vocabulary size for generative models.
We decode using beam search with beam size 5.

2https://github.com/huggingface/pytorch-pretrained-BERT

4.2 Evaluation

Automatic To evaluate our models, we calcu-
late percentage accuracy for action and emote pre-
diction. For dialogue, we report Recall@1/20 for
ranking the ground truth among 19 other randomly
chosen candidates for ranking models and per-
plexity and unigram F1 for generative models.

Human We present humans with the same rank-
ing task and report R@1/20 to estimate their per-
formance on this task. We report the human accu-
racy and one standard deviation of error.

Quality control was particularly difficult for hu-
man evaluations, as the task of ranking one of 20
candidates is fairly tedious and easy to fake. In or-
der to mitigate these problems, during the evalua-
tion we provide annotated examples on the train-
ing in addition to examples on the test set. We
only keep the annotations of evaluators who had
high accuracy on the training examples to filter
low-accuracy evaluators. The training accuracy
bar was selected due to the difficulty of the sep-
arate tasks as evaluated by our own success rates.
Our methods for human evaluation are described
in more detail in Appendix F along with how many
turns were evaluated.

5 Results

The ranking models are compared in Table 4 on
the seen and unseen test sets, and ablations are
shown for both the BERT-based Bi-Ranker and
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Test Seen Test Unseen
Dialogue Action Emote Dialogue Action Emote

Method R@1/20 Acc Acc R@1/20 Acc Acc

Random baseline 5.0 12.2 4.5 5.0 12.1 4.5
IR baseline 23.7 20.6 7.5 21.8 20.5 8.46
FastText Classification - - 13.2 - - 9.92
Starspace 53.8 17.8 11.6 27.9 16.4 9.8
Transformer MemNet 70.9 24.5 17.3 66.0 21.1 16.6
BERT-based Bi-Ranker 76.5 42.5 25.0 70.5 38.6 25.7
BERT-based Cross-Ranker 74.9 50.7 25.8 69.7 51.8 28.6

Human Performance* *87.5±2.4 *62.0±3.1 *27.0±2.5 *91.8±1.9 *71.9±3.5 *34.4±2.6

Table 4: Ranking model test performance. (*) Human performance is computed on a subset of data as described
in Appendix F.

Dialogue Action Emote
R@1/20 Acc Acc

BERT-based Bi-Ranker 76.0 38.6 25.1
actions+emotes only 58.6 18.3 10.6
dialogue only 68.1 39.4 23.6
dialogue+action+emote 73.2 40.7 23.1
dialogue+persona 73.3 41.0 26.5
dialogue+setting 70.6 41.2 26.0
dialogue+objects 68.2 37.5 25.5
no objects, no affordances - 17.6 -

Table 5: BERT-based Bi-Ranker ablations (valid set).
The LIGHT environment includes a variety of ground-
ing information: dialogue, action, emote, persona, set-
ting, and object descriptions.

Dialogue Action Emote
PPL F1 Acc Acc

Generative Transformer 27.1 13.9 13.0 20.6
actions+emotes only 32.8 9.3 10.5 15.3
dialogue only 28.0 12.5 12.3 20.0
dialogue+action+emote 27.6 12.3 12.8 22.0
dialogue+persona 27.8 12.9 12.3 20.8
dialogue+setting 27.8 12.1 11.5 17.8
dialogue+objects 27.7 12.8 11.0 20.2

Table 6: Generative Transformer ablations (valid set).

Generative Transformer in Tables 5 and 6.

5.1 Comparison of Models and Baselines

The IR baseline shows non-random performance,
but is outperformed by Starspace which is a
stronger baseline. We also tried FastText on the
emote tasks as classification is appropriate over
the 22 possible emotes, and it did better than
Starspace. Transformer architectures prove sig-
nificantly stronger at all tasks, with BERT pre-
training proving important for best results as used
in the Bi-Ranker and Cross-Ranker architectures.
The latter, which can create a context dependent

representation of each label candidate, is better
at actions and emotes. Human performance is
still above all these models, leaving space for fu-
ture improvements in these tasks. We conducted
Wilcoxon signed-rank tests and found compar-
isons between Starspace and the differing trans-
formers for dialogue on test seen in Table 4 are
all significantly different at the p<0.01 level. The
generative Transformer model did not work as
well as the retrieval models using these metrics.

5.2 Generalization Capability on Unseen Test

The six new unseen test settings are a slightly
easier task in absolute numbers (Table 4, right),
with improved scores for humans and some mod-
els. We observe that BERT-based models exhibit
good transfer ability relative to other models, but
the gap between their performance and human per-
formance increases from the seen test set to the
unseen one. Specifically, there is a 21 point gap
on the unseen dialogue test set compared to an 11
point gap on the seen test set, making this a signif-
icant challenge for future methods.

5.3 Data Inter-connectedness and Coverage

To illustrate the coverage of entities and actions in
the LIGHT world, and the inter-connectedness be-
tween them learnable from our data, we trained a
simple Starspace embedding model with no pre-
built embeddings (so, on our data alone, thus pre-
cluding BERT) on all three tasks and show em-
beddings in Table 3. There is clearly a vast variety
of learnable concepts and rich structure between
characters, locations, objects, actions and the lan-
guage describing them. We also show additional
t-SNE plots and heatmaps showcasing these rela-
tionships in Appendix G.
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Persona: I am a part of a group of travelers. I go from town to town selling food to the locals.
I grew up poor, but my travels have paid off well.

Setting 1: Fishmonger’s stall, Port Setting 2: Dunes, Desert
A small booth near the edge of the port, it’s protected by a A massive hilly landscape that is nothing but sand and a few
piece of old, sun-bleached sailcloth. Baskets of freshly- rocks. As you walk this area, you can find some human and
caught fish, bivalves, and eels sit in the shade in stained animal remains along with broken down wood wagons.
wooden troughs of water. A small, aggressive-looking dog
is chained to one table, presumably to keep cats away.
The stall is redolent with the aroma of fish.
Friend: I wonder what I could eat around here... Friend: I wonder what I could eat around here...

Emote: ponder Emote: ponder
Traveler: Customer, are you here shopping for fish too? Traveler: Well, the desert is certainly the wrong place

for you my friend.
Friend: What brings you to this place? Friend: What brings you to this place?
Traveler: I like to come around here for food. Sometimes Traveler: I am travelling to the castle market to sell my goods.
people who travel through drop the most delicious things. I have a terrible sense of direction and have been wondering in
Once in a while it’s roasted meet or fish. the sweltering heat for hours until I found your Oasis.

Table 7: Predicted dialogue by the BERT-based Bi-Ranker (as the traveler character) given different settings.

Self name: Sea Witch.
Self Previous Dialogue: What do you know about that
knight standing over there?

Input Dialogue + Emote Partner Prediction
His armor is garrish. You Mermaid laugh
know I don’t fraternize Thief frown
with land dwellers, pout
He is a terrible knight Mermaid scream
and I hate him, cry Troll laugh
I will battle him until the Mermaid stare
end of my days, scream Orc nod

Table 8: Predicted emotes by the Generative Trans-
former given example inputs from dialogue partner.

5.4 Importance of Grounding
Effect of Various Environment Features We
provide a large quantity of information about the
environment to each of our models — not only di-
alogue, but the description of the setting, the char-
acter’s persona, present objects with descriptions,
and more. We analyze the usefulness of the addi-
tional grounding information in Tables 5 and 6.

For the dialogue task, having access to all of the
environmental information provides the best per-
formance for both retrieval and generative models.
Training on dialogue alone substantially decreases
performance, while each experiment that adds ad-
ditional grounding information such as the past ac-
tions, persona or the setting description, improves
the score. Providing object descriptions as a fea-
ture leads to the least improvement. As there are
both a large quantity of objects that can be present
and objects tend to have long descriptions, it can
be challenging for the model to associate such in-
formation to a dialogue, action, or emote predic-
tion task. The persona features were found to be
impactful, which makes sense as they shape the
things the character says (and does).

Action sequence and emote prediction are much
improved when using the dialogue history com-
pared to using only past action history. Other fea-
tures generally have lesser impact in this case, but
still give some improvements. Including all fea-
tures appears challenging for the model, perhaps
because of the large input to attend over, resulting
in improved results for some ablations.

For the action prediction task, we found that
affordance information provides comparable im-
pact to model performance as the rest of the fea-
tures. A model given only actions and emotes as
features and the set of possible actions as candi-
dates has similar perfomance to a model given the
best features for the task (dialogue, action, emote,
persona, and setting) with a candidate set includ-
ing actions that would be normally filtered by af-
fordances (such as ”wield paint”). This suggests
the context or quantity we provided the models in
these experiments is not sufficient to be able to im-
plicitly predict affordances at a high enough accu-
racy to not be distracted by impossible choices.

Most importantly, for all tasks training on the
available dialogue data is necessary for good per-
formance. Providing only the action and emote as
context results in the worst performance, even on
action and emote prediction tasks. Moreover, us-
ing dialogue and actions simultaneously improves
results almost everywhere. The integrated envi-
ronment in which agents can both act and speak
to other agents provides relevant information that
can be used across all tasks.

Context affects predicted utterances We in-
vestigate the effect of the environmental context
on the predictions by modifying the context and
examining the changes in predicted dialogue, ac-
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Input from Partner: Wizard Prediction (Self name: Servant)
I’m feeling sad hug wizard
You must die! hit master wizard
Try putting on something else remove patterned outfit
I’d like you to feed me give food to master wizard
Can you grab me a paper give book to wizard’s assistant
Can you grab me a beer get beer
Clean up get duster
Hide the gold put gold in satchel

Input from different agents Prediction
Wizard: Can I have some drink? drop potion
Servant: Can I have some drink? give wine to servant
Bear: Can I have some drink? give water to bear

Table 9: Predicted actions by the BERT-based Bi-
Ranker given example inputs from the dialogue partner.

tion, and emotes using the BERT-based Bi-Ranker.
The input dialogue and speaker has a strong ef-

fect on the predicted action, as shown in Table 9,
ranking over all training set actions. For example,
a partner asking for an item results in a predicted
action dependent on the asker to retrieve it, despite
our dataset not being explicitly instructional.

A similar effect is observed for emote predic-
tion. Modifying the dialogue and emote input pro-
duces a variety of different predicted emotes in Ta-
ble 8. Further, keeping the context otherwise fixed
but modifying the partner name from mermaid to
orc results in a different predicted emote — the
mermaid stating I will battle him leads to a stare
while the orc receives a nod.

Finally, for dialogue prediction we find the
model produces different outputs that are more ap-
propriate for a given setting, even if the dialogue
and characters are the same, see Table 7. With the
same text about food, the model retrieved dialogue
that was setting appropriate. In the fishmonger’s
stall, it asked if the human agent was a customer
shopping for fish, but in the desert dunes it sug-
gested we might be looking in the wrong place.

6 Conclusion

We introduced a large-scale crowdsourced fan-
tasy text adventure game research platform where
agents—both models and humans—can act and
speak in a rich and diverse environment of loca-
tions, objects, and other characters. We analyzed
a variety of models and their ability to leverage
the grounding information present in the environ-
ment. We hope that this work can enable future
research in grounded language learning and fur-
ther the ability of agents to model a holistic world,
complete with other agents within it.
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