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Abstract

Open relation extraction (OpenRE) aims to

extract relational facts from the open-domain

corpus. To this end, it discovers relation pat-

terns between named entities and then clusters

those semantically equivalent patterns into a

united relation cluster. Most OpenRE meth-

ods typically confine themselves to unsuper-

vised paradigms, without taking advantage of

existing relational facts in knowledge bases

(KBs) and their high-quality labeled instances.

To address this issue, we propose Relational

Siamese Networks (RSNs) to learn similar-

ity metrics of relations from labeled data of

pre-defined relations, and then transfer the

relational knowledge to identify novel rela-

tions in unlabeled data. Experiment results on

two real-world datasets show that our frame-

work can achieve significant improvements as

compared with other state-of-the-art methods.

Our code is available at https://github.
com/thunlp/RSN.

1 Introduction

Relation extraction (RE) aims to extract relational

facts between two entities from plain texts. For

example, with the sentence “Hayao Miyazaki is
the director of the film ‘The Wind Rises’", we can

extract a relation “director_of" between two

entities “Hayao Miyazaki" and “The Wind Rises".

Recent progress in supervised methods to RE

has achieved great successes. Supervised meth-

ods can effectively learn significant relation se-

mantic patterns based on existing labeled data,

but the data constructions are time-consuming and

human-intensive. To lower the level of super-

vision, several semi-supervised approaches have

been developed, including bootstrapping, active

learning, label propagation (Pawar et al., 2017).
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Figure 1: A flowchart of our framework. Our model

RSN learns from both labeled instances of pre-defined

relations and unlabeled instances of new relations, and

tries to cluster testing instances of new relations.1

Mintz (2009) also proposes distant supervision to

generate training data automatically. It assumes

that if two entities have a relation in KBs, all sen-

tences that contain these two entities will express

this relation. Still, all these approaches can only

extract pre-defined relations that have already ap-

peared either in human-annotated datasets or KBs.

It is hard for them to cover the great variety of

novel relational facts in the open-domain corpora.

Open relation extraction (OpenRE) aims to ex-

tract relational facts on the open-domain cor-

pus, where the relation types may not be pre-

defined. There are some efforts concentrating on

extracting triples with new relation types. Banko

(2008) directly extracts words or phrases in sen-

tences to represent new relation types. How-

ever, some relations cannot be explicitly repre-

sented with tokens in sentences, and it is hard

to align different relational tokens that exactly

have the same meanings. Yao (2011) consid-

1To highlight our model’s ability to extract new relations,
testing instances only contain new relations.
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ers OpenRE as a clustering task for extracting

triples with new relation types. However, previ-

ous clustering-based OpenRE methods (Yao et al.,

2011, 2012; Marcheggiani and Titov, 2016; Elsa-

har et al., 2017) are mostly unsupervised, and can-

not effectively select meaningful relation patterns

and discard irrelevant information.

In this paper, we propose to take advantage of

high-quality supervised data of pre-defined rela-

tions for OpenRE. The approach is non-trivial,

however, due to the considerable gap between the

pre-defined relations and novel relations of inter-

est in open domain. To bridge the gap, we propose

Relational Siamese Networks (RSNs) to learn

transferable relational knowledge from supervised

data for OpenRE. Specifically, RSNs learn re-

lational similarity metrics from labeled data of

pre-defined relations, and then transfer the met-

rics to measure the similarity of unlabeled sen-

tences for open relation clustering. We describe

the flowchart of our framework in Figure 1.

Moreover, we show that RSNs can also be

generalized to various weakly-supervised scenar-

ios. We propose Semi-supervised RSN to learn

from both supervised data of pre-defined rela-

tions and unsupervised data with novel relations,

and Distantly-supervised RSN to learn from

distantly-supervised data and unsupervised data.

We conduct experiments on real-world RE

datasets, FewRel and FewRel-distant, by split-

ting relations into seen and unseen set, and eval-

uate our models in supervised, semi-supervised,

and distantly-supervised scenarios. The results

demonstrate that our models significantly outper-

form state-of-the-art baseline methods in all sce-

narios without using external linguistic tools. To

summarize, the main contributions of this work are

as follows:

(1) We develop a novel relational knowledge

transfer framework RSN for OpenRE, which can

effectively transfer existing relational knowledge

to novel-relation data and accurately identify

novel relations. To the best of our knowledge,

RSN is the first model to consider knowledge

transfer in clustering-based OpenRE task.

(2) We further propose Semi-supervised RSNs

and Distantly-supervised RSNs that can learn

from various weakly supervised scenarios. The

experimental results show that all these RSN mod-

els achieve significant improvements in F-measure

compared with state-of-the-art baselines.

2 Related Work

Open Relation Extraction. Relation extraction

(RE) is an important task in NLP. Traditional RE

methods mainly concentrate on classifying rela-

tional facts into pre-defined relation types (Mintz

et al., 2009; Yu et al., 2017). Zeng (2014) utilizes

CNN encoders to build sentence representations

with the help of position embeddings. Lin (2016)

further improves RE performance on distantly-

supervised data via instance-level attention. These

methods take advantage of supervised or distantly-

supervised data to learn neural sentence encoders

for distributed representations, and have achieved

promising results. However, these methods can-

not handle the open-ended growth of new relation

types in the open-domain corpora.

To solve this problem, recently many efforts

have been invested in exploring methods for

open relation extraction (OpenRE), which aims

to discover new relation types from unsupervised

open-domain corpora. OpenRE methods can be

roughly divided into two categories: tagging-

based and clustering-based. Tagging-based meth-

ods cast OpenRE as a sequence labeling prob-

lem, and extract relational phrases consisting of

words from sentences in unsupervised (Banko

et al., 2007; Banko and Etzioni, 2008) or super-

vised paradigms (Jia et al., 2018; Cui et al., 2018;

Stanovsky et al., 2018). However, tagging-based

methods often extract multiple overly-specific re-

lational phrases for the same relation type, and

cannot be readily utilized for downstream tasks.

In comparison, conventional clustering-based

OpenRE methods extract rich features for relation

instances via external linguistic tools, and clus-

ter semantic patterns into several relation types

(Lin and Pantel, 2001; Yao et al., 2011, 2012).

Marcheggiani (2016) proposes a reconstruction-

based model discrete-state variational autoencoder

for OpenRE via unlabeled instances. Elsahar

(2017) utilizes a clustering algorithm over lin-

guistic features. In this paper, we focus on the

clustering-based OpenRE methods, which have

the advantage of discovering highly distinguish-

able relation types.

Few-shot Learning. Few-shot learning aims to

classify instances with a handful of labeled sam-

ples. Many efforts are devoted to few-shot image

classification (Koch et al., 2015) and relation clas-

sification (Yuan et al., 2017; Han et al., 2018).

Notably, (Koch et al., 2015) introduces Convolu-
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Figure 2: The architecture of Relational Siamese Net-

works. The output is the similarity between two rela-

tional instances.

tional Siamese Neural Network for image metric

learning, which inspires us to learn relational sim-

ilarity metrics for OpenRE.

Semi-supervised Clustering. Semi-supervised

clustering aims to cluster semantic patterns given

instance seeds of target categories (Bair, 2013;

Hongtao Lin, 2019). Differently, our proposed

Semi-supervised RSN only leverages labeled in-

stances of pre-defined relations, and does not need

any seed of new relations.

3 Methodology

Our OpenRE framework mainly consists of two

modules, the relation similarity calculation mod-

ule and the relation clustering module. For rela-

tion similarity calculation, we propose Relational

Siamese Networks (RSNs), which learn to pre-

dict whether two sentences mention the same re-

lation. To utilize large-scale unsupervised data

and distantly-supervised data, we further propose

Semi-supervised RSN and Distantly-supervised

RSN. Finally, in the relation clustering module,

with the learned relation metric, we utilize hierar-

chical agglomerative clustering (HAC) and Lou-

vain clustering algorithms to cluster target relation

instances of new relation types.

3.1 Relational Siamese Network (RSN)

The architecture of our Relational Siamese Net-

works is shown in Figure 2. CNN modules encode

a pair of relational instances into vectors, and sev-

eral shared layers compute their similarity.

Sentence Encoder. We use a CNN module

as the sentence encoder. The CNN module in-

cludes an embedding layer, a convolutional layer,

a max-pooling layer, and a fully-connected (FC)

layer. The embedding layer transforms the words

in a sentence x and the positions of entities ehead
and etail into pre-trained word embeddings and

random-initialized position embeddings. Follow-

ing (Zeng et al., 2014), we concatenate these em-

beddings to form a vector sequence. Next, a

one-dimensional convolutional layer and a max-

pooling layer transform the vector sequence into

features. Finally, an FC layer with sigmoid ac-

tivation maps features into a relational vector v.

To summarize, we obtain a vector representation

v for a relational sentence with our CNN module:

v = CNN(s), (1)

in which we denote the joint information of a sen-

tence x and two entities in it ehead and etail as a

data sample s. And with paired input relational

instances, we have:

vl = CNN(sl),vr = CNN(sr), (2)

in which two CNN modules are identical and share

all the parameters.

Similarity Computation. Next, to measure the

similarity of two relational vectors, we calculate

their absolute distance and transform it into a real-

number similarity p ∈ [0, 1]. First, a distance layer

computes the element-wise absolute distance of

two vectors:

vd = |vl − vr|. (3)

Then, a classifier layer calculates a metric p for

relation similarity. The layer is a one-dimensional-

output FC layer with sigmoid activation:

p = σ(kvd + b), (4)

in which σ denotes the sigmoid function, k and b
denote the weights and bias. To summarize, we

obtain a good similarity metric p of relational in-

stances.

Cross Entropy Loss. The output of RSN p can

also be explained as the probability of two sen-

tences mentioning two different relations. Thus,

we can use binary labels q and binary cross en-

tropy loss to train our RSN:

Ll = Edl∼Dl [q ln(pθ(dl)) + (1− q) ln(1− pθ(dl))], (5)

in which θ indicates all the parameters in the RSN.
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Figure 3: The comparison of (a) Supervised RSN

and (b) Weakly-supervised RSNs. Weakly-supervised

RSNs, including Semi-supervised RSN and Distantly-

supervised RSN, further learn from unlabeled data with

conditional entropy minimization and virtual adversar-

ial training (VAT). In figures, p indicates the predicted

similarity of two relational sentences, while q indicates

the ground-truth label between them.

3.2 Semi-supervised RSN

To discover relation clusters in the open-domain

corpus, it is beneficial to not only learn from la-

beled data, but also capture the manifold of unla-

beled data in the semantic space. To this end, we

need to push the decision boundaries away from

high-density areas, which is known as the cluster

assumption (Chapelle and Zien, 2005).

We try to achieve this goal with several addi-

tional loss functions. In the following paragraphs,

we denote the labeled training dataset as Dl and a

couple of labeled relational instances as dl. Sim-

ilarly, we denote the unlabeled training dataset as

Du and a couple of unlabeled instances as du.

Conditional Entropy Loss. In classification

problems, a well-classified embedding space usu-

ally reserves large margins between different clas-

sified clusters, and optimizing margin can be a

promising way to facilitate training. However, in

clustering problems, type labels are not available

during training. To optimize margin without ex-

plicit supervision, we can push the data points

away from the decision boundaries. Intuitively,

when the distance similarity p between two rela-

tional instances equals 0.5, there is a high prob-

ability that at least one of two instances is near

the decision boundary between relation clusters.

Thus, we use the conditional entropy loss (Grand-

valet and Bengio, 2005), which reaches the max-

imum when p = 0.5, to penalize close-boundary

distribution of data points:

Lu = Edu∼Du [pθ(du) ln(pθ(du))+

(1− pθ(du)) ln(1− pθ(du))].
(6)

Virtual Adversarial Loss. Despite its theo-

retical promise, conditional entropy minimization

suffers from shortcomings in practice. Due to neu-

ral networks’ strong fitting ability, a very complex

decision hyperplane might be learned so as to keep

away from all the training samples, which lacks

generalizability. As a solution, we can smooth

the relational representation space with locally-

Lipschitz constraint.

To satisfy this constraint, we introduce virtual

adversarial training (Miyato et al., 2016) on both

branches of RSN. Virtual adversarial training can

search through data point neighborhoods, and pe-

nalize most sharp changes in distance prediction.

For labeled data, we have

Lvl = Edl∼Dl [DKL(pθ(dl)||pθ(dl, t1, t2))], (7)

in which DKL indicates the Kullback-Leibler di-

vergence, pθ(dl, t1, t2) indicates a new distance es-

timation with perturbations t1 and t2 on both in-

put instances respectively. Specifically, t1 and t2
are worst-case perturbations that maximize the KL

divergence between pθ(dl) and pθ(dl, t1, t2) with a

limited length. Empirically, we approximate the

perturbations the same as the original paper (Miy-

ato et al., 2016). Specifically, we first add a ran-

dom noise to the input, and calculate the gradient

of the KL-divergence between the outputs of the

original input and the noisy input. We then add

the normalized gradient to the original input and

get the perturbed input. And for unlabeled data,

we have

Lvu = Edu∼Du [DKL(pθ(du)||pθ(du, t1, t2))], (8)

in which the perturbations t1 and t2 are added

to word embeddings rather than the words them-

selves.

To summarize, we use the following loss func-

tion to train Semi-supervised RSN, which learns

from both labeled and unlabeled data:

Lall = Ll + λvLvl + λu(Lu + λvLvu), (9)

in which λv and λu are two hyperparameters.
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3.3 Distantly-supervised RSN

To alleviate the intensive human labor for annota-

tion, the topic of distantly-supervised learning has

attracted much attention in RE. Here, we propose

Distantly-supervised RSN, which can learn from

both distantly-supervised data and unsupervised

data for relational knowledge transfer. Specifi-

cally, we use the following loss function:

Lall = Ll + λu(Lu + λvLvu), (10)

which treats auto-labeled data as labeled data but

removes the virtual adversarial loss on the auto-

labeled data.

The reason to remove the loss is simple: vir-

tual adversarial training on auto-labeled data can

amplify the noise from false labels. Indeed, we

do find that the virtual adversarial loss on auto-

labeled data can harm our model’s performance in

experiments.

We do not use more denoising methods, since

we think RSN has some inherent advantages of

tolerating such noise. Firstly, the noise will be

overwhelmed by the large proportion of negative

sampling during training. Secondly, during clus-

tering, the prediction of a new relation cluster is

based on areas where the density of relational in-

stances is high. Outliers from noise, as a result,

will not influence the prediction process so much.

3.4 Open Relation Clustering

After RSN is learned, we can use RSN to calculate

the similarity matrix of testing instances. With this

matrix, several clustering methods can be applied

to extract new relation clusters.

Hierarchical Agglomerative Clustering. The

first clustering method we adopt is hierarchical ag-

glomerative clustering (HAC). HAC is a bottom-

up clustering algorithm. At the start, every testing

instance is regarded as a cluster. For every step, it

agglomerates two closest instances. There are sev-

eral criteria to evaluate the distance between two

clusters. Here, we adopt the complete-linkage cri-

terion, which is more robust to extreme instances.

However, there is a significant shortcoming of

HAC: it needs the exact number of clusters in ad-

vance. A potential solution is to stop agglomerat-

ing according to an empirical distance threshold,

but it is hard to determine such a threshold. This

problem leads us to consider another clustering al-

gorithm Louvain (Blondel et al., 2008).

Louvain. Louvain is a graph-based clustering

algorithm traditionally used for detecting commu-

nities. To construct the graph, we use the binary

approximation of RSN’s output, with 0 indicat-

ing an edge between two nodes. The advantage

of Louvain is that it does not need the number of

potential clusters beforehand. It will automatically

find proper sizes of clusters by optimizing commu-

nity modularity. According to the experiments we

conduct, Louvain performs better than HAC.

After running, Louvain might produce a number

of singleton clusters with few instances. It is not

proper to call these clusters new relation types, so

we label these instances the same as their closest

labeled neighbors.

Finally, we want to explain the reason why we

do not use some other common clustering methods

like K-Means, Mean-Shift and Ward’s (Ward Jr,

1963) method of HAC: these methods calculate

the centroid of several points during clustering by

merely averaging them. However, the relation vec-

tors in our model are high-dimensional, and the

distance metric described by RSN is non-linear.

Consequently, it is not proper to calculate the cen-

troid by simply averaging the vectors.

4 Experiments

In this section, we conduct several experiments on

real-world RE datasets to show the effectiveness

of our models, and give a detailed analysis to show

its advantages.

4.1 Dataset

In experiments, we use FewRel (Han et al., 2018)

as our first dataset. FewRel is a human-annotated

dataset containing 80 types of relations, each with

700 instances. An advantage of FewRel is that ev-

ery instance contains a unique entity pair, so RE

models cannot choose the easy way to memorize

the entities.

We use the original train set of FewRel, which

contains 64 relations, as labeled set with pre-

defined relations, and the original validation set of

FewRel, which contains 16 new relations, as the

unlabeled set with novel relations to extract. We

then randomly choose 1, 600 instances from the

unlabeled set as the test set, with the rest labeled

and unlabeled instances considered as the train set.

The second dataset we use is FewRel-distant,

which contains the distantly-supervised data ob-

tained by the authors of FewRel before human an-
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notation. We follow the split of FewRel to obtain

the auto-labeled train set and unlabeled train set.

For evaluation, we use the human-annotated test

set of FewRel with 1, 600 instances. Unlabeled in-

stances already existing in this test set are removed

from the unlabeled train set of FewRel-distant. Fi-

nally, the auto-labeled train set contains 323, 549
relational instances, and the unlabeled train set

contains 60, 581 instances.

A previous OpenRE work reports performance

on an unpublic dataset called NYT-FB (Marcheg-

giani and Titov, 2016). However, it has sev-

eral shortcomings compared with FewRel-distant.

First, NTY-FB’s test set is distantly-supervised

and is noisy for instance-level RE. Moreover, in-

stances in NYT-FB often share entity pairs or re-

lational phrases, which makes it much easier for

relation clustering. Therefore, we think the re-

sults on FewRel-distant are convincing enough for

Distantly-supervised OpenRE.

4.2 Implementation Details

Data Sampling. The input of RSN should be

a pair of sampled instances. For the unlabeled

set, the only possible sampling method is to select

two instances randomly. For the labeled set, how-

ever, random selection would result in too many

different-relation pairs, and cause severe biases

for RSN. To solve this problem, we use down-

sampling. In our experiments, we fix the percent-

age of same-relation pairs in every labeled data

batch as 6%.

Let us denote this percentage number as the

sample ratio for convenience. Experimental re-

sults show that the sample ratio decides RSN’s

tendency to predict larger or smaller clusters. In

other words, it controls the granularity of the pre-

dicted relation types. This phenomenon suggests a

potential application of our model in hierarchical

relation extraction. However, we leave any serious

discussion to future work.

Hyperparameter Settings. Following (Lin

et al., 2016) and (Zeng et al., 2014), we fix the

less influencing hyperparameters for sentence en-

coding as their reported optimal values. For word

embeddings, we use pre-trained 50-dimensional

Glove (Pennington et al., 2014) word embed-

dings. For position embeddings, we use random-

initialized 5-dimensional position embeddings.

During training, all the embeddings are trainable.

For the neural network, the number of feature

maps in the convolutional layer is 230. The fil-

ter length is 3. The activation function after the

max-pooling layer is ReLU, and the activation

functions after FC layers are sigmoid. Besides,

we adopt two regularization methods in the CNN

module. We put a dropout layer right after the

embedding layer as (Miyato et al., 2016). The

dropout rate is 0.2. We also impose L2 regulariza-

tion on the convolutional layer and the FC layer,

with parameters of 0.0002 and 0.001 respectively.

Hyperparameters for virtual adversarial training

are just the same as (Miyato et al., 2016) proposed.

At the same time, major hyperparameters are

selected with grid search according to the model

performance on a validation set. Specifically, the

validation set contains 10,000 randomly chosen

sentence pairs from the unlabeled set (i.e. 16 novel

relations) and does not overlap with the test set.

The model is evaluated according to the precision

of binary classification of sentence pairs on the

validation set, which is an estimation for models’

clustering ability. We do not use F1 during model

validation because the clustering steps are time-

consuming.

For optimization, we use Adam opti-

mizer (Kingma and Ba, 2014) with a learn-

ing rate of 0.0001, which is selected from

{0.1, 0.01, 0.001, 0.0001, 0.00001}. The batch

size is 100 selected from {25, 50, 100}. For hy-

perparameters in Equation 9 and Equation 10, λv

is 1.0 selected from {0.1, 0.5, 1.0, 2.0} and λu is

0.03 selected from {0.01, 0.02, 0.03, 0.04, 0.05}.

For baseline models, original papers do grid

search for all possible hyperparameters and report

the best result during testing. We follow their set-

tings and do grid search directly on the test set.

4.3 Experiment Results on OpenRE

In this section, we demonstrate the effective-

ness of our RSN models by comparing our mod-

els with state-of-the-art clustering-based OpenRE

methods. We also conduct ablation experiments

to detailedly investigate the contributions of dif-

ferent mechanisms of Semi-supervised RSN and

Distantly-supervised RSN.

Baselines. Conventional clustering-based

OpenRE models usually cluster instances by either

clustering their linguistic features (Lin and Pantel,

2001; Yao et al., 2012; Elsahar et al., 2017) or im-

posing reconstruction constraints (Yao et al., 2011;

Marcheggiani and Titov, 2016). To demonstrate
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the effectiveness of our RSN models, we compare

our models with two state-of-the-art models:

(1) HAC with re-weighted word embeddings

(RW-HAC) (Elsahar et al., 2017): RW-HAC is

the state-of-the-art feature clustering model for

OpenRE. The model first extracts KB types and

NER tags of entities as well as re-weighted word

embeddings from sentences, then adopts principal

component analysis (PCA) to reduce feature di-

mensionality, and finally uses HAC to cluster the

concatenation of reduced feature representations.

(2) Discrete-state variational autoencoder

(VAE) (Marcheggiani and Titov, 2016): VAE is

the state-of-the-art reconstruction-based model

for OpenRE via unlabeled instances. It optimizes

a relation classifier by reconstructing entities from

pairing entities and predicted relation types. Rich

features including entity words, context words,

trigger words, dependency paths, and context

POS tags are used to predict the relation type.

RW-HAC and VAE both rely on external lin-

guistic tools to extract rich features from plain

texts. Specifically, we first align entities to Wiki-

data and get their KB types. Next, we preprocess

the instances with part-of-speech (POS) tagging,

named-entity recognition (NER), and dependency

parsing with Stanford CoreNLP (Manning et al.,

2014). It is worth noting that these features are

only used by baseline models. Our models, in con-

trast, only use sentences and entity pairs as inputs.

Evaluation Protocol. In evaluation, we use B3

metric (Bagga and Baldwin, 1998) as the scor-

ing function. B3 metric is a standard measure

to balance the precision and recall of clustering

tasks, and is commonly used in previous OpenRE

works (Marcheggiani and Titov, 2016; Elsahar

et al., 2017). To be specific, we use F1 measure,

the harmonic mean of precision and recall.

First, we report the result of supervised RSN

with different clustering methods. Specifically,

SN represents the original RSN structure, HAC
and L indicate HAC and Louvain clustering intro-

duced in Sec. 3.3. The result shows that Louvain

performs better than HAC, so in the following ex-

periments we focus on using Louvain clustering.

Next, for Semi-supervised and Distantly-

supervised RSN, we conduct various combina-

tions of different mechanisms to verify the contri-

bution of each part. (+C) indicates that the model

is powered up with conditional entropy minimiza-

tion, while (+V) indicates that the model is pow-

FewRel FewRel-distant
Approach P R F1 P R F1

VAE 17.9 69.7 28.5 17.9 69.7 28.5
RW-HAC 31.8 46.0 37.6 31.8 46.0 37.6

SN-HAC 36.2 53.3 43.1 34.5 53.3 41.5
SN-L 36.5 69.2 47.8 34.6 59.8 43.9
SN-L+V 46.1 77.3 57.8 40.7 52.4 45.8
SN-L+C 47.1 78.1 58.8 42.3 66.0 51.5

SN-L+CV1 48.9 77.5 59.9 40.8 74.0 52.6

Table 1: Precision, recall and F1 results (%) for differ-

ent models. The first two models are baselines. The

next five models are different variants of our model.

ered up with virtual adversarial training.

Experimental Result Analysis. Table 1 shows

the experimental results, from which we can ob-

serve that:

(1) RSN models outperform all baseline models

on precision, recall, and F1-score, among which

Weakly-supervised RSN (SN-L+CV) achieves

state-of-the-art performances. This indicates that

RSN is capable of understanding new relations’

semantic meanings within sentences.

(2) Supervised and distantly-supervised rela-

tional representations improve clustering perfor-

mances. Compared with RW-HAC, SN-HAC

achieves better clustering results because of its

supervised relational representation and similar-

ity metric. Specifically, unsupervised baselines

mainly use sparse one-hot features. RW-HAC uses

word embeddings, but integrates them in a rule-

based way. In contrast, RSN uses distributed fea-

ture representations, and can optimize information

integration process according to supervision.

(3) Louvain outperforms HAC for clustering

with RSN, comparing SN-HAC with SN-L. One

explanation is that our model does not put addi-

tional constraints on the prior distribution of rela-

tional vectors, and therefore the relation clusters

might have odd shapes in violation of HAC’s as-

sumption. Moreover, when representations are not

distinguishable enough, forcing HAC to find fine-

grained clusters may harm recall while contribut-

ing minimally to precision. In practice, we do ob-

serve that the number of relations SN-L extracts is

constantly less than the true number 16.

(4) Both SN-L+V and SN-L+C improve the

performance of supervised or distantly-supervised

1Here for FewRel-distant we use Equation 10 rather
than Equation 9 as loss, which corresponds to Distantly-
supervised RSN, and this brings a minor improvement on F1

from 52.0% to 52.6%.
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(a) RSN (b) Semi-supervised RSN (c) Supervised CNN

Figure 4: The t-SNE visualization of the output vectors of CNN modules in our (a) OpenRE model RSN, (b)

Semi-supervised RSN facilitated by unlabeled novel-relation data and in (c) a classical RE baseline trained with

labeled novel-relation data. All figures visualize the clustering result for 402 instances of 4 novel relations.
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Figure 5: The clustering results with different numbers

of pre-defined training relations.

RSN by further utilizing unsupervised corpora.

Both semi-supervised approaches bring significant

improvements for F1 scores by increasing the pre-

cision and recall, and combining both can further

increase the F1 score.

(5) One interesting observation is that SN-L+V

does not outperform SN-L so much on FewRel-

distant. This is probably because VAT on the noisy

data might amplify the noise. In further exper-

iments, we perform VAT only on unlabeled set

and observe improvements on F1, with SN-L+V

from 45.8% to 49.2% and SN-L+CV from 52.0%
to 52.6%, which proves this conjecture.

4.4 The Influence of Pre-defined Relation
Diversity on Generalizability

In this subsection, we mainly focus on analyzing

the influence of pre-defined relation diversity, i.e.,

the number of relations in the labeled train set. To

study this influence, we use FewRel for evaluation

and change the number of relations in the labeled

train set from 40 to 64 while fixing the total num-

ber of labeled instances to 25, 000, and report the

clustering results in Figure 5.

Several conclusions can be drawn according to

Figure 5. Firstly, a rich variety of labeled rela-

tions do improve the performance of our models,

especially RSN. The models trained on 64 rela-

tions perform better than those trained on 40 rela-

tions constantly. Secondly, while the performance

of supervised RSN is very sensitive to pre-defined

relation diversity, its semi-supervised counterparts

suffer much less from the relation number limit.

This phenomenon suggests that Semi-supervised

RSNs succeed in learning from unlabeled novel-

relation data and are more generalizable to novel

relations.

4.5 Relational Knowledge Representation
Visualization

To intuitively evaluate the knowledge transfer ef-

fects of RSN and Semi-supervised RSN, we vi-

sualize their relational knowledge representation

spaces in the last layer of CNN encoders with t-

SNE(Maaten and Hinton, 2008) in Figure 4. We

also compare with a supervised CNN trained on

9, 600 labeled instances of novel relations, which

suggests the optimal relational knowledge repre-

sentation. In each figure, we plot 402 relation in-

stances of 4 randomly-chosen relation types in the

test set, and points are colored according to their

ground-truth labels.

As we can see from Figure 4, RSN is able

to roughly distinguish different relations, and

Semi-supervised RSN further facilitated knowl-

edge transfer by optimizing the margin between

potential relation clusters during training. As a re-

sult, Semi-supervised RSN can extract more dis-

tinguishable novel relations, and gains comparable
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relational knowledge representation ability with

supervised CNN.

5 Conclusions and Future Work

In this paper, we propose a new model Rela-

tional Siamese Network (RSN) for OpenRE. Dif-

ferent from conventional unsupervised models,

our model learns to measure relational similarity

from supervised/distantly-supervised data of pre-

defined relations, as well as unsupervised data of

novel relations. There are mainly two innovative

points in our model. First, we propose to transfer

relational similarity knowledge with RSN struc-

ture. To the best of our knowledge, we are the first

to propose knowledge transfer for OpenRE. Sec-

ond, we propose Semi/Distantly-supervised RSN,

to further perform semi-supervised and distantly-

supervised transfer learning. Experiments show

that our models significantly surpass conventional

OpenRE models and achieve new state-of-the-art

performance.

For future research, we plan to explore the

following directions: (1) Besides CNN, there

are some other popular sentence encoder struc-

tures like piecewise convolutional neural network

(PCNN) and Long Short-Term Memory (LSTM)

for RE. In the future, we can try different sentence

encoders in our model. (2) As mentioned above,

our model has the potential ability to discover the

hierarchical structure of relations. In the future,

we will try to explore this application with addi-

tional experiments.
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