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Abstract

Similarity measures based purely on word
embeddings are comfortably competing with
much more sophisticated deep learning and
expert-engineered systems on unsupervised
semantic textual similarity (STS) tasks. In
contrast to commonly used geometric ap-
proaches, we treat a single word embedding
as e.g. 300 observations from a scalar ran-
dom variable. Using this paradigm, we first il-
lustrate that similarities derived from elemen-
tary pooling operations and classic correla-
tion coefficients yield excellent results on stan-
dard STS benchmarks, outperforming many
recently proposed methods while being much
faster and trivial to implement. Next, we
demonstrate how to avoid pooling operations
altogether and compare sets of word embed-
dings directly via correlation operators be-
tween reproducing kernel Hilbert spaces. Just
like cosine similarity is used to compare in-
dividual word vectors, we introduce a novel
application of the centered kernel alignment
(CKA) as a natural generalisation of squared
cosine similarity for sets of word vectors.
Likewise, CKA is very easy to implement and
enjoys very strong empirical results.

1 Introduction

Distributed representations of text have had a mas-
sive impact on the natural language processing
(NLP), information retrieval (IR), and machine
learning (ML) communities, thanks in part to their
ability to capture rich notions of semantic sim-
ilarity. While this work originally began with
word embeddings (Bengio et al., 2003; Mikolov
et al., 2013a; Pennington et al., 2014; Bojanowski
et al.,, 2017; Joulin et al., 2017), there is now
an ever-increasing number of representations for
longer units of text based on simple aggrega-
tions of word vectors (Mitchell and Lapata, 2008;
De Boom et al., 2016; Arora et al., 2017; Wieting
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et al., 2016; Wieting and Gimpel, 2018; Zhelez-
niak et al., 2019b) as well as complex neural ar-
chitectures (Le and Mikolov, 2014; Kiros et al.,
2015; Hill et al., 2016; Conneau et al., 2017; Gan
et al., 2017; Tang et al., 2017; Pagliardini et al.,
2018; Zhelezniak et al., 2018; Subramanian et al.,
2018; Cer et al., 2018; Devlin et al., 2018).

By contrast, relatively little effort has been di-
rected towards understanding the similarity mea-
sures used to compare these textual embeddings,
for which cosine similarity remains a convenient
and widespread, yet somewhat arbitrary default,
despite some emerging research into the alterna-
tives (Camacho-Collados et al., 2015; De Boom
et al., 2015; Santus et al., 2018; Zhelezniak et al.,
2019b,a). Part of the appeal of cosine similarity
perhaps lies in the simple geometric interpreta-
tion behind it. However, as embeddings are ul-
timately just arrays of numbers, we are free to
take alternative viewpoints other than the geomet-
ric ones, if they lead to illuminating insights or
strong-performing methods.

Following Zhelezniak et al. (2019a), we treat
a word embedding not as a geometric vector but
as a statistical sample (of e.g. 300 observations)
from a scalar random variable, and indeed find
insights that are both intriguing and noteworthy.
We first illustrate that similarities derived from
elementary pooling operations and classic uni-
variate correlation coefficients yield excellent re-
sults on standard semantic textual similarity (STS)
benchmarks, outperforming many recently pro-
posed methods while being much faster and sim-
pler to implement. This empirically validates the
advantages of the statistical perspective on word
embeddings over the geometric interpretations. In
the process, we provide more evidence that depar-
tures from normality, and in particular the pres-
ence of outliers, can have severe negative effects
on the performance of some correlation coeffi-
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cients. We show how to overcome these compli-
cations, by selecting an outlier-removing pooling
operation such as max-pooling, applying a more
robust correlation coefficient such as Spearman’s
p, or simply clipping (winsorizing) the word vec-
tors.

Next, we demonstrate how to avoid pooling
operations completely and compare sets of word
embeddings directly via correlation operators be-
tween reproducing kernel Hilbert spaces (RKHS).
We introduce a novel application of the kernel
alignment (KA) and the centered kernel alignment
(CKA) as a natural generalisation of the squared
cosine similarity and Pearson correlation for the
sets of word embeddings. These multivariate cor-
relation coefficients are very easy to implement
and also enjoy very strong empirical results.

2 Related Work

Several lines of research seek to combine the
strength of pretrained word embeddings and the
elegance of set- or bag-of-words (BoW) repre-
sentations. Any method that determines seman-
tic similarity between sentences by comparing the
corresponding sets of word embeddings is directly
related to our work.

Perhaps the most obvious such approaches are
based on elementary pooling operations such as
average-, max- and min-pooling (Mitchell and La-
pata, 2008; De Boom et al., 2015, 2016). While
seemingly over-simplistic, numerous studies have
confirmed their impressive performance on the
downstream tasks (Arora et al., 2017; Wieting
et al., 2016; Wieting and Gimpel, 2018; Zhelez-
niak et al., 2019b)

One step further, Zhao and Mao (2017); Zhelez-
niak et al. (2019b) introduce fuzzy bags-of-words
(FBoW) where degrees of membership in a fuzzy
set are given by the similarities between word em-
beddings. Zhelezniak et al. (2019b) show a close
connection between FBoW and max-pooled word
vectors.

Some approaches do not seek to build an ex-
plicit representation and instead focus directly
on designing a similarity function between sets.
Word Mover’s Distance (WMD) (Kusner et al.,
2015) is an instance of the Earth Mover’s Dis-
tance (EMD) computed between normalised BoW,
with the cost matrix given by Euclidean distances
between word embeddings. In the soft cardinal-
ity framework of (Jimenez et al., 2010, 2015), the
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contribution of a word to the cardinality of a set
depends on its similarities to other words in the
same set. Such sets are then compared using an ap-
propriately defined Jaccard index or related mea-
sures. DynaMax (Zhelezniak et al., 2019b) uses
universe-constrained fuzzy sets designed explic-
itly for similarity computations.

Approaches that see word embeddings as statis-
tical objects are very closely related to our work.
Virtually all of them treat word embeddings as ob-
servations from some D-variate parametric fam-
ily, where D is the embedding dimension. Arora
et al. (2016, 2017) introduce a latent discourse
model and show the maximum likelihood esti-
mate (MLE) for the discourse vector to be the
weighted average of word embeddings in a sen-
tence, where the weights are given by smooth in-
verse frequencies (SIF). Nikolentzos et al. (2017);
Torki (2018) treat sets of word embeddings as ob-
servations from D-variate Gaussians, and com-
pare such sets with cosine similarity between the
parameters (means and covariances) estimated by
maximum likelihood. Vargas et al. (2019) mea-
sure semantic similarity through penalised likeli-
hood ratio between the joint and factorised models
and explore Gaussian and von Mises—Fisher like-
lihoods.

Cosine similarity between covariances is an in-
stance of the RV coefficient and its uncentered
version was applied in the context of word em-
beddings before (Botev et al., 2017). We arrive
at a similar coefficient (but with different center-
ing) as a special case of CKA, which in the gen-
eral case makes no parametric assumptions about
disbtributions whatsoever. In particular our ver-
sion is suitable for comparing sets containing just
one word vector, whereas the method of Nikolent-
zos et al. (2017); Torki (2018) requires at least two
vectors in each set. Very recently, Kornblith et al.
(2019) used CKA to compare representations be-
tween layers of the same or different neural net-
works. This is again an instance of treating such
representations as observations from a D-variate
distribution, where D is the dimension of the hid-
den layer in question. Our use of CKA is com-
pletely different from theirs.

Unlike all of the above approaches, (Zhelezniak
et al., 2019a) see each word embedding itself as D
(e.g. 300) observations from some scalar random
variable. They cast semantic similarity as corre-
lations between these random variables and study



their properties using simple tools from univari-
ate statistics. While they consider correlations be-
tween individual word vectors and averaged word
vectors, they do not formally explore correlations
between word vector sets. We review their frame-
work in Section 3 and then proceed to formalise
and generalise it to the case of sets of word em-
beddings.

3 Background: Correlation Coefficients
and Semantic Similarity

Suppose we have a word embeddings matrix W €
RN*P where N is the number of words in the vo-
cabulary and D is the embedding dimension (usu-
ally 300). In other words, each row w(?) of W is
a D-dimensional word vector. When applying sta-
tistical analysis to these vectors, one might choose
to treat each w(¥) as an observation from some D-
variate distribution Pp(E1, ... Ep) and model it
with a Gaussian or a Gaussian Mixture. While
such analysis helps in studying the overall geome-
try of the embedding space (how dimensions cor-
relate and how embeddings cluster), Pp is not di-
rectly useful for semantic similarity between indi-
vidual words.

For the latter, Zhelezniak et al. (2019a) pro-
posed to look at the transpose W7 and the corre-
sponding distribution P(Wy, Ws, ..., Wy). Un-
der this perspective, each word vector w ;) is now
a sample of D (e.g. 300) observations from a
scalar random variable W;. Luckily, in applica-
tions we are usually not interested in the full joint
distribution but only in the similarity between two
words, i.e. the bivariate marginal P(W;,W;). In
practice, we make inferences about this marginal
from the paired sample (w;), w(;)) through vi-
sualisations (histograms, Q-Q plots, scatter plots,
etc.) as well as various statistics.

Zhelezniak et al. (2019a) found that for all
common models (GloVe, fastText, word2vec) the
means across word embeddings are tightly con-
centrated around zero (relative to their dimen-
sions), thus making the widely used cosine sim-
ilarity practically equivalent to Pearson correla-
tion. However, while word2vec vectors seem
mostly normal, GloVe and fastText vectors are
highly non-normal, likely due to the presence of
heavy univariate and bivariate outliers (as sug-
gested by visualisations mentioned earlier). Quan-
titatively, the majority of GloVe and fastText vec-
tors fail the Shapiro-Wilk normality test at sig-
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nificance level 0.05. Therefore, while Pearson’s
r (and thus cosine similarity) may be acceptable
for word2vec, it is preferable to resort to more ro-
bust non-parametic correlation coefficients such as
Spearman’s p or Kendall’s 7 as a similarity mea-
sure between GloVe and fastText vectors.

Finally, very similar conclusions were shown
to hold for sentence representations obtained by
word vector averaging, also referred to as mean-
pooling. In particular, averaged fastText vectors
compared with rank correlation coefficients al-
ready show impressive results on standard STS
tasks, rivaling much more sophisticated systems.

4 Correlations between Word Vector Sets

We are interested in applying the statistical frame-
work from Section 3 to measure the semantic sim-
ilarity between two sentences s; and ss given by
the sets (or bags) S; and So of word embed-
dings respectively. To formalise this new setup,
we may see each set of word embeddings S =
{wWa), Wy, ..., W)} as a sample (of e.g. 300
observations) from some theoretical set of scalar
random variables R = {Wy,Wa, ..., W;}. In
light of the above, our task then lies in finding
correlation coefficients corr(R;, R2) between Ry
and Ry and their empirical estimates corr(St, S2)
obtained from the paired sample Sp, .Sy, hoping
that such coefficients will serve as a good proxy
for semantic similarity. Recall that for single-
word sets Ry = {W;}, Ry = {W,} the task sim-
ply reduces to computing a univariate correlation
between word vectors w(;) and w;), where the
choice of the coefficient (Pearson’s 7, Spearman’s
p, etc.) is made based on the statistics exhibited
by the word embeddings matrix. While general-
ising this to sets of more than one variable is not
particularly hard, there are several ways to do so,
each with its own advantages and downsides. In
the present work, we group these approaches into
two broad families: pooling-based and pooling-
free correlation coefficients.

4.1 Correlations between Pooled Variables

Pooling-based approaches first reduce a set of
random variables to a single scalar random
variable Wpoot = fpoot (W1, Wa, ..., W) and
then apply univariate correlation coefficients be-
tween the pooled variables. In practice this
would correspond to pooling word embeddings
W (1), W(2),. .., W) (along @ 1:k) into one
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Figure 1: Normalised histograms of the mean distribution for sentence vectors generated by mean-, max- and
min-pooling. Sentences were taken from the entire STS dataset (Agirre et al., 2012, 2013, 2014, 2015, 2016;
Cer et al., 2017), and we utilise three commonly-used word embedding models: GloVe (Pennington et al., 2014),
fastText (Bojanowski et al., 2017), and word2vec (Mikolov et al., 2013b,c).

Algorithm 1 MaxPool-Spearman

Require: Word embeddings for the first sentence
x x@ . xk) ¢ Rixd

Require: Word embeddings for the second sen-
tence y(),y@ ...y ¢ RIxd

Ensure: Similarity score M .S
# Max-pooling performed element-wise
x + Max_pooL(x(M), x®) . x(#)
y — Max_pooL(y(M, y@ . y®)
MS <+ SPEARMANCORRELATION(X,y)

fixed vector wpgol, followed by computing uni-
variate sample correlations. Certainly, these ap-
proaches are empirically attractive: not only are
they very simple computationally (e.g. see Algo-
rithm 1) but they also keep us in the realm of uni-
variate statisics, where we have an entire arsenal of
effective tools for making inferences about W1

Unfortunately, it is not always clear a priori
what should dictate our choice of the pooling func-
tion (though, as we will see shortly, for certain
functions some statistical justifications do exist).
By far the most common pooling operations for
word embedding found in the literature are mean-,
max- and min-pooling. It is also very common,
with some exceptions, to treat these various pooled
representation in a completely identical fashion,
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e.g. by comparing them all with cosine similar-
ity. Intuitively, however, we suggest that the statis-
tics of W01 must heavily depend on the pooling
function f,o1 and thus each such pooled random
variable should be studied in its own right. To
illustrate this point, we would like to reveal the
very different nature of mean- and max- and min-
pooled sentence vectors though a practical exam-
ple.

4.2 Statistics of the Pooled Representations:
A Practical Analysis

Let us begin by examining sentence vectors ob-
tained through mean-pooling. Recall that for com-
mon word embedding models, the mean across
300 dimensions of a single word embedding w ;)
happens to be close to zero (relative to the dimen-
sions). By the linearity of expectation, we have
that E[Winew] = E | X5, Wi| = X E W,
and so the mean across wpean Will also be close
to zero at least for small k. In practice, this seems
to hold even for moderate £ in naturally occurring
sentences, as seen in Figure 1. Based on this, we
expect Pearson correlation and cosine similarity to
have almost identical performance on the down-
stream tasks, which is confirmed in Figure 2.

On the other hand, intuition tells us that the
means of the max-pooled vectors will be shifted
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Figure 2: Bar plots of Pearson correlation on STS tasks between human scores and the following set-based simi-
larity metrics: Cosine similarity (COS), Pearson’s r (PRS), Winsorized Pearson’s r (WPRS), Spearman’s p (SPR),
and Kendall’s 7 (KND). Plots generated for three pooling methods and the following word embedding models:
GloVe (Pennington et al., 2014), fastText (Bojanowski et al., 2017), and word2vec (Mikolov et al., 2013b,c).

to the right because of the max operation, which
we see in Figure 1. In this case, cosine similar-
ity and Pearson correlation will yield different re-
sults and, in fact, Pearson’s  considerably outper-
forms cosine on the downstream tasks (Figure 2).
This in turn empirically adds weight to the statisti-
cal interpretation (correlation) over its geometrical
counterpart (angle between vectors).

Recall also that unlike word2vec, GloVe and
fastText vectors feature heavy univariate outliers,
and the same can be expected to hold for the
pooled representations; an example is shown in
Figure 3. In case of mean-pooled vectors, this par-
ticular departure from normality can be success-
fully detected by the Shapiro-Wilk normality test,
informing the appropriate choice of the correla-
tion coefficient (Pearson’s r or robust rank correla-
tion). By contrast, such procedure cannot be read-
ily applied to max-pooled and min-pooled vectors
as by construction they exhibit additional depar-
tures from normality, such as positive and nega-
tive skew respectively. It is always a good idea to
consult visualisations for such vectors, such as the
ones in Figure 3. Interestingly though, we do ob-
serve the some noteworthy regularities, which we
describe further in Section 5.

The above example is meant to illustrate that
even the simplest pooled random variables show
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strikingly different statistics depending on the ag-
gregation. While the abundance of various pooling
operations may be intimidating, the resulting vec-
tors are always subject to the many tools of uni-
variate statistics. As we hope to have shown, even
crude analysis can shed light on the nature of these
textual representations, which in turn has notable
practical implications, as we will see in Section 5.

4.3 Correlations between Random Vectors

Exactly as before, suppose we have two sen-
tences S1 = {X(1),X(2),---, X} and Sz =
{¥1):¥@2):---»¥@} and the corresponding ran-
dom vectors X = (X1, Xo,...,X;) and Y =
(Y1,Ys,...,Y;). At this point it is important to
emphasise again that we relate each word vector
x; to a random variable X; and treat the dimen-
sions of x; as D observations from that variable,
and similarly for y; and Y;. In contrast with the
pooling-based approaches, our task here is to find
a suitable correlation coefficient directly between
the random vectors X and Y. We begin by recall-
ing the expression for the basic univariate Pear-
son’s r:

oo = Bxy [(X = px) (Y — py)]
XY X0y )

)
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Figure 3: Histograms for word embeddings of the word “cats” and pooled representations of the embeddings for
the words in the sentence “I like cats because they are very cute animals”.

where They also show the empirical estimate of it to be
px =E[X], ox =/E[X?] —u%, HSIC(K,L) = (D — 1) ?Tr(KHLH), (3)

and similarly for yy and oy. The covariance  where H = I — 5117 is the centering matrix and
term cov(X,Y') in the numerator is readily gener- K = K(X® X0) L = L(Y®D YU)) i, j =

alised to random vectors by the following cross-  1:D are the kernel (Gram) matrices of observa-

covariance operator between reproducing kernel  tions. Crucially, the kernel evaluations for K take

Hilbert spaces (RKHS) F and G place between X = (x fl), xéz), e xék)) and
() -

Cxy = Exy [(9(X) — ) ® ((Y) — py)], X0 = Oy Xl X[) and not between the

2) individual word embeddlngs X(;) and X(j), and

j
where ® denotes the tensor product and ux = similarly for L. Thus, both K and L are square
Ex [6(X)], gy = Ey [¢(Y)]. Here ¢ and 1 matrices of dimensiqn D >< D . Indeed, for (3)
are the feature maps such that ($(x), p(x')) 7 = to make sense, the? dlm.ensz.ls O‘f K and L .must
K (x,x') and ()(y), ¥(y"))g = L(y,y’), where match. The matching dimension in our case is the
K and L are the kernels associated with RKHS 7 ~ Word embedding dimension D), while the number

and G respectively. Note that if ¢ and © are the of words & and [ in the sentences may vary. This
identity maps, the cross-covariance operator (2) 1510 line with our formalism, which models word

simply becomes the cross-covariance matrix vectors as r.andom variables and their dimensions
as observations.
Cxy =Ex v |[(X —pux) (Y - MY)T ) Finally, the Centered Kernel Alignment (CKA)

(Cortes et al., 2012) is simply defined as
Gretton et al. (2005a) define the Hilbert-Schmidt
independence criterion (HSIC) to be the squared CKA(K,L) = HSIC(K, L)
Hilbert-Schmidt norm ||Cx |45 of (2) and derive V/HSIC(K,K)/HSIC(L, L)’
an expression for it in terms of kernels K and L )

We see now that CKA not only generalises

HSIC(X Y, K, L) = the squared Pearson correlation to the multivari-
Ex x' vy [K (X, X" )] ate case, it also allows it to operate in high-
S dimensional feature spaces, as commonly done in

+Ex x' [K(X,X')] Ey v/ [ Y Y’)] P y

the kernel literature. The reason this is useful is

—2Ex )y [EX’ [K (X, X/)] By [ (Y, Y) H that under certain conditions (when K and L are
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Approach STS 12 13 14 15 16
Deep Learning Approaches

ELMo (BoW) 55 53 63 68 60
Skip-Thought 41 29 40 46 52
InferSent 61 56 68 71 71
USE (DAN) 59 59 68 72 70
USE (Transformer) 61 64 71 74 74
STN (multitask) 60.6 5477 658 742 664
BERT-Base 469 528 572 635 645
BERT-Large 426 474 493 556 604
Set-based Approaches

WMD 53.0 459 572 669 63.1
SoftCardinality 559 505 59.0 662 65.1
DynaMax 60.9 603 695 767 74.6
SIF+PCA 58.6 673 705 735 717
MeanPool+COS 583 579 649 676 0643
MaxPool+COS 5777 535 672 695 68.5
MeanPool+SPR 60.2 65.1 701 744 730
MaxPool+SPR* 61.0 629 709 759 758
CKA Linear® 598 62.1 695 746 703
CKA Gaussian® 60.5 63.8 71.6 763 737
CKA dCor® 61.0 632 715 756 724

Table 1: Mean Pearson correlation on STS tasks for
Deep Learning and Set-based methods using fastText.
Methods proposed in this work are denoted with K.
Values in bold indicate best results per task. Previous
results are taken from Perone et al. (2018), Subrama-
nian et al. (2018) and Zhelezniak et al. (2019b,a). T in-
dicates the only STS13 result (to our knowledge) that
includes the SMT subtask.

characteristic kernels), HSIC can detect any exist-
ing dependence with high probability, as the sam-
ple size increases (Gretton et al., 2005b). One can
also consider the Uncentered Kernel Alignment
(or simply KA) (Cristianini et al., 2002), which
can then be seen as a similar generalisation but for
the univariate cosine similarity. To the best of our
knowledge, KA and CKA in general have never
been applied before to measure semantic similar-
ity between sets of word embeddings; therefore
this work seeks to introduce them as standard defi-
nitions for squared Pearson’s r and cosine similar-
ity for such sets.

5 Experiments

We now empirically demonstrate the power of the
methods and statistical analysis presented in Sec-
tion 4, through a set of evaluations on the Se-
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mantic Textual Similarity (STS) tasks series 2012-
2016 (Agirre et al., 2012, 2013, 2014, 2015, 2016;
Cer et al., 2017). For methods involving pre-
trained word embeddings, we use fastText (Bo-
janowski et al., 2017) trained on Common Crawl
(600B tokens), as previous evaluations have in-
dicated that fastText vectors have uniformly the
best performance on these tasks out of commonly-
used pretrained unsupervised word vectors (Con-
neau et al., 2017; Perone et al., 2018; Zhelezniak
et al., 2019a,b). We provide experiments and sig-
nificance analysis for additional word vector in the
Appendix. The success metric for the STS tasks
is the Pearson correlation between the sentence
similarity scores provided by human annotators
and the scores generated by a candidate algorithm.
Note that the dataset for the STS13 SMT subtask
is no longer publicly available, so the mean Pear-
son correlation for STS13 reported in our exper-
iments has been re-calculated accordingly. The
code for our experiments builds on the SentEval
toolkit (Conneau and Kiela, 2018) and is available
on GitHub'.

We first conduct a set of experiments to validate
the observations of Sections 4.1 and 4.2 regarding
the performance of cosine similarity and various
univariate correlation coefficients when applied to
pooled word vectors. These results are depicted
in Figure 2, for which we can make the following
observations.

First, max and min-pooled vectors consistently
outperform mean-pooled vectors when all three
representations are compared with Pearson cor-
relation. We hypothesise that this is in part be-
cause max and min-pooling remove the outliers (to
which Pearson’s r is very sensitive) from at least
one tail of the distribution whereas mean-pooled
vectors have outliers in both tails. This outlier-
removing property, however, cannot be taken as
a sole explanation behind excellent performance
of max-pooled vectors, as max-pooling still tends
to outperform mean-pooling when both are com-
pared with correlations that are robust to outliers,
as well as on word vectors that have very few out-
liers to begin with (e.g. word2vec).

In addition, the strong performance of rank
correlation coefficients (Spearman’s p and
Kendall’s 7) comes solely from their robustness
to outliers, as clipping (winsorizing) the top and

'nttps://github.com/Babylonpartners/
corrsim


https://github.com/Babylonpartners/corrsim
https://github.com/Babylonpartners/corrsim

bottom 5% of the values and then proceeding
with Pearson’s 7 closes the gap almost com-
pletely. Consistently, on vectors with few outliers
(word2vec), Pearson’s r achieves the same
performance as rank correlations even without
winsorization. However, unlike outliers, positive
(negative) skew of max- (min-) pooled vectors
does not seem to hurt Pearson’s 7 on STS tasks.

Next, we conduct evaluations of the methods
proposed in this work alongside other deep learn-
ing and set-based similarity measures for STS
from the literature. The methods we compare are
as follows:

* Deep representation approaches: BoW with
ELMo embeddings (Peters et al.,, 2018),
Skip-Thought (Kiros et al., 2015), InferSent
(Conneau et al., 2017), Universal Sentence
Encoder both DAN and Transformer (Cer
et al., 2018), STN multitask embeddings
(Subramanian et al., 2018), and BERT 12-
and 24-layer models (Devlin et al., 2018).

» Set-based similarity measures: Word
Mover’s Distance (WMD) (Kusner et al.,
2015), soft-cardinality with Jaccard coeffi-
cient (Jimenez et al., 2012), DynaMax with
Jaccard (Zhelezniak et al., 2019b), mean-
and max-pooled word vectors with cosine
similarity (COS), and mean-pooled word
vectors with Spearman correlation (SPR)
(Zhelezniak et al., 2019a).

* Proposed set-based approaches: max-pooled
word vectors with Spearman correlation,
CKA with linear kernel (also known as RV-
coefficient), CKA with Gaussian kernel (me-
dian estimation for ¢2), and CKA with dis-
tance kernel (distance correlation).

Note that for BERT we evaluated all pooling
strategies available in bert-as-service (Xiao, 2018)
applied to either the last or second-to-last layers
and report results for the best-performing combi-
nation, which was mean-pooling on the last layer
for both model sizes. Our results are presented in
Table 1. We can clearly see that deep learning-
based methods do not shine on STS tasks, while
simple compositions of word vectors can perform
extremely well, especially when an appropriate
correlation coefficient is used as the similarity
measure. Indeed, the performance of max-pooled
vectors with Spearman correlation approaches or
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Approach Time complexity
MaxPool+SPR  O(nd + dlogd)
CKA O(nd? + d?)
DynaMax O(n*d)

SoftCard O(n’d)

WMD O(n®logn - d)
WMD (relaxed)  O(n?d)

Table 2: Computational complexity of some of the set-
based STS methods discussed in this paper. Here n is
the sentence length and d is the dimensionality of the
word embeddings.

exceeds that of more expensive or offline methods
like that of Arora et al. (2017), which performs
PCA computations on the entire test set. Addi-
tionally, while the multivariate correlation meth-
ods such as CKA are more computationally ex-
pensive than pooling-based approaches (see Ta-
ble 2), they can provide performance boost on
some tasks, making the cost worth it depending
on the application. Finally, we conducted an ex-
ploratory error analysis and found that many errors
are due to the well-known inherent weaknesses of
word embeddings. For example, the proposed ap-
proaches heavily overestimate similarity when two
sentences contain antonyms or when one sentence
is the negation of the other. We illustrate these and
other cases in the Appendix.

6 Conclusion

In this work we investigate the application of sta-
tistical correlation coefficients to sets of word vec-
tors as a method for computing semantic textual
similarity (STS). This can be done either by pool-
ing these word vectors and computing univariate
correlations between the resulting representations,
or by applying multivariate correlation coefficients
to the sets of vectors directly.

We provide further empirical evidence that out-
liers in word vector distributions disrupt perfor-
mance of set-based similarity metrics as previ-
ously shown (Zhelezniak et al., 2019a). We also
show working methods for solving or avoiding
the issue through vector pooling operations, ro-
bust correlations or winsorization. In addition, we
found that pooling operations in conjunction with
univariate correlation coefficients yield one of the
strongest results on downstream STS tasks, while
being computationally much more efficient than
competing set-based methods. Our findings are



supported by a combination of statistical analysis,
practical examples and visualisations, and empiri-
cal evaluation on standard benchmark datasets.

Both proposed families of approaches serve as
strong baselines for future research into STS, as
well as useful algorithms for the practitioner, be-
ing efficient and simple to implement.

We believe our findings speak to the efficacy
of the statistical perspective on word embeddings,
which we hope will encourage others to explore
further implications of not only this particular
framework, but also completely novel interpreta-
tions of textual representations.
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