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Abstract

We demonstrate an end-to-end approach for
building conversational interfaces from proto-
type to production that has proven to work
well for a number of applications across di-
verse verticals. Our architecture improves
on the standard domain-intent-entity classi-
fication hierarchy and dialogue management
architecture by leveraging shallow semantic
parsing. We observe that NLU systems for in-
dustry applications often require more struc-
tured representations of entity relations than
provided by the standard hierarchy, yet with-
out requiring full semantic parses which are
often inaccurate on real-world conversational
data. We distinguish two kinds of semantic
properties that can be provided through shal-
low semantic parsing: entity groups and entity
roles. We also provide live demos of conver-
sational apps built for two different use cases:
food ordering and meeting control.

1 Introduction

Conversational interfaces are a prominent fea-
ture of many consumer technology products to-
day. Popular voice assistants, such as Alexa, Siri,
Google Assistant, and Cortana, have been built us-
ing a methodical approach of domain-intent-entity
classification and dialogue management that is be-
coming an industry standard (Dialogflow, 2018;
Wit.ai, 2018; Amazon, 2018; Microsoft, 2018).

In this demo, we share best practices on de-
veloping production conversational interfaces. We
provide attendees with an interactive demo which
illustrates the live classification of each model
in the end-to-end pipeline for different queries
and use cases. The demo systems focus on two
use cases in English—food ordering and meeting
control—though the architecture is broadly appli-
cable to other languages and use cases.

Furthermore, we introduce two components of
the pipeline that are improvements over the indus-
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try standard—entity grouping and entity roles—
which are forms of shallow semantic parsing. We
demonstrate the value of these shallow seman-
tic parses, going beyond named entity recognition
without exhaustive semantic or syntactic parsing,
or even full relation extraction. We first give an
overview of the system architecture, then describe
the shallow semantic parsing problems in more de-
tail and compare our approach to related systems.

2 Architecture

The NLP pipeline is broken down into a series of
components as illustrated in Figure 1: Intent Clas-
sifier, Entity Recognizer, Entity Resolver, Seman-
tic Parser, Dialogue Manager, Question Answerer
and Application Manager. For each component,
the model type, features, and hyperparameters are
tuned for the use case.

This architecture allows us to bootstrap appli-
cations with few queries per intent—tens or hun-
dreds of queries for narrow vocabulary intents
and thousands of queries for open vocabulary
intents—and smoothly transition as data sets in-
crease. Getting a deployable version of a conver-
sational assistant on small data set sizes is key,
since generating conversational data is expensive,
and early in development, product decisions can
often change, requiring relabeling the data. Once
a model is in production, dataset sizes can grow by
labeling queries from user logs. This architecture
scales well and continues to give robust perfor-
mance as query sizes increase by orders of mag-
nitude. As the dataset sizes grow, the most op-
timal model type, features, and hyperparameters
will change.

2.1 Intent Classification

A Domain Classifier assigns an incoming query
into one of a set of pre-defined topical buckets or
domains. This is a classification model that uses
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Figure 1: Natural language processing pipeline

text features like n-grams and gazetteer matches
to determine which domain the vocabulary of the
query is most likely in. In addition to these fea-
tures that capture language and sentence structure,
this component has access to the user context and
the history of previous queries in the conversation.
Different models such as logistic regression (LR),
support vector machine (SVM), decision tree, or
random forest can be selected for different use
cases based on the data set size and distribution.

Intent Classifiers predict which of the do-
main’s intents is expressed in the request. It is a
text classification model like the domain classifier,
but trained on data to distinguish among the types
of intended dialogue acts within a domain.

Figure 2 illustrates the domain and intent classi-
fications for the input query “I’d like a plain bagel
that’s warmed up and with cream cheese” for a
food ordering app. In the demo, users can try
tweaking the language of the query and see how it
affects the model prediction. For example, when
keeping the phrase “I’d like a”, but changing the
rest of the query to an unrelated item (e.g. “I'd like
a link to a funny video”), the domain classification
changes to UNRELATED. When tweaking the lan-
guage from “I’d like a bagel” to a more explicit “I
want to order a bagel” increases the confidence of
the ORDER intent classification.

2.2 Entity Recognition

Entity Recognizers identify and label entities—
the words and phrases that must be represented
and interpreted to fulfill requests. It is a se-
quence tagging model such as a Maximum En-
tropy Markov Model (MEMM), Long Short-Term
Memory recurrent neural network (LSTM), or a
Conditional Random Field (CRF). The features
depend on the model type used but can include
word embeddings or gazetteer matches. The opti-
mal model is dependent on dataset size. A MEMM
model with gazetteer and n-gram features may
be most robust when trained on a few hundred
queries, but the LSTM model with character and
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The intent classifier determines what the user request is most likely trying to accomplish. It relies on a collection of
machine learning models trained on thousands or millions of examples to predict an intent for each request. The
input signals for the intent classifier include the user query, the user context and the dialogue history.

(I'd like a plain bagel that's warmed up and with cream cheese.

@ USER CONTEXT ® DIALOGUE HISTORY

The trained machine learning models output the target domain, the target intent as well as likelihood probabilities
for the other domains and intents supported in the application.
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Figure 2: Domain and intent classifier demo view

The entity recognizer identifies the important words and phrases contained in each user request. It relies on
machine learning sequence models trained on large numbers of user requests. The entity recognizer prediction is
based on the user query, user context, dialogue history as well as the output of the intent classifier.

D)

(I'd like a plain bagel that's warmed up and with cream cheese.

(. USER (ONTEXT) (. DIALOGUE HISTORV) (. TARGET DOMAIN) (. TARGET lNTENT)

The output of the entity recognizer consists of the important words and phrases identified in the user request along
with their associated entity types and prediction confidence.

plain bagel
warmed up
cream cheese

Figure 3: Entity recognizer demo view

word embeddings can have better accuracy when
trained on a few hundred thousand queries.

In Figure 3 we illustrate the extracted entities
from an example query and the confidence of those
predictions.

2.3 Entity Resolution

An Entity Resolver maps each identified entity to
a canonical value. For example, in the food or-
dering use case, the text “plain bagel” needs to be
mapped to a canonical id that can be use to make
an API call to place the order.

The entity resolver uses an information retrieval
(IR) approach to resolve to the correct canonical
form by doing text matching against an index of
canonical entities. This matching uses common
IR techniques of character n-gram, token n-gram,
and fuzzy matching as well as tf-idf scoring. The
index also contains information like synonyms for
entities, so the model can correctly resolve items



The entity resolver maps each entity to a unique and unambiguous concept, such as a product with a specific 1D or
an attribute with a specific SKU number. Entity resolution is performed using machine learning models trained on
thousands or millions of mapping-pair examples.
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The output of entity resolver consists of the specific concept, product or attribute which uniquely maps to each
entity. For example, each entity might map to a specific product in a catalog or a SKU for a point-of-sale system.
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Figure 4: Entity resolver demo view

that are semantically similar but syntactically dif-
ferent. For example, “pasta with tomato sauce”
can be resolved to “spaghetti marinara”. In Fig-
ure 4, the entity text “warmed up” is resolved to
the “Warmed” (SKU: 204198) as an example.

2.4 Semantic Parser

The interpretation of some queries requires a more
structured representation than domains, intents
and entities provide. We decompose entity rela-
tion extraction into two degenerate cases: assign-
ment of entity relation type or role and association
of dependent ‘child’ entities to a head ‘parent’ en-
tity in an entity group. Though some use cases
require both kinds of information, many use cases
only require one of these, and it is productive to
treat them as separable problems.

Entity Role Classifiers add another level of
labeling when knowing an entity’s type is not
enough to interpret the entity correctly. E.g., arole
label can be used to classify a numerical entity as
a SIZE versus a QUANTITY. In the case “I’ll have
the 12 oz soda”, the role of the entity “12” should
be SIZE, but in the case “I’ll have 3 sodas”, the role
of the entity “3” should be a QUANTITY.

The addition of the role classification is novel to
our architecture. It is an intermediate between us-
ing only NER and doing a full semantic or syntac-
tic parse. The benefit of doing role classification is
that you can get important semantic and syntactic
information in a targeted way for entities that are
predefined to take multiple roles, rather than hav-
ing to generate a full parse for each query. Without
this learned role classification, systems often have
to rely on heuristics in the dialogue manager to
determine the roles of the entities. Unlike our ap-
proach, the alternative of using ruled-based heuris-
tics does not scale to unseen language patterns.
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The semantic parser determines the relationships and dependencies between the identified entities in order to
understand the meaning of the user request. It relies on supervised machine learning models trained on thousands
or millions of examples which illustrate the relationships between parsed entities.
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The output of the semantic parser is a data structure or logical form which defines the associations and
interdependencies between the parsed entities in the user request. This output can be used to construct a
knowledge-base query to retrieve candidate answers, to invoke a function to perform a specific task, or to assemble
an order basket for submission to a point-of-sale system.
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Figure 5: Semantic parser demo view

Our role classifier can be a logistic regression,
SVM, decision tree, or random forest model. The
best model is selected based on the data distribu-
tion and use case. Features include n-grams, bag
of words, and other entities present in the query.

A Entity Group Parser finds relationships be-
tween the extracted entities and groups them into
a meaningful hierarchy as illustrated in Figure 5.

The language parser for entity grouping is an-
other novel component of our architecture. A
small number of configuration parameters gener-
ates a weighted context-free grammar (WCFG)
over entities and the words not in entities. The de-
veloper can specify whether to allow parent-child
attachment to the left or right, what the minimum
or maximum number of dependent entities should
be, and the preferred direction of attachment. The
developer can also specify certain ‘linking’ words,
whose occurrence between two entities increases
the chance of the entities being in the specified
head-dependent relationship. More details on the
semantic parser are given in section 3.

2.5 Question Answerer

A Question Answerer queries a Knowledge Base,
which encompasses all of the important world
knowledge for a given application use case, to find
answers to user queries. The example in Figure 6
demonstrates the ranked list of relevant results for
the request “what pastries are available?”.

2.6 Dialogue Manager

A Dialogue Manager analyzes each processed
query, executes the required logic, and returns an
appropriate natural language response. The lan-



The question answerer finds the best answer candidates to satisfy each user request. It can rely on a knowledge
graph, containing comprehensive catalog or product data for example, in order to check the validity of each
candidate response as well as provide relevant recommendations and suggestions.

what pastries are available $
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The output of the question answerer consists of the results returned from applying the semantic parser output to
the knowledge graph. This can include validation confirmations for high-confidence answer candidates as well as
error notifications for invalid or ill-formed requests. The question answerer can also return response
recommendations for answer candidates determined likely to be relevant to the user request

Figure 6: Question answerer demo view

The dialogue manager formulates the response to return to the user. It relies on machine learning or rule-based
models to determine the most likely form, or dialogue state, for the response. It employs natural language
generation to enable a familiar, human-like interaction.

D

(0 USER EONTEXT) (0 DIALOGUE msmnv) (. TARGET DOMAIN) (. TARGET INTENT) (. RESOLVED Emmzs)

(I‘d like a plain bagel that's warmed up and with cream cheese.

(. RESOLVED DEPEND[N(IES) C. RESOLVED ANSWERS)

The output of the dialogue manager includes the target dialogue state of the response. The target dialogue state
prescribes the form of the natural language replies as well as any other recommendations or interactive elements
which may be helpful to the user. The dialogue manager also returns a set of predictive suggestions to enable one-
tap execution for the most likely user actions.

® ORDER
Here is what | have for your order.

[

@ 2: Customize

It will he ready for pickup at Third & Market in 3 to 7 minutes. The
total cost is $5.19. Would you like to place the order?

]

Figure 7: Dialogue manager demo view

guage of the response itself is often templated, but
the appropriate template is selected based on the
context of the target domain, intent, entities, and
results from the question answerer. In the exam-
ple in Figure 7, the user’s query was classified
as the order intent with the correct entity and op-
tions filled in, so the dialogue manager prompts
the user to confirm their order and informs them
of the pickup time.

2.7 Application Manager

An Application Manager orchestrates the query
workflow. It receives requests from the client in-
cluding both text queries and context information,
processes the requests by passing them through
each of the other components, and then returns the
final response to the client endpoint.
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3 Shallow Semantic Parsing

In conventional semantic parsing, a single tree of
dependency relations is constructed to cover ap-
proximately a whole sentence, enabling a transla-
tion from natural language to logical form for each
sentence. In the example below, the dependencies
OWNER, POSSESSION and QUANTITY can be as-
signed within a sentence in which a NUMBER en-
tity and DRINK entity are already recognized.

POSSESSION
QUANT
OWNER
Y
I'll have Six sodas

NUMBER DRINK

For many information retrieval tasks, including
this task-oriented dialogue system, it is sufficient
to just extract the relations among entities, in this
case QUANTITY.

QUANTITY

I'll have six sodas

NUMBER DRINK

The QUANTITY relation enables the system to dis-
tinguish the sentence above from the sentence be-
low, for example, where the same NUMBER entity
has a SIZE relation.

SIZE

I’ll have the soda

DRINK

Six
NUMBER

ounce

But beyond that, it is often sufficient for the trained
model to recognize the relation type, without spec-
ifying the parent. When this is the case, we can
treat the relation type as a role label on the entity.

T’ll have the Six ounce soda
NUMBER DRINK
SIZE
I'll have Six sodas
NUMBER DRINK
QUANTITY

This unifies the classification problem with cases
where the same disambiguation is required even
though there is no explicit head, as in the query
below.

I'll have six
NUMBER
QUANTITY



In contrast, entity grouping associates child enti-
ties to a parent entity without specifying a rela-
tion type, such as the OPTION entities to the corre-
sponding DISH entities below.

N

a bagel with butter and warm muffin
DISH OPTION OPTION DISH

Entity grouping is sufficient in cases where there
is only one relation type relevant to a particular in-
tent, or in cases where the relation type is fully de-
termined by the associated entity types. But even
when both relation type and parent-child links are
required, as below, we benefit from decomposing
the problem.

a bagel and two of the muffins
DISH NUMBER DISH
QUANTITY

In the initial stages of development, when train-
ing data is limited, this allows the system to use a
probabilistic model for role labeling which gener-
alizes across cases with and without explicit heads,
while using a simple deterministic parser for entity
grouping. Once training data is sufficient, these
can be smoothly transitioned to a fully probabilis-
tic dependency parser, performing joint learning
of entity roles and entity groups.

4 Evaluation of the Semantic Parser

To illustrate the trade-off in model approaches
within this architecture as development matures,
we provide an evaluation of different entity group-
ing systems in Table 1. The test data in this eval-
uation is 200 food ordering queries with more
than one DISH entity, and we focus on query-level
accuracy—the percentage of queries with correct
labels. The baseline system Nearest Head simply
assigns any dependent entity to the nearest avail-
able head entity. The Default WCFG system uses
NLTK (Bird et al., 2009) to construct a CFG over
entities and assigns domain-general costs to se-
lect a parse, while the Tuned WCFG uses prefer-
ences specified by the developer for this use case
(e.g. particular entities tend to associate left vs.
right) to adapt the cost calculation to the use case.
Tuning the WCFG on 1225 queries with multi-
ple dish entities provides an acceptable 97% accu-
racy. The DepP system trains the transition-based
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System Train # Test %
Nearest Head N/A 86.0
Default WCFG N/A 91.5
Tuned WCFG 1225 97.0
DepP 1225 86.0
DepP + Fixups 1225 95.5
DepP 5106 92.0
DepP + Fixups 5106 98.5

Table 1: Evaluation of approaches to entity grouping
for a food ordering use case.

dependency parser from Spacy v. 1.9 (Honnibal
and Johnson, 2015) on the entity grouping prob-
lem. With only 1225 training queries, the parser is
not able to learn the structure of the problem well,
sometimes leaving dependent entity types unas-
sociated or producing impossible tag sequences.
Fixup rules that force dependent entities to asso-
ciate to a head entity improve the accuracy, and
adding nearly 4000 training queries that only have
one DISH name allows the parser to learn the ba-
sic structure better. The combination of these al-
lows the DepP system to reach 98.5% accuracy.
With smaller training data set sizes the DepP sys-
tem is not viable, but once training data increases,
we can expect more robust performance from the
more powerful model.

5 Related Work

Our approach extends a long history of work
in shallow semantics for NLU. Conceptually the
most similar is work on relation extraction, as
established by the Automatic Content Extraction
(ACE) program (Doddington et al., 2004). For ex-
ample, Culotta and Sorensen (2004) and Bunescu
and Mooney (2005) use full syntactic dependency
parses as features in tree-kernel SVMs to recog-
nize relations among entities. Similarly, seman-
tic role labeling (Marquez et al., 2008; Palmer
et al., 2010) constructs event representations by
identifying arguments of predicate heads, typi-
cally treating it as a sequence labeling task. More
recently, neural network models that combine se-
quential representations with dependency struc-
tures have obtained improvements on both relation
extraction (Miwa and Bansal, 2016) and semantic
role labeling (Roth and Lapata, 2016), and simi-
lar models have the power to jointly learn role la-
bels and entity groups. However, these methods



only perform well with abundant training data, so
while product decisions are in flux, working with
simpler models facilitates the quick development
of a production app on smaller data sets.

Some researchers have attempted full seman-
tic parsing for task-oriented systems similar to
ours. Berant et al. (2013) induce a semantic parser
from question—answer pairs, and then these parses
can be used to find answers for unseen questions.
Chen et al. (2014) combine a semantic parser
with word embeddings to induce mappings from
the semantic parser’s relations to the slots of a
task-oriented dialogue system. In customer-facing
products, systems trained by unsupervised learn-
ing have too high risk of misbehavior. Moreover,
in our applied domains, either the relation head or
the relation type is often predetermined or irrele-
vant, so that information can remain undefined or
implicit, leaving a simpler problem.

6 Conclusion

We have described a dialogue system interface
for an architecture which extends the traditional
NLU pipeline with entity role labeling and entity
grouping, forms of shallow semantic parsing. The
described methodology has allowed us to consis-
tently build production-level conversational assis-
tants. In this demo, we hope to share these insights
in an interactive way.
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