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Abstract

This paper presents an open-source neural ma-
chine translation toolkit named CytonMT1.
The toolkit is built from scratch only using
C++ and NVIDIA’s GPU-accelerated libraries.
The toolkit features training efficiency, code
simplicity and translation quality. Benchmarks
show that CytonMT accelerates the training
speed by 64.5% to 110.8% on neural net-
works of various sizes, and achieves compet-
itive translation quality.

1 Introduction

Neural Machine Translation (NMT)
has made remarkable progress over the
past few years (Sutskever et al., 2014;
Bahdanau et al., 2014; Wu et al., 2016). Just
like Moses (Koehn et al., 2007) does for statistic
machine translation (SMT), open-source NMT
toolkits contribute greatly to this progress,
including but not limited to,

• RNNsearch-LV (Jean et al., 2015)2

• Luong-NMT (Luong et al., 2015a)3

• DL4MT by Kyunghyun Cho et al.4

• BPE-char (Chung et al., 2016)5

• Nematus (Sennrich et al., 2017)6

• OpenNMT (Klein et al., 2017)7

• Seq2seq (Britz et al., 2017)8

1https://github.com/arthurxlw/cytonMt
2https://github.com/sebastien-j/LVgroundhog
3https://github.com/lmthang/nmt.hybrid
4https://github.com/nyu-dl/dl4mt-tutorial
5https://github.com/nyu-dl/dl4mt-cdec
6https://github.com/EdinburghNLP/nematus
7https://github.com/OpenNMT/OpenNMT-py
8https://github.com/google/seq2seq

• ByteNet (Kalchbrenner et al., 2016)9

• ConvS2S (Gehring et al., 2017)10

• Tensor2Tensor (Vaswani et al., 2017)11

• Marian (Junczys-Dowmunt et al., 2018)12

These open-source NMT toolkits are undoubt-
edly excellent software. However, there is a com-
mon issue – they are all written in script languages
with dependencies on third-party GPU platforms
(see Table1) except Marian, which is developed
simultaneously with our toolkit.

Using script languages and third-party GPU
platforms is a two-edged sword. On one hand,
it greatly reduces the workload of coding neural
networks. On the other hand, it also causes two
problems as follows,

• The running efficiency drops, and profiling
and optimization also become difficult, as the
direct access to GPUs is blocked by the lan-
guage interpreters or the platforms. NMT
systems typically require days or weeks to
train, so training efficiency is a paramount
concern. Slightly faster training can make the
difference between plausible and impossible
experiments (Klein et al., 2017).

• The researchers using these toolkits may
be constrained by the platforms. Unex-
plored computations or operations may be-
come disallowed or unnecessarily inefficient
on a third-party platform, which lowers the
chances of developing novel neural network
techniques.

9https://github.com/paarthneekhara/byteNet-tensorflow
(unofficial) and others.

10https://github.com/facebookresearch/fairseq
11https://github.com/tensorflow/tensor2tensor
12https://github.com/marian-nmt/marian
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Toolkit Language Platform
RNNsearch-LV Python Theano,GroundHog
Luong-NMT Matlab Matlab
DL4MT Python Theano
BPE-char Python Theano
Nematus Python Theano
OpenNMT Lua Torch
Seq2seq Python Tensorflow
ByteNet Python Tensorflow
ConvS2S Lua Torch
Tensor2Tensor Python Tensorflow
Marian C++ –
CytonMT C++ –

Table 1: Languages and Platforms of Open-source
NMT toolkits.

CytonMT is developed to address this issue, in
hopes of providing the community an attractive
alternative. The toolkit is written in C++ which
is the genuine official language of NVIDIA – the
manufacturer of the most widely-used GPU hard-
ware. This gives the toolkit an advantage on effi-
ciency when compared with other toolkits.

Implementing in C++ also gives CytonMT great
flexibility and freedom on coding. The researchers
who are interested in the real calculations inside
neural networks can trace source codes down to
kernel functions, matrix operations or NVIDIA’s
APIs, and then modify them freely to test their
novel ideas.

The code simplicity of CytonMT is compara-
ble to those NMT toolkits implemented in script
languages. This owes to an open-source general-
purpose neural network library in C++, named Cy-
tonLib, which is shipped as part of the source
code. The library defines a simple and friendly
pattern for users to build arbitrary network archi-
tectures in the cost of two lines of genuine C++
code per layer.

CytonMT achieves competitive translation
quality, which is the main purpose of NMT
toolkits. It implements the popular framework of
attention-based RNN encoder-decoder. Among
the reported systems of the same architecture, it
ranks at top positions on the benchmarks of both
WMT14 and WMT17 English-to-German tasks.

The following of this paper presented the details
of CytonMT from the aspects of method, imple-
mentation, benchmark, and future works.

2 Method
The toolkit approaches to the problem of ma-
chine translation using the attention-based RNN
encoder-decoder proposed byBahdanau et al.
(2014) and Luong et al.(2015a). Figure1 illus-
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Figure 1: Architecture of CytonMT.

trates the architecture. The conditional probability
of a translation given a source sentence is formu-
lated as,

log p(y|x) =
m

X

j=1

log(p(yj |H〈j〉
o )

=

m
X

j=1

log(softmaxyj
(tanh(WoH

〈j〉
o + Bo))) (1)

H
〈j〉
o = Fatt(Hs, H

〈j〉
t ), (2)

wherex is a source sentence;y=(y1, . . . , ym) is
a translation;Hs is a source-side top-layer hidden
state;H〈j〉

t is a target-side top-layer hidden state;

H
〈j〉
o is a state generated by an attention model

Fatt; Wo and Bo are the weight and bias of an
output embedding.

The toolkit adopts the multiplicative attention
model proposed byLuong et al.(2015a), because
it is slightly more efficient than the additive variant
proposed byBahdanau et al.(2014). This issue is
addressed inBritz et al.(2017) andVaswani et al.
(2017). Figure2 illustrates the model, formulated
as ,

a
〈ij〉
st = softmax(Fa(H

〈i〉
s , H

〈j〉
t ))

=
eFa(H

〈i〉
s ,H

〈j〉
t )

Pn

i=1
eFa(H

〈i〉
s ,H

〈j〉
t )

, (3)

Fa(H
〈i〉
s , H

〈j〉
t ) = H

〈i〉
s

⊤
WaH

〈j〉
t , (4)

C
〈j〉
s =

n
X

i=1

a
〈ij〉
st H

〈i〉
s , (5)

C
〈j〉
st = [Cs; H

〈j〉
t ], (6)

H
〈j〉
o = tanh(WcC

〈j〉
st ), (7)

whereFa is a scoring function for alignment;Wa

is a matrix for linearly mapping target-side hidden
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Figure 2: Architecure of Attention Model.

states into a space comparable to the source-side;
a
〈ij〉
st is an alignment coefficient;C〈j〉

s is a source-

side context;C〈j〉
st is a context derived from both

sides.

3 Implementation

The toolkit consists of a general purpose neural
network library, and a neural machine translation
system built upon the library. The neural network
library defines a class namedNetwork to facili-
tate the construction of arbitrary neural networks.
Users only need to inherit the class, declare com-
ponents as data members, and write down two
lines of codes per component in an initialization
function. For example, the complete code of the
attention network formulated by the equations3
to 7 is presented in Figure3. This piece of code
fulfills the task of building a neural network as fol-
lows,

• The class ofVariable stores numeric values
and gradients. Through passing the pointers
of Variable around, component are connected
together.

• The data member oflayers collects all the
components. The base class ofNetwork will
call the functionsforward, backward andcal-
culateGradient of each component to per-
form the actual computation.

The codes of actual computation are organized
in the functionsforward, backward andcalculate-
Gradient for each type of component. Figure4
presents some examples. Note that these codes
have been slightly simplified for illustration.

class Attention: public Network
{
DuplicateLayer dupHt; // declare components
LinearLayer linearHt;
MultiplyHsHt multiplyHsHt;
SoftmaxLayer softmax;
WeightedHs weightedHs;
Concatenate concateCsHt;
LinearLayer linearCst;
ActivationLayer actCst;

Variable* init(LinearLayer* linHt,
LinearLayer* linCst, Variable* hs,
Variable* ht)

{
Variable* tx;
tx=dupHt.init(ht); // make two copies
layers.push_back(&dupHt);

tx=linearHt.init(linHt, tx); // WaHt
layers.push_back(&linearHt);

tx=multiplyHsHt.init(hs, tx); // Fa
layers.push_back(&multiplyHsHt);

tx=softmax.init(tx); // ast
layers.push_back(&softmax);

tx=weightedHs.init(hs, tx); // Cs
layers.push_back(&weightedHs);

tx=concateCsHt.init(tx, &dupHt.y1); // Cst
layers.push_back(&concateCsHt);

tx=linearCst.init(linCst, tx); // WcCst
layers.push_back(&linearCst);

tx=actCst.init(tx, CUDNN_ACTIVATION_TANH);// Ho
layers.push_back(&actCst);

return tx; //pointer to result
}

};

Figure 3: Complete Code of Attention Model For-
mulated by Equations3 to 7

void LinearLayer::forward()
{
cublasXgemm(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
dimOutput, num, dimInput,
&one, w.data, w.ni, x.data, dimInput,
&zero, y.data, dimOutput)

}

void LinearLayer::backward()
{
cublasXgemm(cublasH, CUBLAS_OP_N, CUBLAS_OP_N,
dimInput, num, dimOutput,
&one, w.data, w.ni, y.grad.data, dimOutput,
&beta, x.grad.data, dimInput));

}

void LinearLayer::calculateGradient()
{
cublasXgemm(cublasH, CUBLAS_OP_N, CUBLAS_OP_T,
dimInput, dimOutput, num,
&one, x.data, dimInput, y.grad.data, dimOutput,
&one, w.grad.data, w.grad.ni));

}

void EmbeddingLayer::forward()
{
...
embedding_kernel<<<grid, blockSize>>>(words,
firstOccurs, len, dim, stride,
wholeData, y.data, true);

}

Figure 4: Codes of Performing Actual Computa-
tion.
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4 Benchmarks

4.1 Settings

CytonMT is tested on the widely-used bench-
marks of the WMT14 and WMT17 English-
to-German tasks (Bojar et al., 2017) (Ta-
ble 2). Both datasets are processed and con-
verted using byte-pair encoding(Gage, 1994;
Schuster and Nakajima, 2012) with a shared
source-target vocabulary of about 37000 to-
kens. The WMT14 corpora are processed by
the scripts fromVaswani et al.(2017)13. The
WMT17 corpora are processed by the scripts
from Junczys-Dowmunt et al.(2018)14, which
includes 10 million back-translated sentence pairs
for training.

The benchmarks were run on an Intel Xeon
CPU E5-2630 @ 2.4Ghz and a GPU Quadro
M4000 (Maxwell) that had 1664 CUDA cores
@ 773 MHz, 2,573 GFLOPS . The software is
CentOS 6.8, CUDA 9.1 (driver 387.26), CUDNN
7.0.5, Theano 1.0.1, Tensorflow 1.5.0. Netmaus,
Torch and OpenNMT are the latest version in De-
cember 2017. Marian is the last version in May
2018.

CytonMT is run with the hyperparameters set-
tings presented by Table3 unless stated otherwise.
The settings provide both fast training and com-
petitive translate quality according to our experi-
ments on a variety of translation tasks. Dropout
is applied to the hidden states between non-top re-
current layersRs, Rt and outputHo according to
(Wang et al., 2017). Label smoothing estimates
the marginalized effect of label-dropout during
training, which makes models learn to be more un-
sure (Szegedy et al., 2016). This improved BLEU
scores (Vaswani et al., 2017). Length penalty is
applied using the formula in (Wu et al., 2016).

4.2 Comparison on Training Speed

Four baseline toolkits and CytonMT train mod-
els using the settings of hyperparameters in Ta-
ble3. The number of layers and the size of embed-
dings and hidden states varies, as large networks
are often used in real-world applications to achieve
higher accuracy at the cost of more running time.

Table 4 presents the training speed of differ-
ent toolkits measured in source tokens per sec-
ond. The results show that the training speed
of CytonMT is much higher than the baselines.

13https://github.com/tensorflow/tensor2tensor
14https://github.com/marian-nmt/marian-

examples/tree/master/wmt2017-uedin

Data Set # Sent. # Words
Source Target

WMT14
Train.(standard) 4,500,966 113,548,249 107,259,529
Dev. (tst2013) 3,000 64,807 63,412
Test (tst2014) 3,003 67,617 63,078

WMT17
Train.(standard) 4,590,101 118,768,285 112,009,072
Train.(back trans.) 10,000,000 190,611,668 149,198,444
Dev. (tst2016) 2,999 64,513 62,362
Test (tst2017) 3,004 64,776 60,963

Table 2: WMT English-to-German corpora.

Hyperparameter Value
Embedding Size 512
Hidden State Size 512
Encoder/Decoder Depth 2
Encoder Bidirectional
RNN Type LSTM
Dropout 0.2
Label Smooth. 0.1
Optimizer SGD
Learning Rate 1.0
Learning Rate Decay 0.7
Beam Search Size 10
Length Penalty 0.6

Table 3: Hyperparameter Settings.

OpenNMT is the fastest baseline, while CytonMT
achieves a speed up versus it by 64.5% to 110.8%.
Moreover, CytonMT shows a consistent tendency
to speed up more on larger networks.

4.3 Comparison on Translation Quality

Table 5 compares the BLEU of CytonMT with
the reported results from the systems of the
same architecture (attention-based RNN encoder-
decoder). BLEU is calculated on cased, to-
kenized text to be comparable to previous
work (Sutskever et al., 2014; Luong et al., 2015b;
Wu et al., 2016; Zhou et al., 2016).

The settings of CytonMT on WMT14 follows
Table 3, while the settings on WMT17 adopt a
depth of 3 and a hidden state size of 1024 as
the training set is three times larger. The cross

Embed./State Size 512 512 1024 1024
Enc./ Dec. Layers 2 4 2 4
Nematus 1875 1190 952 604
OpenNMT 2872 2038 1356 904
Seq2Seq 1618 1227 854 599
Marian 2630 1832 1120 688
CytonMT 4725 3751 2571 1906
speedup> 64.5% 84.1% 89.6% 110.8%

Table 4: Training Speed Measured in Source To-
kens per Second.
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System Open Src. BLEU
WMT14

Nematus(Klein,2017)
√

18.25
OpenNMT(Klein,2017)

√
19.34

RNNsearch-LV(Jean,2015)
√

19.4
Deep-Att(Zhou,2016) 20.6
Luong-NMT(Luong,2015)

√
20.9

BPE-Char(Chung,2016)
√

21.5
Seq2seq(Britz, 2017)

√
22.19

CytonMT
√

22.67
GNMT (Wu, 2015) 24.61

WMT17
Nematus(Sennrich,2017)

√
27.5

CytonMT
√

27.63
Marian(Junczys,2018)

√
27.7

Table 5: Comparing BLEU with Public Records.

entropy of the development set is monitored ev-
ery 1

12
epoch on WMT14 and every1

36
epoch on

WMT17, approximately 400K sentence pairs. If
the entropy has not decreased bymax(0.01 ×
learning rate, 0.001) in 12 times, learning rate
decays by 0.7 and the training restarts from the
previous best model. The whole training proce-
dure terminates when no improvement is made
during two neighboring decays of learning rate.
The actual training took 28 epochs on WMT14
and 12 epochs on WMT17.

Table5 shows that CytonMT achieves the com-
petitive BLEU points on both benchmarks. On
WMT14, it is only outperformed by Google’s pro-
duction system (Wu et al., 2016), which is very
much larger in scale and much more demanding
on hardware. On WMT17, it achieves the same
level of performance with Marian, which is high
among the entries of WMT17 for a single sys-
tem. Note that the start-of-the-art scores on these
benchmarks have been recently pushed forward by
novel network architectures such asGehring et al.
(2017), Vaswani et al.(2017) and Shazeer et al.
(2017)

5 Conclusion

This paper introduces CytonMT – an open-
source NMT toolkit – built from scratch only
using C++ and NVIDIA’s GPU-accelerated li-
braries. CytonMT speeds up training by more than
64.5%, and achieves competitive BLEU points on
WMT14 and WMT17 corpora. The source code
of CytonMT is simple because of CytonLib – an
open-source general purpose neural network li-
brary – contained in the toolkit. Therefore, Cy-
tonMT is an attractive alternative for the research
community. We open-source this toolkit in hopes

of benefiting the community and promoting the
field. We look forward to hearing feedback from
the community.

The future work of CytonMT will be contin-
ued in two directions. One direction is to fur-
ther optimize the code for GPUs, such support-
ing multi-GPU. The problem we used to have is
that GPUs proceed very fast in the last few years.
For example, the microarchitectures of NVIDIA
GPUs evolve twice during the development of Cy-
tonMT, from Maxwell to Pascale, and then to
Volta. Therefore, we have not explored cutting-
edge GPU techniques as the coding effort may be
outdated quickly. Multi-GPU machines are com-
mon now, so we plan to support them.

The other direction is to support latest NMT ar-
chitectures such ConvS2S (Gehring et al., 2017)
and Transformer (Vaswani et al., 2017). In these
architectures, recurrent structures are replaced by
convolution or attention structures. Their high per-
formance indicates that the new structures suit the
translation task better, so we also plan to support
them in the future.
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