
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (System Demonstrations), pages 120–126
Brussels, Belgium, October 31–November 4, 2018. c©2018 Association for Computational Linguistics

120

Magnitude: A Fast, Efficient Universal Vector Embedding Utility Package

Ajay Patel
Plasticity Inc.

San Francisco, CA
ajay@plasticity.ai

Alexander Sands
Plasticity Inc.

San Francisco, CA
alex@plasticity.ai

Chris Callison-Burch
Computer and Information

Science Department
University of Pennsylvania

ccb@upenn.edu

Marianna Apidianaki
LIMSI, CNRS

Université Paris-Saclay
91403 Orsay, France

marapi@seas.upenn.edu

Abstract

Vector space embedding models like
word2vec, GloVe, fastText, and ELMo are
extremely popular representations in natural
language processing (NLP) applications. We
present Magnitude, a fast, lightweight tool
for utilizing and processing embeddings.
Magnitude is an open source Python package
with a compact vector storage file format
that allows for efficient manipulation of huge
numbers of embeddings. Magnitude performs
common operations up to 60 to 6,000 times
faster than Gensim. Magnitude introduces
several novel features for improved robustness
like out-of-vocabulary lookups.

1 Introduction

Magnitude is an open source Python package de-
veloped by Ajay Patel and Alexander Sands (Patel
and Sands, 2018). It provides a full set of features
and a new vector storage file format that make it
possible to use vector embeddings in a fast, ef-
ficient, and simple manner. It is intended to be
a simpler and faster alternative to current utilities
for word vectors like Gensim (Řehůřek and Sojka,
2010).

Magnitude’s file format (“.magnitude”) is an ef-
ficient universal vector embedding format. The
Magnitude library implements on-demand lazy
loading for faster file loading, caching for bet-
ter performance of repeated queries, and fast pro-
cessing of bulk key queries. Table 1 gives speed
benchmark comparisons between Magnitude and
Gensim for various operations on the Google
News pre-trained word2vec model (Mikolov et al.,
2013). Loading the binary files containing the
word vectors takes Gensim 70 seconds, versus
0.72 seconds to load the corresponding Magnitude

Metric Cold Warm
Initial load time 97x –
Single key query 1x 110x
Multiple key query (n=25) 68x 3x
k-NN search query (k=10) 1x 5,935x

Table 1: Speed comparison of Magnitude versus Gen-
sim for common operations. The ‘cold’ column repre-
sents the first time the operation is called. The ‘warm’
column indicates a subsequent call with the same keys.

file, a 97x speed-up. Gensim uses 5GB of RAM
versus 18KB for Magnitude.

Magnitude implements functions for looking up
vector representations for misspelled or out-of-
vocabulary words, quantization of vector models,
exact and approximate similarity search, concate-
nating multiple vector models together, and ma-
nipulating models that are larger than a computer’s
main memory. Magnitude’s ease of use and simple
interface combined with its speed, efficiency, and
novel features make it an excellent tool for cases
ranging from applications used in production envi-
ronments to academic research to students in nat-
ural language processing courses.

2 Motivation

Magnitude offers solutions to a number of prob-
lems with current utilities.

Speed: Existing utilities are prohibitively slow
for iterative development. Many projects use Gen-
sim to load the Google News word2vec model di-
rectly from a “.bin” or “.txt” file multiple times. It
can take between a minute to a minute and a half
to load the file.

121

Memory: A production web server will run
multiple processes for serving requests. Running
Gensim, in the same configuration, will consume
>4GB of RAM usage per process.

Code duplication: Many developers duplicate
effort by writing commonly used routines that are
not provided in current utilities. Namely, routines
for concatenating embeddings, bulk key lookup,
out-of-vocabulary search, and building indexes for
approximate k-nearest neighbors.

The Magnitude library uses several well-
engineered libraries to achieve its performance im-
provements. It uses SQLite1 as its underlying
data store, and takes advantage of database in-
dexes for fast key lookups and memory mapping.
It uses NumPy2 to achieve significant performance
speedups over native Python code using compu-
tations that follow the Single Instruction, Multi-
ple Data (SIMD) paradigm. It uses spatial in-
dexes to perform fast exact similarity search and
Annoy3 to perform approximate k-nearest neigh-
bors in the vector space. To perform feature
hashing, it uses xxHash4, an extremely fast non-
cryptographic hash algorithm, working at speeds
close to RAM limits. Magnitude’s file format uses
LZ4 compression5 for compact storage.

3 Design Principles

Several design principles guided the development
of the Magnitude library:

• The API should be intuitive and beginner
friendly. It should have sensible defaults in-
stead of requiring configuration choices by
the user. The option to configure every set-
ting should still be provided to power users.

• The out of the box configuration should be
fast and memory efficient for iterative devel-
opment. It should be suitable for deployment
in a production environment. Using the same
configuration in development and production
reduces bugs and makes deployment easier.

• The library should use lazy loading whenever
possible to remain fast, responsive, and mem-
ory efficient during development.

1https://www.sqlite.org/
2http://www.numpy.org/
3https://github.com/spotify/annoy
4https://xxhash.org/
5http://www.lz4.org/

• The library should aggressively index, cache,
and use memory maps to be fast, responsive,
and memory efficient for production.

• The library should be able to process data
that is too large to fit into a computer’s main
memory.

• The library should be thread-safe and employ
memory mapping to reduce duplicated mem-
ory resources when multiprocessing.

• The interface should act as a generic key-
vector store and remain agnostic to underly-
ing models (like word2vec, GloVe, fastText,
and ELMo) and remain useable for other do-
mains that use vector embeddings like com-
puter vision (Babenko and Lempitsky, 2016).

Gensim offers several speed ups of its opera-
tions, but these are largely only accessible through
advanced configuration. For example, by re-
exporting a “.bin”, “.txt”, or “.vec” file into its
own native format that can be memory-mapped.
Magnitude makes this easier by providing a de-
fault configuration and file format that requires no
extra configuration to make development and pro-
duction workloads run efficiently out of the box.

4 Getting Started with Magnitude

The system consists of a Python 2.7 and Python
3.x compatible package (accessible through the
PyPI index6 or GitHub7) with utilities for using
the “.magnitude” format and converting to it from
other popular embedding formats.

4.1 Installation

Installation for Python 2.7 can be performed using
the pip command:

pip install pymagnitude

Installation for Python 3.x can be performed using
the pip3 command:

pip3 install pymagnitude

4.2 Basic Usage

Here is how to construct the Magnitude object,
query for vectors, and compare them:

6https://pypi.org/project/pymagnitude/
7https://github.com/plasticityai/

magnitude

https://www.sqlite.org/
http://www.numpy.org/
https://github.com/spotify/annoy
https://xxhash.org/
http://www.lz4.org/
https://pypi.org/project/pymagnitude/
https://github.com/plasticityai/magnitude
https://github.com/plasticityai/magnitude

122

from pymagnitude import ∗
vectors = Magnitude("w2v.magnitude")
k = vectors.query("king")
q = vectors.query("queen")
vectors.similarity(k,q) # 0.6510958

Magnitude queries return almost instantly and
are memory efficient. It uses lazy loading di-
rectly from disk, instead of having to load the en-
tire model into memory. Additionally, Magnitude
supports nearest neighbors operations, finding all
words that are closer to a key than another key, and
analogy solving (optionally with Levy and Gold-
berg (2014)’s 3CosMul function):

vectors.most similar(k, topn=5)
#[(‘king’, 1.0), (‘kings’, 0.71),
(‘queen’, 0.65), (‘monarch’, 0.64),
(‘crown prince’, 0.62)]

vectors.most similar(q, topn=5)
#[(‘queen’, 1.0), (‘queens’, 0.74),
#(‘princess’, 0.71), (‘king’, 0.65),
(’monarch’, 0.64)]

vectors.closer than("queen", "king")
#[‘queens’, ‘princess’]

vectors.most similar(
positive = ["woman", "king"],
negative = ["man"]

) # queen
vectors.most similar cosmul(

positive = ["woman", "king"],
negative = ["man"]

) # queen

In addition to querying single words, Magnitude
also makes it easy to query for multiple words in a
single sentence and multiple sentences:

vectors.query("play")
Returns: a vector for the word
vectors.query(["play", "music"])
Returns: an array with two vectors
vectors.query([
["play", "music"],
["turn", "on", "the", "lights"],
]) # Returns: 2D array with vectors

4.3 Advanced Features
OOVs: Magnitude implements a novel method
for handling out-of-vocabulary (OOV) words.
OOVs frequently occur in real world data since
pre-trained models are often missing slang, col-
loquialisms, new product names, or misspellings.
For example, while uber exists in Google News
word2vec, uberx and uberxl do not. These prod-
ucts were not available when Google News cor-
pus was built. Strategies for representing these
words include generating random unit-length vec-
tors for each unknown word or mapping all un-
known words to a token like “UNK” and repre-
senting them with the same vector. These solu-

tions are not ideal as the embeddings will not cap-
ture semantic information about the actual word.
Using Magnitude, these OOV words can be simply
queried and will be positioned in the vector space
close to other OOV words based on their string
similarity:
"uber" in vectors # True
"uberx" in vectors # False
"uberxl" in vectors # False
vectors.query("uberx")
Returns: [0.0507, −0.0708, ...]

vectors.query("uberxl")
Returns: [0.0473, −0.08237, ...]

vectors.similarity("uberx", "uberxl")
Returns: 0.955

A consequence of generating OOV vectors is that
misspellings and typos are also sensibly handled:
"missispi" in vectors # False
"discrimnatory" in vectors # False
"hiiiiiiiiii" in vectors # False
vectors.similarity(
"missispi",
"mississippi"

) # Returns: 0.359
vectors.similarity(
"discrimnatory",
"discriminatory"

) # Returns: 0.830
vectors.similarity(
"hiiiiiiiiii",
"hi"

) # Returns: 0.706

The OOV handling is detailed in Section 5.

Concatenation of Multiple Models: Magni-
tude makes it easy to concatenate multiple types
of vector embeddings to create combined models.
w2v = Magnitude("w2v.300d.magnitude")
gv = Magnitude("glove.50d.magnitude")
vectors = Magnitude(w2v, gv) # concat
vectors.query("cat")
Returns: 350d NumPy array
’cat’ from w2v and ’cat’ from gv
vectors.query(("cat", "cats"))
Returns: 350d NumPy array
’cat’ from w2v and ’cats’ from gv

Adding Features for Part-of-Speech Tags and
Syntax Dependencies to Vectors: Magnitude
can directly turn a set of keys (like a POS tag set)
into vectors. Given an approximate upper bound
on the number of keys and a namespace, it uses
the hashing trick (Weinberger et al., 2009) to cre-
ate an appropriate length dimension for the keys.
pos vecs = FeaturizerMagnitude(
100, namespace = "POS")

pos vecs.dim # 4
number of dims automatically
determined by Magnitude from 100
pos vecs.query("NN")
dep vecs = FeaturizerMagnitude(
100, namespace = "Dep")

dep vecs.dim # 4
dep vecs.query("nsubj")

123

Metric Speed
Exact k-NN 0.9155s
Approx. k-NN (k=10, effort = 1.0) 0.1873s
Approx. k-NN (k=10, effort = 0.1) 0.0199s

Table 2: Approximate nearest neighbors significantly
speeds up similarity searches compared to exact search.
Reducing the amount of allowed effort further speeds
the approximate k-NN search.

This can be used with Magnitude’s concatena-
tion feature to combine the vectors for words
with the vectors for POS tags or dependency tags.
Homonyms show why this may be useful:

vectors = Magnitude(vecs, pos vecs ,
dep vecs)

vectors.query([
("Buffalo", "JJ", "amod"),
("buffalo", "NNS", "nsubj"),
("Buffalo", "JJ", "amod"),
("buffalo", "NNS", "nsubj"),
("buffalo", "VBP", "rcmod"),
("buffalo", "VB", "ROOT"),
("Buffalo", "JJ", "amod"),
("buffalo", "NNS", "dobj")

]) # array of 8 x (300 + 4 + 4)

Approximate k-NN We support approximate
similarity search with the most similar approx

function. This finds the approximate nearest
neighbors more quickly than the exact nearest
neighbors search performed by the most similar

function. The method accepts an effort argu-
ment which accepts the range [0.0, 1.0]. A lower
effort will reduce accuracy, but increase speed.
A higher effort does the reverse. This trade-off
works by searching more- or less-indexed trees.
Our approximate k-NN is powered by Annoy, an
open source library released by Spotify. Table 2
compares the speed of various configurations for
similarity search.

5 Details of OOV Handling

Facebook’s fastText (Bojanowski et al., 2016)
provides similar OOV functionality to Magni-
tude’s. Magnitude allows for OOV lookups for
any embedding model, including older models like
word2vec and GloVe (Mikolov et al., 2013; Pen-
nington et al., 2014), which did not provide OOV
support. Magnitude’s OOV method can be used
with existing embeddings because it does not re-
quire any changes to be made at training time like
fastText’s method does. For ELMo vectors, Mag-
nitude will use ELMo’s OOV method.

Constructing vectors from character n-grams:
We generate a vector for an OOV word w based on
the character n-gram sequences in the word. First,
we pad the word with a character at the beginning
of the word and at the end of the word. Next, we
generate the set of all character-ngrams in w (de-
noted with the fuction CGRAMw) between length
3 and 6, following Bojanowski et al. (2016), al-
though these parameters are tunable arguments in
the Magnitude converter. We use the set of char-
acter n-grams C to construct a vector OOVd(w)
with d dimensions to represent the word w. Each
unique character n-gram c from the word con-
tributes to the vector through a pseudorandom
vector generator function PRVG. Finally, the vec-
tor is normalized.

C = CGRAMw(3, 6)

oovd(w) =
∑
c ∈ C

PRVGH(c)(−1.0, 1.0, d)

OOVd(w) =
oovd(w)
|oovd(w)|

PRVG’s random number generator is seeded by
the value “seed”, which generates uniformly ran-
dom vectors of dimension size d, with values in
the range of -1 to 1. The hashing function H pro-
duces a 32 bit hash of its input using xxHash.
H : {0, 1}∗ → {0, 1}32. Since the PRVG’s seed
is only conditioned upon the word w, the output is
deterministic across different machines.

This character n-gram-based method will gener-
ate highly similar vectors for a pair of OOVs with
similar spellings, like uberx and uberxl. How-
ever, they will not be embedded close to similar
in-vocabulary words like uber.

Interpolation with in-vocabulary words To
handle matching OOVs to in-vocabulary words,
we first define a function MATCHk(a, b, w).
MATCHk(a, b, w) returns the normalized mean of
the vectors of the top k most string-similar in-
vocabulary words using the full-text SQLite in-
dex. In practice, we use the top 3 most string-
similar words. These are then used to interpo-
late the values for the vector representing the OOV
word. 30% of the weight for each value comes
from the pseudorandom vector generator based on
the OOV’s n-grams, and the remaining 70% comes
from the values of the 3 most string similar in-

124

vocabulary words:

oovd(w) = [0.3 ∗ OOVd(w)

+ 0.7 ∗MATCH3(3, 6, w)]

Morphology-aware matching For English, we
have implemented a nuanced string similarity met-
ric that is prefix- and suffix-aware. While uberifi-
cation has a high string similarity to verification
and has a lower string similarity to uber, good
OOV vectors should weight stems more heavily
than suffixes. Details of our morphology-aware
matching are omitted for space.

Other matching nuances We employ other
techniques when computing the string similarity
metric, such as shrinking repeated character se-
quences of three or more to two (hiiiiiiii → hii),
ranking strings of a similar length higher, and
ranking strings that share the same first or last
character higher for shorter words.

6 File Format

To provide efficiency at runtime, Magnitude uses a
custom “.magnitude” file format instead of “.bin”,
“.txt”, “.vec”, or “.hdf5” that word2vec, GloVe,
fastText, and ELMo use (Mikolov et al., 2013;
Pennington et al., 2014; Joulin et al., 2016; Peters
et al., 2018). The “.magnitude” file is a SQLite
database file. There are 3 variants of the file for-
mat: Light, Medium, Heavy. Heavy models have
the largest file size but support all of the Magni-
tude library’s features. Medium models support
all features except approximate similarity search.
Light models do not support approximate similar-
ity searches or interpolated OOV lookups, but they
still support basic OOV lookups. See Figure 1 for
more information about the structure and layout of
the “.magnitude” format.

Keys and Unit-Length Normalized Vectors

SQLite Index over Keys

Character N-Grams Enumerated for all Keys

SQLite Full-Text Search Index over all N-Grams

LZ4 Compressed Annoy mmap Index for all Vectors

SQLite Database

L
ight M

edium

H
eavy

Format Settings and Metadata

Figure 1: Structure of the “.magnitude” file format and
its Light, Medium, and Heavy variants.

Converter The software includes a command-
line converter utility for converting word2vec
(“.bin”, “.txt”), GloVe (“.txt”), fastText (“.vec”),
or ELMo (“.hdf5”) files to Magnitude files. They
can be converted with the command:

python −m pymagnitude.converter
−i "./vecs.(bin | txt | vec | hdf5)"
−o "./vecs.magnitude"

The input format will automatically be determined
by the extension and the contents of the input file.
When the vectors are converted, they will also be
unit-length normalized. This conversion process
only needs to be completed once per model. Af-
ter converting, the Magnitude file format is static
and it will not be modified or written to in order to
make concurrent read access safe.

By default, the converter builds a Medium
“.magnitude” file. Passing the -s flag will turn off
encoding of subword information, and result in a
Light flavored file. Passing the -a flag will turn on
building the Annoy approximate similarity index,
and result in a Heavy flavored file. Refer to the
documentation8 for more information about con-
version configuration options.

Quantization The converter utility accepts a -p

<PRECISION> flag to specify the decimal precision
to retain. Since underlying values are stored as
integers instead of floats, this is essentially quan-
tization9 for smaller model footprints. Lower dec-
imal precision will create smaller files, because
SQLite can store integers with either 1, 2, 3,
4, 6, or 8 bytes.10 Regardless of the precision
selected, the library will create numpy.float32

vectors. The datatype can be changed by pass-
ing dtype=numpy.float16 to the Magnitude con-
structor.

7 Conclusion

Magnitude is a new open source Python library
and file format for vector embeddings. It makes
it easy to integrate embeddings into applications
and provides a single interface and configuration
that is suitable for both development and produc-
tion workloads. The library and file format also

8https://github.com/plasticityai/
magnitude#file-format-and-converter

9https://www.tensorflow.org/
performance/quantization

10https://www.sqlite.org/datatype3.html

https://github.com/plasticityai/magnitude#file-format-and-converter
https://github.com/plasticityai/magnitude#file-format-and-converter
https://www.tensorflow.org/performance/quantization
https://www.tensorflow.org/performance/quantization
https://www.sqlite.org/datatype3.html

125

enable novel features like OOV handling that al-
low models to be more robust to noisy data. The
simple interface, ease of use, and speed of the li-
brary, compared to other utilities like Gensim, will
enable use by beginners to NLP and individuals in
educational environments, such as university NLP
and AI courses.

Pre-trained word embeddings have been widely
adopted in NLP. Researchers in computer vision
have started using pre-trained vector embedding
models like Deep1B (Babenko and Lempitsky,
2016) for images. The Magnitude library intends
to stay agnostic to various domains, instead pro-
viding a generic key-vector store and interface
that is useful for all domains and for research
that crosses the boundaries between NLP and vi-
sion (Hewitt et al., 2018).

8 Software and Data

We release the Magnitude package under the
permissive MIT open source license. The full
source code and pre-converted “.magnitude” mod-
els are on GitHub. The full documentation for
all classes, methods, and configurations of the li-
brary can be found at https://github.com/
plasticityai/magnitude, along with ex-
ample usage and tutorials.

We have pre-converted several popular em-
bedding models (Google News word2vec,
Stanford GloVe, Facebook fastText, AI2
ELMo) to “.magnitude” in all its variants
(Light, Medium, and Heavy). You can
download them from https://github.
com/plasticityai/magnitude#pre-
converted-magnitude-formats-of-
popular-embeddings-models.

Acknowledgments

We would like to thank Erik Bernhardsson for
the useful feedback on integrating Annoy index-
ing into Magnitude and thank the numerous con-
tributors who have opened issues, reported bugs,
or suggested technical enhancements for Magni-
tude on GitHub.

This material is funded in part by DARPA under
grant number HR0011-15-C-0115 (the LORELEI
program) and by NSF SBIR Award #IIP-1820240.
The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes.
The views and conclusions contained in this pub-
lication are those of the authors and should not

be interpreted as representing official policies or
endorsements of DARPA, the NSF, and the U.S.
Government. This work has also been supported
by the French National Research Agency under
project ANR-16-CE33-0013.

References
Artem Babenko and Victor Lempitsky. 2016. Effi-

cient Indexing of Billion-Scale Datasets of Deep De-
scriptors. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
2055–2063, Las Vegas, NV.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors with
subword information. CoRR, abs/1607.04606.

John Hewitt, Daphne Ippolito, Brendan Callahan, Reno
Kriz, Derry Tanti Wijaya, and Chris Callison-Burch.
2018. Learning Translations via Images with a Mas-
sively Multilingual Image Dataset. In Proceedings
of ACL, pages 2566–2576, Melbourne, Australia.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of Tricks for Efficient
Text Classification. CoRR, abs/1607.01759.

Omer Levy and Yoav Goldberg. 2014. Linguistic reg-
ularities in sparse and explicit word representations.
In Proceedings of CoNLL, pages 171–180, Ann Ar-
bor, Michigan.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Represen-
tations in Vector Space. CoRR, abs/1301.3781.

Ajay Patel and Alex Sands. 2018. plasticityai/magni-
tude: Release 0.1.22. https://doi.org/10.
5281/zenodo.1255637.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of EMNLP, pages
1532–1543, Doha, Qatar.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. CoRR, abs/1802.05365.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the Workshop on New Challenges for
NLP Frameworks, pages 45–50, Valletta, Malta.

Kilian Weinberger, Anirban Dasgupta, John Langford,
Alex Smola, and Josh Attenberg. 2009. Feature
Hashing for Large Scale Multitask Learning. In
Proceedings of ICML, pages 1113–1120, New York,
NY.

https://github.com/plasticityai/magnitude
https://github.com/plasticityai/magnitude
https://github.com/plasticityai/magnitude#pre-converted-magnitude-formats-of-popular-embeddings-models
https://github.com/plasticityai/magnitude#pre-converted-magnitude-formats-of-popular-embeddings-models
https://github.com/plasticityai/magnitude#pre-converted-magnitude-formats-of-popular-embeddings-models
https://github.com/plasticityai/magnitude#pre-converted-magnitude-formats-of-popular-embeddings-models
https://doi.org/10.5281/zenodo.1255637
https://doi.org/10.5281/zenodo.1255637

126

A Benchmark Comparisons

All benchmarks11 were performed on the Google News pre-trained word vectors, “GoogleNews-
vectors-negative300.bin” (Mikolov et al., 2013) for Gensim and on the “GoogleNews-vectors-
negative300.magnitude”12 for Magnitude, with a MacBook Pro (Retina, 15-inch, Mid 2014) 2.2GHz
quad-core Intel Core i7 @ 16GB RAM on a SSD over an average of trials where feasible. We are ex-
plicitly not using Gensim’s memory-mapped native format as it requires extra configuration from the
developer and is not provided out of the box from Gensim’s data repository 13.

Metric
Gensim

(Řehůřek and
Sojka, 2010)

Magnitude
Light

Magnitude
Medium

Magnitude
Heavy

Initial load time 70.26s 0.7210s — a — a

Cold single key query 0.0001s 0.0001s — a — a

Warm single key query
(same key as cold query) 0.0044s 0.00004s — a — a

Cold multiple key query
(n=25) 3.0050s 0.0442s — a — a

Warm multiple key query
(n=25) (same keys as cold query) 0.0001s 0.00004s — a — a

First most similar search query
(n=10) (worst case) 18.493s 247.05s — a — a

First most similar search query
(n=10) (average case) (w/ disk persistent cache) 18.917s 1.8217s — a — a

Subsequent most similar search
(n=10) (different key than first query) 0.2546s 0.2434s — a — a

Warm subsequent most similar search
(n=10) (same key as first query) 0.2374s 0.00004s 0.00004s 0.00004s
First most similar approx search query
(n=10, effort=1.0) (worst case) N/A b N/A N/A 29.610s
First most similar approx search query
(n=10, effort=1.0) (average case) (w/ disk persistent
cache)

N/A N/A N/A 0.9155s

Subsequent most similar approx search
(n=10, effort=1.0) (different key than first query) N/A N/A N/A 0.1873s
Subsequent most similar approx search
(n=10, effort=0.1) (different key than first query) N/A N/A N/A 0.0199s
Warm subsequent most similar approx search
(n=10, effort=1.0) (same key as first query) N/A N/A N/A 0.00004s
File size 3.64GB 4.21GB 5.29GB 10.74GB
Process memory (RAM) utilization 4.875GB 18KB — a — a

Process memory (RAM) utilization after 100 key
queries

4.875GB 168KB — a — a

Process memory (RAM) utilization after 100 key
queries + similarity search

8.228GB c 342KB d — a — a

a Denotes the same value as the previous column.
b Gensim does support approximate similarity search, but not out of the box as the index must be built manually with

gensim.similarities.index first which is a slow operation.
c Gensim has an option to not duplicate unit-normalized vectors in memory, but still requires up to 8GB of memory alloca-

tion while processing, before dropping down to half the memory. Moreover, this option is not on by default.
d Magnitude uses mmap to read from the disk, so the OS will still allocate pages of memory, when memory is available, in

its file cache, but it can be shared between processes and is not managed within each process for extremely large files which is
a performance win.

Table 3: Benchmark comparisons between Gensim, Magnitude Light, Magnitude Medium, and Magnitude Heavy.

11https://github.com/plasticityai/magnitude/blob/master/tests/benchmark.py
12http://magnitude.plasticity.ai/word2vec+approx/GoogleNews-vectors-negative300.

magnitude
13https://github.com/RaRe-Technologies/gensim-data

https://github.com/plasticityai/magnitude/blob/master/tests/benchmark.py
http://magnitude.plasticity.ai/word2vec+approx/GoogleNews-vectors-negative300.magnitude
http://magnitude.plasticity.ai/word2vec+approx/GoogleNews-vectors-negative300.magnitude
https://github.com/RaRe-Technologies/gensim-data

