
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (System Demonstrations), pages 66–71
Brussels, Belgium, October 31–November 4, 2018. c©2018 Association for Computational Linguistics

66

SentencePiece: A simple and language independent subword tokenizer
and detokenizer for Neural Text Processing

Taku Kudo John Richardson
Google, Inc.

{taku,johnri}@google.com

Abstract

This paper describes SentencePiece, a
language-independent subword tokenizer
and detokenizer designed for Neural-based
text processing, including Neural Machine
Translation. It provides open-source C++
and Python implementations for subword
units. While existing subword segmentation
tools assume that the input is pre-tokenized
into word sequences, SentencePiece can
train subword models directly from raw
sentences, which allows us to make a purely
end-to-end and language independent system.
We perform a validation experiment of NMT
on English-Japanese machine translation, and
find that it is possible to achieve comparable
accuracy to direct subword training from
raw sentences. We also compare the perfor-
mance of subword training and segmentation
with various configurations. SentencePiece
is available under the Apache 2 license at
https://github.com/google/sentencepiece.

1 Introduction

Deep neural networks are demonstrating a large
impact on Natural Language Processing. Neural
machine translation (NMT) (Bahdanau et al.,
2014; Luong et al., 2015; Wu et al., 2016;
Vaswani et al., 2017) has especially gained in-
creasing popularity, as it can leverage neural
networks to directly perform translations with
a simple end-to-end architecture. NMT has
shown remarkable results in several shared tasks
(Denkowski and Neubig, 2017; Nakazawa et al.,
2017), and its effective approach has had a strong
influence on other related NLP tasks such as
dialog generation (Vinyals and Le, 2015) and
automatic summarization (Rush et al., 2015).

Although NMT can potentially perform end-to-
end translation, many NMT systems are still re-
lying on language-dependent pre- and postproces-

sors, which have been used in traditional statisti-
cal machine translation (SMT) systems. Moses1,
a de-facto standard toolkit for SMT, implements
a reasonably useful pre- and postprocessor. How-
ever, it is built upon hand-crafted and language de-
pendent rules whose effectiveness for NMT has
not been proven. In addition, these tools are
mainly designed for European languages where
words are segmented with whitespaces. To train
NMT systems for non-segmented languages such
as Chinese, Korean and Japanese, we need to run
word segmenters independently. Such language-
dependent processing also makes it hard to train
multilingual NMT models (Johnson et al., 2016),
as we have to carefully manage the configurations
of pre- and postprocessors per language, while the
internal deep neural architectures are language-
independent.

As NMT approaches are standardized and mov-
ing forward to more language-agnostic architec-
tures, it is becoming more important for the NLP
community to develop a simple, efficient, repro-
ducible and language independent pre- and post-
processor that can easily be integrated into Neural
Network-based NLP systems, including NMT.

In this demo paper, we describe SentencePiece,
a simple and language independent text tokenizer
and detokenizer mainly for Neural Network-
based text generation systems where the size of
vocabulary is predetermined prior to the Neu-
ral model training. SentencePiece implements
two subword segmentation algorithms, byte-pair-
encoding (BPE) (Sennrich et al., 2016) and uni-
gram language model (Kudo, 2018), with the ex-
tension of direct training from raw sentences. Sen-
tencePiece enables building a purely end-to-end
system that does not depend on any language-
specific processing.

1http://www.statmt.org/moses/



67

% spm_train −−input=data/input.txt
−−model_prefix=spm −−vocab_size=1000

% echo "Hello world." | spm_encode
−−model=spm.model

_He ll o _world .

% echo "Hello world." | spm_encode
−−model=spm.model −−output_format=id

151 88 21 887 6

% echo "_He ll o _world ." |
spm_decode −−model=spm.model

Hello world.

% echo "151 88 21 887 6" |
spm_decode −−model=spm.model

−−input_format=id
Hello world.

Figure 1: Commandline usage of SentencePiece

2 System Overview

SentencePiece comprises four main components:
Normalizer, Trainer, Encoder, and Decoder.
Normalizer is a module to normalize semantically-
equivalent Unicode characters into canonical
forms. Trainer trains the subword segmentation
model from the normalized corpus. We specify a
type of subword model as the parameter of Trainer.
Encoder internally executes Normalizer to nor-
malize the input text and tokenizes it into a sub-
word sequence with the subword model trained by
Trainer. Decoder converts the subword sequence
into the normalized text.

The roles of Encoder and Decoder correspond
to preprocessing (tokenization) and postprocess-
ing (detokenization) respectively. However, we
call them encoding and decoding as SentencePiece
manages the vocabulary to id mapping and can di-
rectly convert the text into an id sequence and vice
versa. Direct encoding and decoding to/from id
sequences are useful for most of NMT systems as
their input and output are id sequences.

Figure 1 presents end-to-end example
of SentencePiece training (spm_train),
encoding (spm_encode), and decoding
(spm_decode). We can see that the input text is
reversibly converted through spm_encode and
spm_decode.

3 Library Design

This section describes the design and implementa-
tion details of SentencePiece with command line
and code snippets.

3.1 Lossless Tokenization
The following raw and tokenized sentences are an
example of language-dependent preprocessing.

• Raw text: Hello world.
• Tokenized: [Hello] [world] [.]

One observation is that the raw text and tokenized
sequence are not reversibly convertible. The in-
formation that no space exists between “world”
and “.” is not kept in the tokenized sequence.
Detokenization, a process to restore the original
raw input from the tokenized sequence, has to be
language-dependent due to these irreversible oper-
ations. For example, while the detokenizer usually
puts whitespaces between the primitive tokens in
most European languages, no spaces are required
in Japanese and Chinese.

• Raw text: こんにちは世界。(Hello world.)
• Tokenized: [こんにちは] [世界] [。]

Such language specific processing has usually
been implemented in manually crafted rules,
which are expensive to write and maintain.

SentencePiece implements the Decoder as an
inverse operation of Encoder, i.e.,

Decode(Encode(Normalize(text))) =

Normalize(text).

We call this design lossless tokenization, in which
all the information to reproduce the normalized
text is preserved in the encoder’s output. The ba-
sic idea of lossless tokenization is to treat the in-
put text just as a sequence of Unicode characters.
Even whitespace is handled as a normal symbol.
For the sake of clarity, SentencePiece first escapes
the whitespace with a meta symbol _ (U+2581),
and tokenizes the input into an arbitrary subword
sequence, for example:

• Raw text: Hello_world.
• Tokenized: [Hello] [_wor] [ld] [.]

As the whitespace is preserved in the tokenized
text, we can detokenize the tokens without any am-
biguities with the following Python code.

detok = ’’.join(tokens).replace(’_’, ’ ’)

It should be noted that subword-nmt2 adopts a
different representation for subword units. It fo-
cuses on how the word is segmented into subwords
and uses @@ as an intra-word boundary marker.

2https://github.com/rsennrich/subword-nmt



68

• Tokenized: [Hello] [wor] [@@ld] [@@.]

This representation can not always perform loss-
less tokenization, as an ambiguity remains in the
treatment of whitespaces. More specifically, it
is not possible to encode consecutive whitespaces
with this representation.

3.2 Efficient subword training and
segmentation

Existing subword segmentation tools train sub-
word models from pre-tokenized sentences.
Such pre-tokenization was introduced for an
efficient subword training (Sennrich et al.,
2016). However, we can not always assume
that pre-tokenization is available, especially for
non-segmented languages. In addition, pre-
tokenization makes it difficult to perform lossless
tokenization.

SentencePiece employs several speed-up tech-
niques both for training and segmentation to make
lossless tokenization with a large amount of raw
data. For example, given an input sentence (or
word) of length N , BPE segmentation requires
O(N2) computational cost when we naively scan
the pair of symbols in every iteration. Sentence-
Piece adopts an O(N log(N)) algorithm in which
the merged symbols are managed by a binary heap
(priority queue). In addition, the training and seg-
mentation complexities of unigram language mod-
els are linear to the size of input data.

3.3 Vocabulary id management

SentencePiece manages the vocabulary to id map-
ping to directly convert the input text into an id
sequence and vice versa. The size of vocabulary
is specified with the --vocab_size=<size>
flag of spm_train. While subword-nmt spec-
ifies the number of merge operations, Sentence-
Piece specifies the final size of vocabulary, as the
number of merge operations is a BPE specific pa-
rameter and can not be applicable to other segmen-
tation algorithms, e.g., unigram language model
(Kudo, 2018).

SentencePiece reserves vocabulary ids for
special meta symbols, e.g., unknown symbol
(<unk>), BOS (<s>), EOS (</s>) and padding
(<pad>). Their actual ids are configured with
command line flags. We can also define custom
meta symbols to encode contextual information as
virtual tokens. Examples include the language-
indicators, <2ja> and <2de>, for multilingual

U+41 U+302 U+300 <tab> U+1EA6
U+41 U+302 U+301 <tab> U+1EA4
...

Figure 2: Custom normalization rule in TSV

models (Johnson et al., 2016).

3.4 Customizable character normalization
Character normalization is an important prepro-
cessing step for handling real world text, which
consists of semantically-equivalent Unicode char-
acters. For example, Japanese fullwidth Latin
characters can be normalized into ASCII Latin
characters. Lowercasing is also an effective nor-
malization, depending on the application.

Character normalization has usually been im-
plemented as hand-crafted rules. Recently, Uni-
code standard Normalization Forms, e.g., NFC
and NFKC, have been widely used in many NLP
applications because of their better reproducibility
and strong support as Unicode standard.

By default, SentencePiece normalizes the in-
put text with the Unicode NFKC normalization.
The normalization rules are specified with the
--normalization_rule_name=nfkc flag
of spm_train. The normalization in Senten-
cepiece is implemented with string-to-string map-
ping and leftmost longest matching. The normal-
ization rules are compiled into a finite state trans-
ducer (Aho-Corasick automaton) to perform an ef-
ficient normalization3.

SentencePiece supports custom normalization
rules defined as a TSV file. Figure 2 shows an
example TSV file. In this example, the Unicode
sequence [U+41 U+302 U+300] is converted
into U+1EA64. When there are ambiguities
in the conversion, the longest rule is applied.
User defined TSV files are specified with the
--normalization_rule_tsv=<file>
flag of spm_train. Task-specific rules can
be defined by extending the default NFKC rules
provided as a TSV file in SentencePiece package.

3.5 Self-contained models
Recently, many researchers have provided pre-
trained NMT models for better reproduciblity of

3The original NFKC normalization requires CCC (Canon-
ical Combining Class) reordering, which is hard to model in
a finite state transducer. SentencePiece does not handle the
full CCC reordering and only implements a subset of NFKC
normalization.

4Note that tabs are used as the delimiter for source and
target sequence and spaces are used as the delimiter for indi-
vidual characters.



69

their experimental results. However, it is not al-
ways stated how the data was preprocessed. (Post,
2018) reported that subtle differences in prepro-
cessing schemes can widely change BLEU scores.
Even using the Moses toolkit, it is not guaran-
teed to reproduce the same settings unless the con-
figurations of Moses (e.g., version and command
line flags) are clearly specified. Strictly speaking,
NFKC normalization may yield different results
depending on the Unicode version.

Ideally, all the rules and parameters for prepro-
cessing must be embedded into the model file in
a self-contained manner so that we can reproduce
the same experimental setting as long as we are
using the same model file.

The SentencePiece model is designed to be
purely self-contained. The model file includes not
only the vocabulary and segmentation parameters,
but also the pre-compiled finite state transducer for
character normalization. The behavior of Senten-
cePiece is determined only by the model file and
has no external dependencies. This design guaran-
tees a perfect reproducibility as well as allowing
to distribute the SentencePiece model file as part
of an NMT model. In addition, the developers of
SentencePiece can refine the (default) normaliza-
tion rules without having to worry about breaking
existing preprocessing behaviors.

The SentencePiece model is stored as a binary
wire format Protocol buffer5, a platform neutral
and extensible mechanism for serializing struc-
tured data. Protocol buffers help to safely serialize
structured data while keeping backward compati-
bility as well as extensibility.

3.6 Library API for on-the-fly processing

Text preprocessing is usually considered as offline
processing. Prior to the main NMT training, raw
input is preprocessed and converted into an id se-
quence with a standalone preprocessor.

Such off-line preprocessing has two problems.
First, standalone tools are not directly integrated
into the user-facing NMT applications which need
to preprocess user input on-the-fly. Second, off-
line preprocessing makes it hard to employ sub-
sentence level data augmentation and noise in-
jection, which aim at improving the accuracy
and robustness of the NMT models. There
are several studies to inject noise to input sen-

5https://developers.google.com/
protocol-buffers/

#include <sentencepiece_processor.h>
#include <sentencepiece_trainer.h>

SentencePieceTrainer::Train(
"--input=input.txt "
"--model_prefix=spm "
"--vocab_size=1000");

SentencePieceProcessor sp;
sp.Load("spm.model");

std::vector<std::string> pieces;
sp.Encode("Hello world.", &pieces);

std::vector<int> ids;
sp.Encode("Hello world.", &ids);

std::string text;
sp.Decode({151, 88, 21, 887, 6}, &text);

Figure 3: C++ API usage (The same as Figure 1.)

import sentencepiece as spm

params = (’--input=input.txt ’
’--model_prefix=spm ’
’--vocab_size=1000’)

spm.SentencePieceTrainer.Train(params)

sp = spm.SentencePieceProcessor()
sp.Load(’spm.model’)

print(sp.EncodeAsPieces(’Hello world.’))
print(sp.EncodeAsIds(’Hello world.’))
print(sp.DecodeIds([151, 88, 21, 887, 6]))

Figure 4: Python API usage (The same as Figure 1.)

tences by randomly changing the internal repre-
sentation of sentences. (Kudo, 2018) proposes
a subword regularization that randomly changes
the subword segmentation during NMT training.
(Lample et al., 2017; Artetxe et al., 2017) inde-
pendently proposed a denoising autoencoder in the
context of sequence-to-sequence learning, where
they randomly alter the word order of the input
sentence and the model is trained to reconstruct
the original sentence. It is hard to emulate this dy-
namic sampling and noise injection only with the
off-line processing.

SentencePiece not only provides a standalone
command line tool for off-line preprocessing but
supports a C++, Python and Tensorflow library
API for on-the-fly processing, which can easily
be integrated into existing NMT frameworks. Fig-
ures 3, 4 and 5 show example usages of the C++,
Python and TensorFlow API6. Figure 6 presents
example Python code for subword regularization
where one subword sequence is sampled accord-
ing to the unigram language model. We can find
that the text “New York” is tokenized differently

6As the Python and TensorFlow wrappers call the native
C++ API, there is no performance drop in their interfaces.



70

import tensorflow as tf
import tf_sentencepiece as tfs

model = tf.gfile.GFile(’spm.model’, ’rb’).read()

input_text = tf.placeholder(tf.string, [None])
ids, lens = tfs.encode(input_text, model_proto=model,

out_type=tf.int32)
output_text = tfs.decode(ids, lens, model_proto=model)

with tf.Session() as sess:
text = [’Hello world.’, ’New York’]
ids_, lens_, output_text_ = sess.run([ids, lens,

output_text], feed_dict={input_text:text})

Figure 5: TensorFlow API usage
The SentencePiece model (model proto) is an attribute of
the TensorFlow operation and embedded into the TensorFlow
graph so the model and graph become purely self-contained.

>>> sp.Load(’spm.model’)
>>> for n in range(5):
... sp.SampleEncodeAsPieces(’New York’, −1, 0.1)
[’_’, ’N’, ’e’, ’w’, ’_York’]
[’_’, ’New’, ’_York’]
[’_’, ’New’, ’_Y’, ’o’, ’r’, ’k’]
[’_’, ’New’, ’_York’]
[’_’, ’New’, ’_York’]

Figure 6: Subword sampling with Python API

on each SampleEncodeAsPieces call. Please
see (Kudo, 2018) for the details on subword regu-
larization and its sampling hyperparameters.

4 Experiments

4.1 Comparison of different preprocessing

We validated the performance of the different
preprocessing on English-Japanese translation of
Wikipedia articles, as specified by the Kyoto Free
Translation Task (KFTT) 7. The training, develop-
ment and test data of KFTT consist of 440k, 1166
and 1160 sentences respectively.

We used GNMT (Wu et al., 2016) as the imple-
mentation of the NMT system in our experiments.
We generally followed the settings and training
procedure described in (Wu et al., 2016), however,
we changed the node and layer size of LSTM to be
512 and 6 respectively.

A word model is used as a baseline system.
We compared to SentencePiece (unigram lan-
guage model) with and without pre-tokenization.
SentencePiece with pre-tokenization is essentially
the same as the common NMT configuration
with subword-nmt. SentencePiece without pre-
tokenization directly trains the subword model
from raw sentences and does not use any exter-
nal resources. We used the Moses tokenizer8 and

7http://www.phontron.com/kftt
8http://www.statmt.org/moses/

Lang pair setting (source/target) # vocab. BLEU
ja→en Word model (baseline) 80k/80k 28.24

SentencePiece 8k (shared) 29.55
SentencePiece w/ pre-tok. 8k (shared) 29.85
Word/SentencePiece 80k/8k 27.24
SentencePiece/Word 8k/80k 29.14

en→ja Word model (baseline) 80k/80k 20.06
SentencePiece 8k (shared) 21.62
SentencePiece w/ pre-tok. 8k (shared) 20.86
Word/SentencePiece 80k/8k 21.41
SentencePiece/Word 8k/80k 19.94

Table 1: Translation Results (BLEU(%))

KyTea9 for English and Japanese pre-tokenization
respectively. The same tokenizers are applied to
the word model.

We used the case-sensitive BLEU score
(Papineni et al., 2002) as an evaluation metric.
As the output sentences are not segmented in
Japanese, we segmented them with KyTea for be-
fore calculating BLEU scores.

Table 1 shows the experimental results. First,
as can be seen in the table, subword segmen-
tations with SentencePiece consitently improve
the BLEU scores compared to the word model.
This result is consistent with previous work
(Sennrich et al., 2016). Second, it can be seen
that the pre-tokenization is not always necessary
to boost the BLEU scores. In Japanese to English,
the improvement is marginal and has no signifi-
cant difference. In English to Japanese, the BLEU
score is degraded with pre-tokenization.

We can find larger improvements in BLEU
when 1) SentencePiece is applied to Japanese, and
2) the target sentence is Japanese. As Japanese is
a non-segmented language, pre-tokenization acts
as a strong constraint to determine the final vo-
cabulary. It can be considered that the positive ef-
fects of unsupervised segmentation from raw input
worked effectively to find the domain-specific vo-
cabulary in Japanese.

4.2 Segmentation performance
Table 2 summarizes the training and segmentation
performance of various configurations.

We can see that the training and segmentation
speed of both SentencePiece and subword-nmt is
almost comparable on English data set regardless
of the choice of pre-tokenization. This is expected,
as English is a segmented language and the search
space for the vocabulary extraction is largely re-
stricted. On the other hand, SentencePiece shows

9http://www.phontron.com/kytea



71

time (sec.)
Task Tool Pre-tok. Japanese English
Train subword-nmt yes 56.9 54.1

SentencePiece yes 10.1 16.8
subword-nmt no 528.0 94.7
SentencePiece no 217.3 21.8

Seg. subword-nmt yes 23.7 28.6
SentencePiece yes 8.2 20.3
subword-nmt no 216.2 36.1
SentencePiece no 5.9 20.3

Pre-tokenizaion KyTea(ja)/Moses(en) 24.6 15.8
Table 2: Segmentation performance. KFTT corpus (440k
sentences) is used for evaluation. Experiments are executed
on Linux with Xeon 3.5Ghz processors. The size of vocabu-
lary is 16k. Moses and KyTea tokenizers are used for English
and Japanese respectively. Note that we have to take the time
of pre-tokenization into account to make a fair comparison
with and without pre-tokenization. Because subword-nmt is
based on BPE, we used the BPE model in SentencePiece. We
found that BPE and unigram language models show almost
comparable performance.

larger performance improvements when applying
it to raw Japanese data (w/o pre-tok). The seg-
mentation speed of SentencePiece is about 380
times faster than that of subword-nmt in this set-
ting. This result strongly supports our claim that
SentencePiece is fast enough to be applied to raw
data and the pre-tokenization is not always neces-
sary. Consequently, SentencePiece helps to build a
purely data-driven and language-independent sys-
tem. The segmentation speed of SentencePiece is
around 21k and 74k sentences/sec. in English and
Japanese respectively, which is fast enough to be
executed on-the-fly.

5 Conclusions

In this paper, we introduced SentencePiece, an
open-source subword tokenizer and detokenizer
designed for Neural-based text processing. Sen-
tencePiece not only performs subword tokeniza-
tion, but directly converts the text into an id se-
quence, which helps to develop a purely end-to-
end system without replying on language specific
resources. The model file of SentencePiece is de-
signed to be self-contained to guarantee perfect
reproducibility of the normalization and subword
segmentation. We hope that SentencePiece will
provide a stable and reproducible text processing
tool for production use and help the research com-
munity to move to more language-agnostic and
multilingual architectures.

References
Mikel Artetxe, Gorka Labaka, Eneko Agirre,

and Kyunghyun Cho. 2017. Unsupervised
neural machine translation. arXive preprint
arXiv:1710.11041.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Michael Denkowski and Graham Neubig. 2017.
Stronger baselines for trustable results in neural ma-
chine translation. Proc. of Workshop on Neural Ma-
chine Translation.

Melvin Johnson, Mike Schuster, et al. 2016. Google’s
multilingual neural machine translation system:
enabling zero-shot translation. arXiv preprint
arXiv:1611.04558.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proc. of ACL.

Guillaume Lample, Ludovic Denoyer, and
Marc’Aurelio Ranzato. 2017. Unsupervised
machine translation using monolingual corpora
only. arXive preprint arXiv:1711.00043.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Proc of
EMNLP.

Toshiaki Nakazawa, Shohei Higashiyama, et al. 2017.
Overview of the 4th workshop on asian translation.
In Proceedings of the 4th Workshop on Asian Trans-
lation (WAT2017).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proc. of ACL.

Matt Post. 2018. A call for clarity in reporting bleu
scores. arXiv preprint arXiv:1804.08771.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proc. of EMNLP.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proc. of ACL.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXive preprint arXiv:1706.03762.

Oriol Vinyals and Quoc V. Le. 2015. A neural conver-
sational model. In ICML Deep Learning Workshop.

Yonghui Wu, Mike Schuster, et al. 2016. Google’s
neural machine translation system: Bridging the
gap between human and machine translation. arXiv
preprint arXiv:1609.08144.


