
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (System Demonstrations), pages 30–35
Brussels, Belgium, October 31–November 4, 2018. c©2018 Association for Computational Linguistics

30

An Interactive Web-Interface for Visualizing the Inner Workings of the
Question Answering LSTM

Ekaterina Loginova
DFKI / Saarbrücken, Germany

ekaterina.loginova@dfki.de

Günter Neumann
DFKI / Saarbrücken, Germany

neumann@dfki.de

Abstract

Deep learning models for NLP are potent
but not readily interpretable. It prevents re-
searchers from improving a model’s perfor-
mance efficiently and users from applying it
for a task which requires a high level of trust
in the system. We present a visualisation tool
which aims to illuminate the inner workings of
a specific LSTM model for question answer-
ing. It plots heatmaps of neurons’ firings and
allows a user to check the dependency between
neurons and manual features. The system pos-
sesses an interactive web-interface and can be
adapted to other models and domains.

1 Introduction

Deep learning models have gained popularity in
the last years due to their state-of-the-art per-
formance combined with an end-to-end pipeline.
However, even though these models do not require
manual feature engineering, this advantage turns
into a shortcoming when it comes to the interpre-
tation of the model. Neural networks are consid-
ered black boxes by the majority of their users.
Such low interpretability leads to a low level of
trust in the system’s decisions. Therefore, meth-
ods for interpreting neural networks are attracting
increasing interest due to their need for practical
applications.

Existing visualisation methods mainly focus on
computer vision tasks. It raises the issue that not
all of them can be easily adapted to the NLP do-
main since text preprocessing operates with no-
ticeably different units. Furthermore, while some
neural architectures such as CNNs, provide rela-
tively clear feature illustrations, this is not the case
for RNNs, which are dominant for many text pro-
cessing tasks. Few researchers have addressed the
issue of visualising the inner workings of RNNs,
especially in an interactive way.

Our ultimate goal is to allow a researcher to
check how interpretable the features in an RNN
are automatically. The first step would be to check
the dependency between a given manual feature
and the features produced by the deep learning
model. The next one is to develop a method to ex-
tract structural patterns from uninterpretable fea-
tures. The last step would be to generate sugges-
tions that would explain such patterns automati-
cally. In this work, we address the first step and
supply a visualisation tool for manually carrying
out the second step.

This paper is a report on the visualisation sys-
tem for LSTMs in the area of question answering.
We present a new interactive web-interface which
currently focuses on a specific system but can po-
tentially be adapted to other models and domains.
The proposed system aims to aid the development
of deep learning models in NLP by providing a
tool for data visualisation.

The paper is divided into three sections. The
first section provides a brief overview of the re-
lated work. The system is described in the second
section, and our conclusions are drawn in the final
section.

2 Related work

A considerable amount of literature has been pub-
lished on neural attention models (Vaswani et al.,
2017; Li et al., 2015b). Most of them contain
heat maps to illustrate the work of the attention
mechanism. These plots provide insight into what
the model sees as the more important parts of
the sentence when making a prediction. For in-
stance, self-attention might learn patterns related
to syntactical properties of the text (Vaswani et al.,
2017) or sentiment aspects (Li et al., 2015b). Re-
cently researchers have also focused on illustrating
the behaviour of machine translation sequence-to-
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Figure 1: The second part of the interface. Left and right columns contain the ground truth correct and wrong
answers respectively, highlighted according to a chosen neuron. The question is stated in the middle, a t-SNE plot
is given under it. The heatmaps of neuron activations are placed below.

sequence architectures (Lee et al., 2017). Such
systems include visualisations of the search tree
for the beam search along with attention.

More recent research by (Karpathy et al., 2015)
reveals that a small percentage of cells in LSTM
learns interpretable patterns. For instance, a cell
might correspond to the position in the line, indi-
cate the depth of the nested structure or turn on
inside quotes. Our system is greatly inspired by
this research.

In (Li et al., 2015a) authors investigate vi-
sualisations of compositionality in NLP, basing
their work on computer vision approaches. They
provide t-SNE (van der Maaten and Hinton,
2008) plots for clause compositions and introduce
saliency heatmaps. The latter indicates how neu-
rons contribute to the final decision based on the
first order derivatives.

Moreover, (Strobelt et al., 2016) demonstrated
a system for visual analysis of hidden state dy-
namics in recurrent neural networks. The system,
called LSTMVis, allows the researcher to check
the hypothesis about local state changes against a
similar pattern in the entire dataset, and align it
with the textual annotations.

Finally, (Jia and Liang, 2017) show that a ques-
tion answering system can be surprisingly unreli-
able when presented with artificial adversarial ex-
amples. They suggest that this can happen be-
cause a neural network learns heuristics, which are
easy to fool. Hence, we hypothesise that a system
which uses meaningful (from a human perspec-
tive) features might not only be more user-friendly
but also demonstrate higher robustness.

3 System

Our system consists of two different interfaces.
The first one visualises the scores and attention
distribution produced by the model on answers to
a user-defined question. The second one allows
a user to iterate through fixed question-answer
pairs to investigate the inner workings of a model.
These inner workings are displayed in three sepa-
rate views: General, Neuron and Correlation. In
the General one, a user can observe t-SNE plots
and heat maps for all neurons on the texts of the
current question-answer pair from the dataset (see
Figure 1 for the layout demonstration). In the Neu-
ron view, the user can investigate the behaviour of
one particular neuron further. Finally, in the Cor-
relation part, the user can see the statistical mea-
sures for the dependency between a chosen man-
ual feature and all neurons.

3.1 Deep learning model

Our system currently works with the Attentive
(Bahdanau et al., 2014) QALSTM model. The
method is essentially the same as (Tan et al., 2016)
with some adjustments. Most importantly, we use
two stacked shared LSTMs instead of a single one
(the number of units is 96 and 64 respectively).
We used Adam (Kingma and Ba, 2014) optimi-
sation instead of SGD and cross entropy loss in-
stead of margin ranking loss. Moreover, we modi-
fied the parameters: the embeddings are not train-
able, dropout is not used, and the learning rate
is set to 0.001. The main dataset used in the
current stage is SemEval 2017 Task 3 Subtask A
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(Nakov et al., 2017). The word embeddings are
word2vec (Mikolov et al., 2013) of dimension 300
pre-trained on Google News. The texts are lower-
cased and tokenised using built-in Keras functions.

Generally speaking, any pre-trained Keras
model involving an attention mechanism and an
LSTM can be loaded into the interface. The only
requirement would be to provide the layer names
to retrieve softmax attention scores and LSTM
weights.

3.2 Key features

A pre-trained model is loaded from a Keras check-
point: the weights are obtained from a .h5 file and
the architecture from a .json. In case of an error, a
message is shown to the user with the description.
The dataset with the texts of question-answer pairs
is loaded in either of two ways (denoted as D-I and
D-II). It can be preloaded from a custom pickle
file containing a pandas data frame. This method
is suitable if the candidate answers are known at
the test phase. Otherwise, the dataset can be saved
into an index schema of documents which is com-
patible with the Whoosh (Chaput, 2007) library.
This will allow the system to retrieve candidate
answers based on a keyword match. It should be
noted that it is relatively easy to modify the code to
load other datasets as long as they have the fields
pool (array of incorrect answer ids), answer ids
(array of correct answer ids), question (question
text) and answer (candidate answer text). Lastly,
pre-trained word embeddings and the tokeniser are
loaded from pickled Keras objects.

Candidate answer retrieval and scoring. To
begin with, the system receives a question from the
user via a text field input. The question is filtered
by length: too long or empty questions are dis-
carded. Then, it is preprocessed to exclude out-of-
vocabulary (OOV) words. In addition, it is spell-
checked by the Whoosh library. If the question
contains words which lemmata are not in the vo-
cabulary of the system, a warning is displayed. As
mentioned at the beginning of this section, our sys-
tem is separated into two interfaces depending on
whether the question can be formulated by the user
or it is fixed in advance. The answers in the first
part are sorted by their score. In case the question
was present in the dataset, and we know the cor-
rect answer, we mark its text with a star icon for a
quicker performance assessment by the user. The
second interface allows the user to iterate through

Figure 2: The heatmap of attention scores.

the fixed question-answer pairs to investigate the
inner workings of the model. The answers in this
part are separated into columns, where the left col-
umn contains the ground truth correct answers and
the right one the ground truth incorrect answers.
The prediction of the model is illustrated with an
icon (cross mark for predicting the answer as in-
correct, checkmark for the correct), and the origi-
nal score is also displayed. This leads to a clearer
picture of the mistakes the model makes, which
will hopefully help researchers in eliminating pos-
sible sources of errors.

In D-II setting, after that, Whoosh’s Multifield-
Parser processes the question and attempts to re-
trieve candidate answers. If no candidates are
found at this step, it extends the search by also
checking the answer texts corresponding to the
questions in the index. In other words, it checks
not only the question-question similarity but also
answer-question. If still no results are retrieved,
the user receives an appropriate error message
with a prompt to reformulate his question. If can-
didate answers were found, they are preprocessed.
At this step, custom modifications, such as remov-
ing punctuation, can be added. In D-I setting, the
candidate answers are provided and thus retrieved
directly.

After that, the pre-trained deep learning model
is applied to the texts of the question and the can-
didate answers to receive their scores. In our case,
those are cosine similarities between LSTMs em-
beddings of the question and the candidate answer.

Attention visualisation. The next key feature
of our system is the visualisation of the atten-
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tion mechanism. In this part, we follow a tradi-
tional approach of using a heat map on the text.
Words are highlighted in red based on their atten-
tion scores: the higher the score, the more intense
the colour. The attention scores used in deciding
the opacity of the colour are scaled to make them
more visible. A user can still see the exact score
of the word in a tooltip by hovering over it. Op-
tionally, the user can adjust the attention threshold
A to only highlight words with an attention score
higher than A. Figure 2 shows an example of the
attention visualisation.

t-SNE. Another part of the visualisations is spe-
cific to the model we currently use. The objective
of this model is to learn a mapping to a new em-
bedding space where the question has a smaller
cosine distance to its correct answers than to the
incorrect ones. In order to investigate the resulting
space, we plot a t-SNE projection of the LSTM
output embeddings on each QA-pair. The red dots
correspond to the wrong answers, green - the cor-
rect ones and blue - the question. The perplexity
parameter, which is known to affect the meaning-
fulness of t-SNE plots greatly, can be adjusted by
the user with a corresponding text field input. The
default value is 5.

Weights visualisation. Besides visualising at-
tention, we develop an idea proposed by (Karpa-
thy et al., 2015), as we suggest that the neuron
behaviour in a question answering system might
differ across the answers categories. The illus-
tration is generated in two modes: heatmaps and
highlighting the text. Figure 1 demonstrates the
highlighted text mode and figure 3 - the corre-
sponding heatmaps. The red colour corresponds to
positive values and the blue to the negative ones.
The brighter the colour, the larger the absolute
value of the neuron output. The current model
works on a word level as opposed to character
level in (Karpathy et al., 2015). A researcher is
encouraged to manually analyse whether the neu-
rons align with easily interpretable patterns in the
text. If a particular neuron is of interest, the user
may see heatmaps in detail by navigating to the
Neuron view. There the heatmaps spanning only
this particular neuron on a subset of texts are plot-
ted. Figure 4 illustrates this mode. The user can
generate more heatmaps on random texts to check
for the consistency of a pattern. It should be noted
that for large systems or long texts the plots can

become difficult to analyse. We attempt to allevi-
ate this by splitting the heatmaps into chunks by
ten words and 32 neurons.

Correlation coefficients. We hypothesise that
there is a dependency between a manual feature
and a neuron. However, manually checking the
heatmaps over a corpus for each neuron is time-
consuming. Hence, we provide the researchers
with additional information that might indicate
promising pairs of features and neurons. The addi-
tional information consists of three statistical mea-
sures: the Pearson and the Spearman rank cor-
relation coefficients and the Mutual Information
score. As nature (discrete or continuous) of a
user-defined manual feature is not known in ad-
vance, we provide all three scores by default. If
the value of the coefficient is higher than a thresh-
old of T , the text of the indicator will be high-
lighted in green. If the value is lower than −T ,
it will be highlighted in red. The user can ad-
just this threshold value with a corresponding text
field input. The default value of T is 0.5. The
user can input their own features. The format is a
nested Python list of the features values for words
in texts. Alternatively, the user can choose from
one of the suggested features. The suggested fea-
tures include the following: is the token a stop-
word? Does the token consist of alphabetic char-
acter? The length of the token in characters? Is
the token a noun/a verb/an adjective? Is the to-
ken a named entity? Is the token a question word
(what, how)?

The values for these features are computed with
the SpaCy (Honnibal and Johnson, 2015) library.
Besides, the user can see some numerical charac-
teristics of neuron values: maximum, minimum,
median and mean values. He can also choose the
number of texts to use, and whether they are sam-
pled randomly or sequentially from the dataset.
In case the user would like to check the depen-
dency on a particular subset, he may input the ex-
act indices for the question-answer pairs from the
dataset. By default, the first ten instances in the
dataset are used to speed up the computation pro-
cess.

3.3 Technical implementation

The visualisation application is a client-server sys-
tem with a web interface. It uses JQuery on the
client side and Python on the server side. The ap-
plication is built with the Flask (Ronacher, 2018)
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Figure 3: A heatmap of all the neuron’s firings on a
given text.

Figure 4: A heatmap of the given neuron’s firings on a
given text. Each cell corresponds to a word (in left to
right order). The red colour corresponds to positive val-
ues and the blue to the negative ones. The more intense
the colour, the larger the absolute value of the neuron
output.

framework. For text preprocessing we use SpaCy
(Honnibal and Johnson, 2015) and NLTK (Loper
and Bird, 2002). Heatmaps and t-SNE results are
plotted with the matplotlib (Hunter, 2007) library
and sklearn (Pedregosa et al., 2011). The main
deep learning framework is Keras (Chollet, 2015),
but there is also a preliminary attempt to include
PyTorch (Paszke et al., 2017) models. Statisti-
cal measures were calculated using scipy (Jones
et al., 2001–).

3.4 Use cases

Regarding possible use cases, we can suggest at
least five possible scenarios.

The first is to investigate possible sources of er-
ror by analysing the model’s hidden vectors and
attention scores.

The second promising application is to illus-
trate the difference between models. This can be
done by loading two different models and compar-
ing their heatmaps and attention distributions. For

example, if two models with similar performance
are given, the preference might go to the one with
more explainable features.

The third scenario is a simplification of a model
into a rule-based or machine learning approach. It
can be seen as a compromise where we use a deep
learning approach to extract features that might
not be obvious for a human, and then transfer them
to other models.

The fourth way to use the system is to try to in-
terpret the features learnt by the network. For in-
stance, while exploring the heatmaps, we noticed
that the model seems to highlight words in the an-
swers which are semantically relevant to the ques-
tion (i.e., ”money” when a person asks for a bank
recommendation). It also often reacts to the ques-
tion phrases (”how much”, and so on).

Finally, we believe that interactive visualisa-
tions of LSTM hidden vectors might be enticing
and helpful in education for students and beginner
level practitioners.

4 Conclusion

Deep learning models for text processing are pow-
erful, but not easily interpretable. This low inter-
pretability leads to low trust in the systems deci-
sion and difficulties in improving its performance.
Thus, there is a need for efficient visualisation
tools that will illuminate the details of a neural net-
work’s decision making.

We have presented a prototype of a visualisation
system for the RNN model in the question answer-
ing domain. This paper outlines the key features
and structure of the system, along with the de-
tails of the technical implementation. The system
displays heat maps for attention scores and firings
of neurons and outputs correlation coefficients be-
tween the neurons and manual features. The ap-
proach we develop would lend itself well for use
by machine comprehension researchers and devel-
opers.

Concerning possible improvements, there are
five main directions. The first is to employ an au-
tomatic search for a structural pattern in neurons
firing. The second is to transform neurons into
transferable features which can be adapted to other
models and tasks. For instance, if we see that the
same type of a feature is extracted by several suc-
cessful question answering systems, it might make
sense to apply them in dialogue generation. The
third is the need for more advanced statistical anal-
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ysis. The fourth possible improvement is the in-
corporation of a direct comparison of two models
in an interactive mode. Finally, the system can be
extended to character-based models.

Future work will concentrate on extending the
system to support other frameworks and visualisa-
tion techniques, such as saliency heatmaps. We
also plan to include use cases for different do-
mains, e.g. machine translation.
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