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Introduction

Welcome to the proceedings of the system demonstrations session. This volume contains the papers of
the system demonstrations presented at the 2018 Conference on Empirical Methods in Natural Language
Processing (EMNLP), which was held in Brussels, Belgium on October 31 - November 4, 2018.

The system demonstrations session includes papers describing systems ranging from early research
prototypes to mature production-ready software. We received 77 submissions, 4 of which were either
invalid or withdrawn by the authors. Of the 73 valid submissions, 29 (40%) were selected for inclusion in
the proceedings after review of three members of the program committee. We thank all authors for their
submissions, and the 162 members of the program committee for their timely and thoughtful reviews.

Best regards,
Eduardo Blanco and Wei Lu
EMNLP 2018 System Demonstration Co-Chairs
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Vulić, Bailin Wang, William Yang Wang, Chi Wang, Rui Wang, Leo Wanner, Furu Wei, Travis
Wolfe, tae yano, Seid Muhie Yimam, Mo Yu, Liang-Chih Yu, Fabio Massimo Zanzotto, Kevin
Zhang, Jun Zhao, Hai Zhao, Guangyou Zhou, Imed Zitouni, and Yanyan Zou.

v





Table of Contents

SyntaViz: Visualizing Voice Queries through a Syntax-Driven Hierarchical Ontology
Md Iftekhar Tanveer and Ferhan Ture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

TRANX: A Transition-based Neural Abstract Syntax Parser for Semantic Parsing and Code Generation
Pengcheng Yin and Graham Neubig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Data2Text Studio: Automated Text Generation from Structured Data
Longxu Dou, Guanghui Qin, Jinpeng Wang, Jin-Ge Yao and Chin-Yew Lin . . . . . . . . . . . . . . . . . . . 13

Term Set Expansion based NLP Architect by Intel AI Lab
Jonathan Mamou, Oren Pereg, Moshe Wasserblat, Alon Eirew, Yael Green, Shira Guskin, Peter

Izsak and Daniel Korat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

MorAz: an Open-source Morphological Analyzer for Azerbaijani Turkish
Berke Özenç, Razieh Ehsani and Ercan Solak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

An Interactive Web-Interface for Visualizing the Inner Workings of the Question Answering LSTM
Ekaterina Loginova and Günter Neumann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Visual Interrogation of Attention-Based Models for Natural Language Inference and Machine Compre-
hension

Shusen Liu, Tao Li, Zhimin Li, Vivek Srikumar, Valerio Pascucci and Peer-Timo Bremer . . . . . . 36

DERE: A Task and Domain-Independent Slot Filling Framework for Declarative Relation Extraction
Heike Adel, Laura Ana Maria Bostan, Sean Papay, Sebastian Padó and Roman Klinger . . . . . . . . 42

Demonstrating Par4Sem - A Semantic Writing Aid with Adaptive Paraphrasing
Seid Muhie Yimam and Chris Biemann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Juman++: A Morphological Analysis Toolkit for Scriptio Continua
Arseny Tolmachev, Daisuke Kawahara and Sadao Kurohashi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Visualization of the Topic Space of Argument Search Results in args.me
Yamen Ajjour, Henning Wachsmuth, Dora Kiesel, Patrick Riehmann, Fan Fan, Giuliano Castiglia,

Rosemary Adejoh, Bernd Fröhlich and Benno Stein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text
Processing.

Taku Kudo and John Richardson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

CogCompTime: A Tool for Understanding Time in Natural Language
Qiang Ning, Ben Zhou, Zhili Feng, Haoruo Peng and Dan Roth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A Multilingual Information Extraction Pipeline for Investigative Journalism
Gregor Wiedemann, Seid Muhie Yimam and Chris Biemann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Sisyphus, a Workflow Manager Designed for Machine Translation and Automatic Speech Recognition
Jan-Thorsten Peter, Eugen Beck and Hermann Ney . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

KT-Speech-Crawler: Automatic Dataset Construction for Speech Recognition from YouTube Videos
Egor Lakomkin, Sven Magg, Cornelius Weber and Stefan Wermter . . . . . . . . . . . . . . . . . . . . . . . . . . 90

vii



Visualizing Group Dynamics based on Multiparty Meeting Understanding
Ni Zhang, Tongtao Zhang, Indrani Bhattacharya, Heng Ji and Rich Radke . . . . . . . . . . . . . . . . . . . . 96

An Interface for Annotating Science Questions
Michael Boratko, Harshit Padigela, Divyendra Mikkilineni, Pritish Yuvraj, Rajarshi Das, Andrew

McCallum, Maria Chang, Achille Fokoue, Pavan Kapanipathi, Nicholas Mattei, Ryan Musa, Kartik
Talamadupula and Michael Witbrock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

APLenty: annotation tool for creating high-quality datasets using active and proactive learning
Minh-Quoc Nghiem and Sophia Ananiadou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Interactive Instance-based Evaluation of Knowledge Base Question Answering
Daniil Sorokin and Iryna Gurevych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Magnitude: A Fast, Efficient Universal Vector Embedding Utility Package
Ajay Patel, Alexander Sands, Chris Callison-Burch and Marianna Apidianaki . . . . . . . . . . . . . . . .120

Integrating Knowledge-Supported Search into the INCEpTION Annotation Platform
Beto Boullosa, Richard Eckart de Castilho, Naveen Kumar, Jan-Christoph Klie and Iryna Gurevych

127

CytonMT: an Efficient Neural Machine Translation Open-source Toolkit Implemented in C++
Xiaolin Wang, Masao Utiyama and Eiichiro Sumita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

OpenKE: An Open Toolkit for Knowledge Embedding
Xu Han, Shulin Cao, Xin Lv, Yankai Lin, Zhiyuan Liu, Maosong Sun and Juanzi Li . . . . . . . . . . 139

LIA: A Natural Language Programmable Personal Assistant
Igor Labutov, Shashank Srivastava and Tom Mitchell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

PizzaPal: Conversational Pizza Ordering using a High-Density Conversational AI Platform
Antoine Raux, Yi Ma, Paul Yang and Felicia Wong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Developing Production-Level Conversational Interfaces with Shallow Semantic Parsing
Arushi Raghuvanshi, Lucien Carroll and Karthik Raghunathan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

When science journalism meets artificial intelligence : An interactive demonstration
Raghuram Vadapalli, Bakhtiyar Syed, Nishant Prabhu, Balaji Vasan Srinivasan and Vasudeva Varma

163

Universal Sentence Encoder for English
Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah

Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Brian Strope and Ray Kurzweil . . . . . . . 169

viii



Conference Program

SyntaViz: Visualizing Voice Queries through a Syntax-Driven Hierarchical Ontol-
ogy
Md Iftekhar Tanveer and Ferhan Ture

TRANX: A Transition-based Neural Abstract Syntax Parser for Semantic Parsing
and Code Generation
Pengcheng Yin and Graham Neubig

Data2Text Studio: Automated Text Generation from Structured Data
Longxu Dou, Guanghui Qin, Jinpeng Wang, Jin-Ge Yao and Chin-Yew Lin

Term Set Expansion based NLP Architect by Intel AI Lab
Jonathan Mamou, Oren Pereg, Moshe Wasserblat, Alon Eirew, Yael Green, Shira
Guskin, Peter Izsak and Daniel Korat

MorAz: an Open-source Morphological Analyzer for Azerbaijani Turkish
Berke Özenç, Razieh Ehsani and Ercan Solak

An Interactive Web-Interface for Visualizing the Inner Workings of the Question
Answering LSTM
Ekaterina Loginova and Günter Neumann

Visual Interrogation of Attention-Based Models for Natural Language Inference and
Machine Comprehension
Shusen Liu, Tao Li, Zhimin Li, Vivek Srikumar, Valerio Pascucci and Peer-Timo
Bremer

DERE: A Task and Domain-Independent Slot Filling Framework for Declarative
Relation Extraction
Heike Adel, Laura Ana Maria Bostan, Sean Papay, Sebastian Padó and Roman
Klinger

Demonstrating Par4Sem - A Semantic Writing Aid with Adaptive Paraphrasing
Seid Muhie Yimam and Chris Biemann

Juman++: A Morphological Analysis Toolkit for Scriptio Continua
Arseny Tolmachev, Daisuke Kawahara and Sadao Kurohashi

Visualization of the Topic Space of Argument Search Results in args.me
Yamen Ajjour, Henning Wachsmuth, Dora Kiesel, Patrick Riehmann, Fan Fan, Giu-
liano Castiglia, Rosemary Adejoh, Bernd Fröhlich and Benno Stein

SentencePiece: A simple and language independent subword tokenizer and detok-
enizer for Neural Text Processing.
Taku Kudo and John Richardson

ix



No Day Set (continued)

CogCompTime: A Tool for Understanding Time in Natural Language
Qiang Ning, Ben Zhou, Zhili Feng, Haoruo Peng and Dan Roth

A Multilingual Information Extraction Pipeline for Investigative Journalism
Gregor Wiedemann, Seid Muhie Yimam and Chris Biemann

Sisyphus, a Workflow Manager Designed for Machine Translation and Automatic
Speech Recognition
Jan-Thorsten Peter, Eugen Beck and Hermann Ney

KT-Speech-Crawler: Automatic Dataset Construction for Speech Recognition from
YouTube Videos
Egor Lakomkin, Sven Magg, Cornelius Weber and Stefan Wermter

Visualizing Group Dynamics based on Multiparty Meeting Understanding
Ni Zhang, Tongtao Zhang, Indrani Bhattacharya, Heng Ji and Rich Radke

An Interface for Annotating Science Questions
Michael Boratko, Harshit Padigela, Divyendra Mikkilineni, Pritish Yuvraj, Ra-
jarshi Das, Andrew McCallum, Maria Chang, Achille Fokoue, Pavan Kapanipathi,
Nicholas Mattei, Ryan Musa, Kartik Talamadupula and Michael Witbrock

APLenty: annotation tool for creating high-quality datasets using active and proac-
tive learning
Minh-Quoc Nghiem and Sophia Ananiadou

Interactive Instance-based Evaluation of Knowledge Base Question Answering
Daniil Sorokin and Iryna Gurevych

Magnitude: A Fast, Efficient Universal Vector Embedding Utility Package
Ajay Patel, Alexander Sands, Chris Callison-Burch and Marianna Apidianaki

Integrating Knowledge-Supported Search into the INCEpTION Annotation Plat-
form
Beto Boullosa, Richard Eckart de Castilho, Naveen Kumar, Jan-Christoph Klie and
Iryna Gurevych

CytonMT: an Efficient Neural Machine Translation Open-source Toolkit Imple-
mented in C++
Xiaolin Wang, Masao Utiyama and Eiichiro Sumita

OpenKE: An Open Toolkit for Knowledge Embedding
Xu Han, Shulin Cao, Xin Lv, Yankai Lin, Zhiyuan Liu, Maosong Sun and Juanzi Li

x



No Day Set (continued)

LIA: A Natural Language Programmable Personal Assistant
Igor Labutov, Shashank Srivastava and Tom Mitchell

PizzaPal: Conversational Pizza Ordering using a High-Density Conversational AI
Platform
Antoine Raux, Yi Ma, Paul Yang and Felicia Wong

Developing Production-Level Conversational Interfaces with Shallow Semantic
Parsing
Arushi Raghuvanshi, Lucien Carroll and Karthik Raghunathan

When science journalism meets artificial intelligence : An interactive demonstration
Raghuram Vadapalli, Bakhtiyar Syed, Nishant Prabhu, Balaji Vasan Srinivasan and
Vasudeva Varma

Universal Sentence Encoder for English
Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St.
John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Brian
Strope and Ray Kurzweil

xi





Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (System Demonstrations), pages 1–6
Brussels, Belgium, October 31–November 4, 2018. c©2018 Association for Computational Linguistics

SyntaViz: Visualizing Voice Queries through a Syntax-Driven
Hierarchical Ontology

Md Iftekhar Tanveer
University of Rochester

Rochester, NY, USA
itanveer@cs.rochester.edu

Ferhan Ture
Comcast Applied AI Research

Washington DC, USA
ferhan ture@comcast.com

Abstract

This paper describes SYNTAVIZ, a visualiza-
tion interface specifically designed for analyz-
ing natural-language queries that were created
by users of a voice-enabled product. SYN-
TAVIZ provides a platform for browsing the
ontology of user queries from a syntax-driven
perspective, providing quick access to high-
impact failure points of the existing intent
understanding system and evidence for data-
driven decisions in the development cycle. A
case study on Xfinity X1 (a voice-enabled en-
tertainment platform from Comcast) reveals
that SYNTAVIZ helps developers identify mul-
tiple action items in a short amount of time
without any special training. SYNTAVIZ has
been open-sourced for the benefit of the com-
munity.

1 Introduction

Voice-driven interactions with computing devices
are becoming increasingly prevalent. Amazon’s
Alexa, Apple’s Siri, Microsoft’s Cortana, and the
Google Assistant are prominent examples. Google
observed that mobile devices surpassed tradi-
tional computers in terms of search traffic (Ster-
ling, 2015), and that 20% of mobile searches are
voice queries (Pichai, 2016). As opposed to the
keyword-based shorter queries received by web-
based search engines, voice-enabled natural lan-
guage processing (NLP) systems deal with longer,
natural-language queries. This raises the question
of how such data should be utilized for continuous
improvements of the underlying methods.

In this paper, we introduce SYNTAVIZ, a web
interface for visualizing natural-language queries
based on a syntax-driven ontology, thereby en-
abling its user to quickly gain insights on the
statistical and structural properties of large-scale
customer-generated data. We provide use cases of
SYNTAVIZ on a dataset of 1 million unique voice

queries issued by users of the Xfinity X1 enter-
tainment platform of Comcast—one of the largest
cable companies in the United States with approxi-
mately 22 million subscribers. We are planning to
make the source code of SYNTAVIZ freely avail-
able as a contribution to the community.

2 Related Work

There is a growing body of literature that deals
with various text visualization techniques: Paul-
heim and Probst (2012) provided a survey of vari-
ous ontology-enhanced user interfaces. Most prior
work utilizes topic modeling to group and/or par-
tition the collection in a way that lexically differ-
ent yet semantically similar queries are clustered
together. Wei et al. (2010) proposed using Latent
Dirichlet Allocation (LDA) to induce topic models
for an exploratory text analytics system. Hoque
and Carenini (2016) utilized topic modeling and
sentiment analysis to visualize blog texts and as-
sociated comments. A combination of latent topic
analysis, discriminative feature selection and vari-
ous ranking methods was developed by Singh et al.
(2017) as part of a visualization interface for large
text corpora. Dasiopoulou et al. (2015) developed
a predicate-argument based ontology for exploring
text elements and their relations. Their framework
was demonstrated on excerpts from patent docu-
ments. Despite the similarities with our proposed
approach, none of the techniques directly suits the
use case described in the next section.

3 Methods

SYNTAVIZ is a web interface that visualizes a col-
lection of queries by grouping them in human-
understandable clusters. The clusters are formed
in a hierarchy based on the dependency parse of
the tree of the natural language queries. The de-
sign rationale and an elaborate description of so-
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lution are given in the following subsections.

3.1 Need Finding
The project stemmed from a need to optimize the
engineering process of the existing intent under-
standing system. We arranged an informal dis-
cussion with the engineering team to understand
the current workflow for developing the software
that understands the intent of the users from their
voice queries. The discussion provided clues that
the current design is based on an “open-loop” de-
sign process, where the team starts by coming up
with many variations of voice queries that would
describe a certain intent. For example, for the
CHANNELTUNE intent, the first step would be
to imagine query patterns such as “tune to ...”,
“switch over to ...”, or simply “channel ...”. The
next step is to implement an algorithm to convert
every such query to its corresponding intent (e.g.,
“tune to HBO” ⇒ CHANNELTUNE).

The design process does not involve any anal-
ysis of historical query logs. This creates the
risk of potential gaps between the capabilities of
the developed software and the users’ expecta-
tions. Even though the engineers agreed that such
data analyses would help design a better prod-
uct, the lack of suitable techniques and/or a vi-
sualization/analysis tool resulted in this subopti-
mal process. Our conclusion from these dis-
cussions was that the development team was not
able to gain useful insights about the incoming
voice queries. For example, assigning the word
“show” to carry an intent of watching TV shows
(noun) might negatively impact the queries where
the users say “show me ...” (verb). It is difficult
to identify these adverse effects without a way to
group and visualize similar queries.

Therefore, the need finding exercise revealed
the importance of grouping or clustering the
queries into semantic structures that reduces the
informational overburden (Jones et al., 2004) and
ranks the failure points of the system in propor-
tion to real query traffic. There are at least three
benefits we have identified:

1. Software developers can access the informa-
tion needed to design the most effective NLP
algorithms.

2. Editors can identify bugs and patterns of log-
ical errors in the deployed system.

3. Product managers can prioritize development

efforts in a data-driven fashion, by easily
identifying real cases that degrade user expe-
rience.

Ideally, all the data should be summarized and
presented through a visual interface with mini-
mum cognitive burden. We sought to find an on-
tology suitable for these needs. Although “topic
modeling” is used as the de facto ontology for
many text visualization projects (Wei et al., 2010;
Hoque and Carenini, 2016; Singh et al., 2017),
it is not suitable for this case because the voice
queries are much shorter in length compared to
the typical text documents used in topic model-
ing. In addition, one of the reasons to form clusters
of sentences is to visualize the systemic mistakes
made by the intent understanding system. From
this point of view, it appeared natural to cluster
the syntactically similar queries together.

3.2 Ontology

Based on the need finding analysis, we realized
that syntactic structures would be a great basis
for summarizing the voice queries for the cur-
rent scenario. Dependency parse trees (Jurafsky
and Martin, 2014) capture the syntactic relation-
ships by representing the dependencies among the
words with directed arrows. Figure 1 shows the
dependency trees for two example sentences. No-
ticeably, the dependent words (represented by ar-
row heads) modify or complement their parents
(e.g. watch complements want because it answers
“want what?”). It is possible to summarize a num-
ber of voice queries into hierarchical clusters us-
ing these structures, by putting the queries con-
taining the same tree fragments into the same clus-
ter. Each cluster then could be divided into sub-
clusters based on the structures of the subtrees
within. This ontology allows the users to (1) iden-
tify common patterns of error by the NLP system
because syntactically similar queries are likely to
all be victims of the same weaknesses, and (2) ob-
serve the statistical distributions of the queries to
the level of granularity they wish to see.

3.3 Dataset

We collected real voice queries issued by the users
of Xfinity X1 TV control system within a period
of seven days—totaling 32 million queries with
an average length of 2.1 words. As we are in-
terested in more “natural” queries, we filtered out
the sentences with fewer than five words. In ad-
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Algorithm 1 Building the hierarchical clusters.
Input: Query q, Dependency tree tree, Cluster
clust
Output: Updated cluster c′

procedure BUILD CLUST(q, tree, clust)
for node in tree do

Get (word, POS, dependency) triplet
from node

Put q in clust[word, POS, dependency]
if node has subtree then

BUILD CLUST(q, subtree, clust[word, POS,
dependency])

dition, we used trigram language model (Kneser
and Ney, 1995) probability to obtain queries with
higher natural language probabilities. The final
dataset contains 1.02 million unique queries.

3.4 Clustering

The algorithm for formulating the clusters is
shown in Algorithm 1. For the convenience of
discussion, let us consider the following two sen-
tences: “I want to watch a movie” and “We want
to watch football games”. We extract the corre-
sponding dependency tree using Google’s “Syn-
taxNet” (Andor et al., 2016) parser as shown in
Figure 1. Representing the tree as a directed
acyclic graph, each token becomes a node and
each dependency relation is a directed edge be-
tween two nodes.

Our clustering algorithm (Algorithm 1) is de-
signed to group queries together if they have the
same subpath (including the part-of-speech) in
their dependency tree. Clusters are formed in a
recursive manner, starting from the root. At ev-
ery step, new sub-clusters are constructed based
on the neighboring nodes (i.e. nodes receiving an
edge from the current node). The landing node and
the outgoing edge becomes the label of the sub-
cluster: a triplet of the word, the part-of-speech,
and the dependency relation (e.g., a/DT/det),
which contains all queries with the same path
starting from the root. For example, notice that
both sentences in Figure 1 fall in the same clus-
ter named want/VBP/ROOT. Under this cluster,
there are three sub-clusters: watch/VB/xcomp,
I/PRP/nsubj, and we/PRP/nsubjwhere the
first sub-cluster contains both sentences but the
other two contains only one sentence each. The
sub-cluster watch/VB/xcomp is again divided
into smaller sub-clusters. SYNTAVIZ allows the

I  want to watch a movie

Root
nsubj xcomp

VBPPRP AUX VB DT NN

to

dobj

det

We want to watch footbal l

Root
nsubj xcomp

VBPPRP AUX VB NN

to

dobj

Figure 1: Examples of dependency trees.

user to jump back-and-forth between the different
levels of granularity through its novel interface.

3.5 Interface

The SYNTAVIZ interface is shown in Figure 2.
It consists of two panes: the left pane lists la-
bels of all the sub-clusters for the current clus-
ter; the right pane lists all queries within the cur-
rent cluster associated with other relevant informa-
tion. We sort the list of sub-clusters on the left
side by number of unique queries (descending)—
this helps to prioritize clusters with highest im-
pact. Clicking on the label of a sub-cluster allows
the user to navigate deep into the clusters contain-
ing increasingly (syntactically) similar queries. A
breadcrumb shows the current position in the hier-
archical cluster and also allows the users to navi-
gate back to the upper level clusters. In the right
pane, each query contains the action taken by the
existing intent understanding system. This allows
the users to quickly explore the failure points of
the system. The queries are also accompanied by
the frequencies of their occurrences in the dataset,
and a list of sub-clusters that each query belongs
to.

Given the syntax-driven query ontology, we
needed to decide the ranking of the sub-clusters
(left pane) and queries (right pane) as well. In or-
der to prioritize high-impact queries, we sort the
list on the right side by a descending frequency
of occurrences in the dataset. This arrangement
provides an idea of the distribution of the queries
to the user because the most prevalent ones are
ranked higher in the order. In addition, a histogram
of all the actions taken by the intent understanding
system is shown on the upper right, which makes
it possible to quickly notice any red flags in terms
of system correctness.
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Figure 2: The complete SYNTAVIZ interface.

4 User Study

We conducted quantitative, qualitative and heuris-
tic experiments with the users of the SYNTAVIZ

interface. There were 8 participants in the study
among which four were editors/annotators from
the voice NLP and the customer service project,
three were developers of the voice NLP project,
and one was the project manager of the customer
service project. All of the participants were famil-
iar with the voice queries and the existing intent
understanding methods.

4.1 Quantitative Evaluation

Several metrics were computed based on re-
sponses to statements shown in Table 1 where the
participants rated whether they agree, disagree, or
remain neutral with respect to each statement. We
use Q1 for measuring the usefulness, Q2, Q3 for
usability, Q4, Q5 for efficiency, and Q6 for the
practical value of the system.

The results of the evaluation are shown in Fig-
ure 3. Six out of eight participants agreed that
SYNTAVIZ helped them to quickly find the ma-
jor patterns of mistakes. This shows that SYN-
TAVIZ provides useful information to achieve its
intended use—finding patterns of mistakes in the
existing system. Seven participants disagreed with
the statement that the interface is complex (Q2)
and six agreed that no help is needed to use the in-
terface (Q3). The evidence that SYNTAVIZ does
not cause cognitive overload or require outside
help implies that it is intuitively usable. In terms
of efficiency, six participants agreed that it does
not take much time to learn (Q4), half of the to-
tal participants seem to be confused at some point
while using the interface. We analyzed this issue
in the subjective evaluation which is described in

the following subsection. Finally, the majority of
the participants (5 out of 8) mentioned that they
will use SYNTAVIZ in their regular workflow.

4.2 Qualitative Evaluation

We asked for subjective opinions from the partic-
ipants for a qualitative evaluation of SYNTAVIZ.
Each participant was asked to write about the pos-
itive features, negative features, important future
additions, and the impact of the interface in their
current workflow. These comments provided us a
spectrum of information regarding the SYNTAVIZ

interface which are discussed below.

Positive Aspects. A number of positive aspects of
the SYNTAVIZ interface were mentioned. Almost
all the participants appreciated that the combina-
tion of syntactic ontology and the action histogram
makes it easier to understand where the existing
system is failing.

“The interface makes it clear that syn-
tactic information is very useful for
drilling down the long tail of VREX
commands. Once I have drilled down a
few levels deep, I start to see utterances
where the system failed.”

They also appreciated the frequency-based rank-
ing scheme which helped them to “know the
weight of the queries and decide priorities”. In
addition, every participant commented positively
about the simple interaction experience.

“Simple, easy-to-learn design. Did not
take long to get used to the layout and
multiple sorting and drill-down features.
Almost no load time. Useful and spe-
cific information.”

4



Measures for Quantitative Evaluation
Q1: SYNTAVIZ allowed me to quickly find major
patterns of mistakes in the deployed system
Q2: The interaction was unnecessarily complex.
Q3: I did not need assistance to use SYNTAVIZ.
Q4: SYNTAVIZ does not take much time to learn.
Q5: I never felt confused/lost while using the
interface.
Q6: If available, I’ll use SYNTAVIZ in my regular
workflow.
Measures for Qualitative Evaluation
Please write some useful aspects of SYNTAVIZ

Please write some aspects of the interface that
could be improved upon. Please also suggest
why the proposed approach would be an
improvement over the existing solution.
Please enlist some possible features that
should be added in the future iterations of
the interface. Please also explain why.
What immediate changes/benefits can this
tool bring in your current workflow?

Table 1: All the measures for quantitative and qualita-
tive evaluation of SYNTAVIZ.

Negative Aspects. The quantitative analysis re-
vealed that some of the users felt confused or lost
while using the interface. The underlying rea-
son for such rating became clear in the qualita-
tive evaluation. Many participants mentioned that
the labels of the clusters are not immediately un-
derstandable. The cluster names included parts-
of-speech tags from Penn Treeback Project (San-
torini, 1990) (e.g. NN for Noun, JJ for Adjective),
and dependency type information from Universal
Dependency Project (Nivre et al., 2016). The par-
ticipants commented that these codes might con-
fuse the users. They suggested a pop-up legend or
glossary would be helpful in this situation.

“I believe that the naming can be hard to
understand for many people. QID is not
necessarily intuitive and for anyone who
operates on a higher level, they may not
be aware of what a subcluster is or what
the “nn root” means after the groups on
the first page.”

A few participants mentioned that it is problematic
to navigate back to the parent clusters by clicking
the back button multiple times, suggesting a Back
to Home button. In addition, these comments sug-
gest that the existence or use of the breadcrumb is
not obvious in the interface.

0
1
2
3
4
5
6
7
8

Find
Mistakes

Complex
Interaction

No Help
Needed

Quickly
Learnable

Never
Confused

Use in
Future

Agree Disagree No Comment

Figure 3: Results of quantitative evaluation of the SYN-
TAVIZ interface.

Possible Future Additions. We asked the users
to suggest future additions to the interface and re-
ceived a number of ideas that can improve the in-
terface and user experience. For example, sev-
eral users asked for a search capability within the
interface. Interaction on SYNTAVIZ is currently
exploratory and thus the experience is similar to
browsing through a tree. However, the users might
need to search for a specific keyword and navigate
quickly to the corresponding clusters.

“Allow the user to search for a word
(or words) eg the word ‘card’: card
NN ROOT|credit NN nn| and
change VB ROOT|card NN
dobj| — I wanted to find instances of
‘credit card’ as some of those queries
may have different labels. Allow the
user to filter on Action so that the user
can view only queries for that action;
Allow users to export queries that may
need to be fixed”

Participants also mentioned some other useful
features; for instance, adjusting the time span for
the dataset, searching and filtering for a specific
action, and comparing multiple clusters. All these
ideas are implementable in a future iteration while
staying within the design of the proposed visual
framework.
Impact. Many participants mentioned that SYN-
TAVIZ will allow them to identify outliers in the
data or systemic errors in the deployed system, and
that it will help them to identify unsupported pat-
terns. This was considered useful for feature pri-
oritization from a product point of view:

“Feature prioritization will be a big
problem to solve from a product point of
view. From research point of view this
give great understanding of how the data
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is getting clustered among queries and
find potential bugs and loop holes in our
NLP system.”

4.3 Heuristic Evaluation

In this section, we describe a usage scenario
based on the informal discussions with the de-
velopers of the X1 platform: Upon studying the
ranked lists, one developer noticed a cluster la-
beled record/VB/ROOT, which refers to the
group of 4587 unique queries that share the root
verb “record”. One of the largest sub-clusters is
oscars/NNS/dobj, referring to the group of
queries where the customers were interested in
recording the Oscars event.1 Clicking on this sub-
cluster provides great insight into how customers
use voice, as well as queries mishandled by the de-
ployed system. The histogram on the upper right
immediately revealed that around 60% of queries
were categorized by the system as a SEARCH in-
tent, whereas only 20% were linked to the correct
(RECORD) intent. Discussions among engineers
resulted in several action items to fix such issues
and provide a more consistent user experience.

These errors might have seemed obvious after
a short session with SYNTAVIZ, but such infor-
mation is usually buried deep under the large pile
of popular queries. We observed first-hand that a
syntax-driven ontology is very useful at highlight-
ing many other patterns in how customers use nat-
ural language to query the platform.

5 Conclusions

In conclusion, SYNTAVIZ is a novel visualiza-
tion interface for datasets with a large number of
unique natural-language queries. It is based on
a hierarchical clustering of all queries, designed
from a syntax-driven ontology of the dataset.

Evaluation of SYNTAVIZ shows strong evi-
dence that the system provides useful informa-
tion for finding the errors in the existing system.
Based on real needs of a major voice-enabled en-
tertainment platform, our preliminary implemen-
tation has shown great promise to improve soft-
ware development cycles by providing useful ana-
lytics that help fix bugs, as well as prioritize future
efforts in a data-driven fashion.

By releasing the source code of SYNTAVIZ, we
are hoping to share these benefits with many other

12017 Oscars occurred during the week of our collected
dataset.

teams across the industry. The complete source
code of SyntaViz is available in
https://github.com/Comcast/SyntaViz
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Abstract
We present TRANX, a transition-based neu-
ral semantic parser that maps natural language
(NL) utterances into formal meaning repre-
sentations (MRs). TRANX uses a transition
system based on the abstract syntax descrip-
tion language for the target MR, which gives
it two major advantages: (1) it is highly ac-
curate, using information from the syntax of
the target MR to constrain the output space
and model the information flow, and (2) it is
highly generalizable, and can easily be applied
to new types of MR by just writing a new ab-
stract syntax description corresponding to the
allowable structures in the MR. Experiments
on four different semantic parsing and code
generation tasks show that our system is gen-
eralizable, extensible, and effective, register-
ing strong results compared to existing neural
semantic parsers.1

1 Introduction

Semantic parsing is the task of transducing nat-
ural language (NL) utterances into formal mean-
ing representations (MRs). The target MRs can
be defined according to a wide variety of for-
malisms. This include linguistically-motivated se-
mantic representations that are designed to cap-
ture the meaning of any sentence such as λ-
calculus (Zettlemoyer and Collins, 2005) or the
abstract meaning representations (Banarescu et al.,
2013). Alternatively, for more task-driven ap-
proaches to semantic parsing, it is common for
meaning representations to represent executable
programs such as SQL queries (Zhong et al.,
2017), robotic commands (Artzi and Zettlemoyer,
2013), smart phone instructions (Quirk et al.,
2015), and even general-purpose programming
languages like Python (Yin and Neubig, 2017; Ra-
binovich et al., 2017) and Java (Ling et al., 2016).

1Available at https://github.com/pcyin/tranX. An
earilier version is used in Yin et al. (2018).

Because of these varying formalisms for MRs,
the design of semantic parsers, particularly neu-
ral network-based ones has generally focused on
a small subset of tasks — in order to ensure the
syntactic well-formedness of generated MRs, a
parser is usually specifically designed to reflect
the domain-dependent grammar of MRs in the
structure of the model (Zhong et al., 2017; Xu
et al., 2017). To alleviate this issue, there have
been recent efforts in neural semantic parsing with
general-purpose grammar models (Xiao et al.,
2016; Dong and Lapata, 2018). Yin and Neubig
(2017) put forward a neural sequence-to-sequence
model that generates tree-structured MRs using a
series of tree-construction actions, guided by the
task-specific context free grammar provided to the
model a priori. Rabinovich et al. (2017) pro-
pose the abstract syntax networks (ASNs), where
domain-specific MRs are represented by abstract
syntax trees (ASTs, Fig. 2 Left) specified under
the abstract syntax description language (ASDL)
framework (Wang et al., 1997). An ASN employs
a modular architecture, generating an AST us-
ing specifically designed neural networks for each
construct in the ASDL grammar.

Inspired by this existing research, we have de-
veloped TRANX, a TRANsition-based abstract
syntaX parser for semantic parsing and code gen-
eration. TRANX is designed with the following
principles in mind:

• Generalization ability TRANX employs ASTs
as a general-purpose intermediate meaning rep-
resentation, and the task-dependent grammar is
provided to the system as external knowledge to
guide the parsing process, therefore decoupling
the semantic parsing procedure with specifici-
ties of grammars.

• Extensibility TRANX uses a simple transi-
tion system to parse NL utterances into tree-
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Figure 1: Workflow of TRANX

structured ASTs. The transition system is de-
signed to be easy to extend, requiring minimal
engineering to adapt to tasks that need to handle
extra domain-specific information.

• Effectiveness We test TRANX on four seman-
tic parsing (ATIS, GEO) and code generation
(DJANGO, WIKISQL) tasks, and demonstrate
that TRANX is capable of generalizing to dif-
ferent domains while registering strong perfor-
mance, out-performing existing neural network-
based approaches on three of the four datasets
(GEO, ATIS, DJANGO).

2 Methodology

Given an NL utterance, TRANX parses the utter-
ance into a formal meaning representation, typ-
ically represented as λ-calculus logical forms,
domain-specific, or general-purpose programming
languages (e.g., Python). In the following descrip-
tion we use Python code generation as a running
example, where a programmer’s natural language
intents are mapped to Python source code. Fig. 1
depicts the workflow of TRANX. We will present
more use cases of TRANX in § 3.

The core of TRANX is a transition system.
Given an input NL utterance x, TRANX em-
ploys the transition system to map the utter-
ance x into an AST z using a series of tree-
construction actions (§ 2.2). TRANX employs
ASTs as the intermediate meaning representa-
tion to abstract over domain-specific structure of
MRs. This parsing process is guided by the user-
defined, domain-specific grammar specified under
the ASDL formalism (§ 2.1). Given the gener-
ated AST z, the parser calls the user-defined func-
tion, AST to MR(·), to convert the intermediate
AST into a domain-specific meaning representa-
tion y, completing the parsing process. TRANX

uses a probabilistic model p(z|x), parameterized
by a neural network, to score each hypothesis AST
(§ 2.3).

2.1 Modeling ASTs using ASDL Grammar

TRANX uses ASTs as the general-purpose, inter-
mediate semantic representation for MRs. ASTs
are commonly used to represent programming lan-
guages, and can also be used to represent other
tree-structured MRs (e.g., λ-calculus). The ASDL
framework is a grammatical formalism to define
ASTs. See Fig. 1 for an excerpt of the Python
ASDL grammar. TRANX provides APIs to read
such a grammar from human-readable text files.

An ASDL grammar has two basic constructs:
types and constructors. A composite type is de-
fined by the set of constructors under that type.
For example, the stmt and expr composite types
in Fig. 1 refer to Python statements and expres-
sions, repectively, each defined by a series of con-
structors. A constructor specifies a language con-
struct of a particular type using its fields. For in-
stance, the Call constructor under the compos-
ite type expr denotes function call expressions,
and has three fields: func, args and keywords.
Each field in a constructor is also strongly typed,
which specifies the type of value the field can
hold. A field with a composite type can be instan-
tiated by constructors of the same type. For exam-
ple, the func field above can hold a constructor
of type expr. There are also fields with primi-
tive types, which store values. For example, the
id field of Name constructor has a primitive type
identifier, and is used to store identifier names.
And the field s in the Str (string) constructor hold
string literals. Finally, each field has a cardinality
(single, optional ? and sequential ∗), denoting the
number of values the field holds.

An AST is then composed of multiple construc-
tors, where each node on the tree corresponds to
a typed field in a constructor (except for the root
node, which denotes the root constructor). De-
pending on the cardinality of the field, a node
can hold one or multiple constructors as its val-
ues. For instance, the func field with single car-
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t2 f1 Call(expr func, expr* args,
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t4 f5 Name(identifier id)
t5 f7 GENTOKEN[pandas]
t6 f6 GENTOKEN[read csv]
t7 f3 Str(string s)
t8 f8 GENTOKEN[file.csv]
t9 f8 GENTOKEN[</f>]
t10 f3 REDUCE (close the frontier field f3)
t11 f4 keyword(identifier arg, expr value)
t12 f9 GENTOKEN[nrows]
t13 f10 Num(object n)
t14 f11 GENTOKEN[1000]
t15 f4 REDUCE (close the frontier field f4)

Figure 2: Left The ASDL AST for the target Python code in Fig. 1. Field names are labeled on upper arcs, and indexed as fi.
Purple squares denote fields with sequential cardinality. Grey nodes denote primitive identifier fields. Fields are labeled with
time steps at which they are generated. Right The action sequence used to construct the AST. Each action is labeled with its
frontier field nft . APPLYCONSTR actions are represented by their constructors.

dinality in the ASDL grammar in Fig. 1 is in-
stantiated with one Name constructor, while the
args field with sequential cardinality have mul-
tiple child constructors.

2.2 Transition System

Inspired by Yin and Neubig (2017) (hereafter
YN17), we develop a transition system that de-
composes the generation procedure of an AST into
a sequence of tree-constructing actions. We now
explain the transition system using our running ex-
ample. Fig. 2 Right lists the sequence of actions
used to construct the example AST. In high level,
the generation process starts from an initial deriva-
tion AST with a single root node, and proceeds ac-
cording to a top-down, left-to-right order traversal
of the AST. At each time step, one of the follow-
ing three types of actions is evoked to expand the
opening frontier field nft of the derivation:

APPLYCONSTR[c] actions apply a constructor
c to the opening composite frontier field which has
the same type as c, populating the opening node
using the fields in c. If the frontier field has se-
quential cardinality, the action appends the con-
structor to the list of constructors held by the field.

REDUCE actions mark the completion of the
generation of child values for a field with optional
(?) or multiple (∗) cardinalities.

GENTOKEN[v] actions populate a (empty)
primitive frontier field with a token v. For exam-
ple, the field f7 on Fig. 2 has type identifier,
and is instantiated using a single GENTOKEN ac-
tion. For fields of string type, like f8, whose
value could consists of multiple tokens (only
one shown here), it can be filled using a se-
quence of GENTOKEN actions, with a special

GENTOKEN[</f>] action to terminate the genera-
tion of token values.

The generation completes once there is no fron-
tier field on the derivation. TRANX then calls
the user specified function AST to MR(·) to con-
vert the generated intermediate AST z into the
target domain-specific MR y. TRANX provides
various helper functions to ease the process of
writing conversion functions. For example, our
example conversion function to transform ASTs
into Python source code contains only 32 lines of
code. TRANX also ships with several built-in con-
version functions to handle MRs commonly used
in semantic parsing and code generation, like λ-
calculus logical forms and SQL queries.

2.3 Computing Action Probabilities p(z|x)
Given the transition system, the probability of an
z is decomposed into the probabilities of the se-
quence of actions used to generate z

p(z|x) =
∏

t

p(at|a<t,x),

Following YN17, we parameterize the transition-
based parser p(z|x) using a neural encoder-
decoder network with augmented recurrent con-
nections to reflect the topology of ASTs.

Encoder The encoder is a standard bidirec-
tional Long Short-term Memory (LSTM) network,
which encodes the input utterance x of n tokens,
{xi}ni=1 into vectorial representations {h}ni=1.

Decoder The decoder is also an LSTM network,
with its hidden state st at each time temp given by

st = fLSTM([at−1 : s̃t−1 : pt], st−1),

where fLSTM is the LSTM transition function, and
[:] denotes vector concatenation. at−1 is the em-
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expr
= Variable(var variable)
| Entity(ent entity)
| Number(num number)
| Apply(pred predicate, expr∗ arguments)
| Argmax(var variable, expr domain, expr body)
| Argmin(var variable, expr domain, expr body)
| Count(var variable, expr body)
| Exists(var variable, expr body)
| Lambda(var variable, var type type, expr body)
| Max(var variable, expr body)
| Min(var variable, expr body)
| Sum(var variable, expr domain, expr body)
| The(var variable, expr body)
| Not(expr argument)
| And(expr∗ arguments)
| Or(expr∗ arguments)
| Compare(cmp op op, expr left, expr right)

cmp op = Equal | LessThan | GreaterThan

Figure 3: The λ-calculus ASDL grammar for GEO and
ATIS, defined in Rabinovich et al. (2017)

bedding of the previous action. We maintain an
embedding vector for each action. s̃t is the atten-
tional vector defined as in Luong et al. (2015)

s̃t = tanh(Wc[ct : st]).

where ct is the context vector retrieved from input
encodings {hi}ni=1 using attention.

Parent Feeding pt is a vector that encodes the
information of the parent frontier field nft on the
derivation, which is a concatenation of two vec-
tors: the embedding of the frontier field nft , and
spt , the decoder’s state at which the constructor
of nft is generated by the APPLYCONSTR ac-
tion. Parent feeding reflects the topology of tree-
structured ASTs, and gives better performance on
generating complex MRs like Python code (§ 3).

Action Probabilities The probability of an AP-
PLYCONSTR[c] action with embedding ac is2

p(at = APPLYCONSTR[c]|a<t,x)

= softmax(aᵀcWs̃t) (1)

For GENTOKEN actions, we employ a hybrid
approach of generation and copying, allowing
for out-of-vocabulary variable names and literals
(e.g., “file.csv” in Fig. 1) in x to be directly copied
to the derivation. Specifically, the action probabil-
ity is defined to be the marginal probability

p(at = GENTOKEN[v]|a<t,x)

= p(gen|at,x)p(v|gen, at,x)+

p(copy|at,x)p(v|copy, at,x)

2REDUCE is treated as a special APPLYCONSTR action.

stmt = Select(agg op? agg, idx column idx,
cond expr∗ conditions)

cond expr = Condition(cmp op op, idx column idx,
string value)

agg op = Max | Min | Count | Sum | Avg
cmp op = Equal | GreaterThan | LessThan | Other

Figure 4: The ASDL grammar for WIKISQL

The binary probability p(gen|·) and p(copy|·) is
given by softmax(Ws̃t). The probability of gen-
erating v from a closed-set vocabulary, p(v|gen, ·)
is defined similarly as Eq. (1). The copy probabil-
ity of copying the i-th word in x is defined using
a pointer network (Vinyals et al., 2015)

p(xi|copy, a<t,x) = softmax(hᵀ
iWs̃t).

3 Experiments

3.1 Datasets
To demonstrate the generalization and extensibil-
ity of TRANX, we deploy our parser on four se-
mantic parsing and code generation tasks.

3.1.1 Semantic Parsing
We evaluate on GEO and ATIS datasets. GEO

is a collection of 880 U.S. geographical ques-
tions (e.g., “Which states border Texas?”), and
ATIS is a set of 5,410 inquiries of flight in-
formation (e.g., “Show me flights from Dal-
las to Baltimore”). The MRs in the two
datasets are defined in λ-calculus logical forms
(e.g., “lambda x (and (state x) (next to

x texas))” and “lambda x (and (flight x
dallas) (to x baltimore))”). We use the
pre-processed datasets released by Dong and La-
pata (2016). We use the ASDL grammar defined
in Rabinovich et al. (2017), as listed in Fig. 3.

3.1.2 Code Generation
We evaluate TRANX on both general-purpose
(Python, DJANGO) and domain-specific (SQL,
WIKISQL) code generation tasks. The DJANGO

dataset (Oda et al., 2015) consists of 18,805 lines
of Python source code extracted from the Django
Web framework, with each line paired with an NL
description. Code in this dataset covers various
real-world use cases of Python, like string manip-
ulation, I/O operation, exception handling, etc.

WIKISQL (Zhong et al., 2017) is a code
generation task for domain-specific languages
(i.e., SQL). It consists of 80,654 examples of
NL questions (e.g., “What position did Calvin
Mccarty play?”) and annotated SQL queries
(e.g., “SELECT Position FROM Table WHERE
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Methods GEO ATIS
ZH15 (Zhao and Huang, 2015) 88.9 84.2
ZC07 (Zettlemoyer and Collins, 2007) 89.0 84.6
WKZ14 (Wang et al., 2014) 90.4 91.3
Neural Network-based Models
SEQ2TREE (Dong and Lapata, 2016) 87.1 84.6
ASN (Rabinovich et al., 2017) 85.7 85.3

+ supervised attention 87.1 85.9
TRANX (w/o parent feeding) 88.2 86.2
TRANX (w/ parent feeding) 87.7 86.2

Table 1: Semantic parsing accuracies on GEO and ATIS

Methods ACC.
Phrasal Statistical MT (Ling et al., 2016) 31.5
SEQ2TREE (Dong and Lapata, 2016) 39.4
NMT (Neubig, 2015) 45.1
LPN (Ling et al., 2016) 62.3
YN17 (Yin and Neubig, 2017) 71.6
TRANX (w/o parent feeding) 72.7
TRANX (w parent feeding) 73.7

Table 2: Code generation accuracies on DJANGO

Player = Calvin Mccarty”). Different from
other datasets, each example also has a table ex-
tracted from Wikipedia, and the SQL query is ex-
ecuted against the table to get an answer.

Extending TRANX for WIKISQL In order to
achieve strong results, existing parsers, like most
models in Tab. 3, use specifically designed ar-
chitectures to reflect the syntactic structure of
SQL queries. We show that the transition sys-
tem used by TRANX can be easily extended for
WIKISQL with minimal engineering, while reg-
istering strong performance. First, we use de-
fine a simple ASDL grammar following the syn-
tax of SQL (Fig. 4). We then augment the tran-
sition system with a special GENTOKEN action,
SELCOLUMN[k]. A SELCOLUMN[k] action is
used to populate a primitive column idx field in
Select and Condition constructors in the gram-
mar by selecting the k-th column in the table. To
compute the probability of SELCOLUMN[k] ac-
tions, we use a pointer network over column en-
codings, where the column encodings are given by
a bidirectional LSTM network over column names
in an input table. This can be simply implemented
by overriding the base Parser class in TRANX

and modifying the functions that compute action
probabilities.

3.2 Results
In this section we discuss our experimental results.
All results are averaged over three runs with differ-
ent random seeds.

Semantic Parsing Tab. 1 lists the results for
semantic parsing tasks. We test TRANX with

Methods ACCEM ACCEX

Seq2Seq (Zhong et al., 2017) 23.4 35.9
SEQ2TREE (Dong and Lapata, 2016) 23.4 35.9
Seq2SQL (Zhong et al., 2017) 48.3 59.4
SQLNet (Xu et al., 2017) – 68.0
PT-MAML (Huang et al., 2018) 62.8 68.0
TypeSQL (Yu et al., 2018) – 73.5
TRANX

w/ parent feeding 62.6 71.6
w/o parent feeding 62.9 71.7

PointSQL (Wang et al., 2017)† 61.5 66.8
TypeSQL+TC (Yu et al., 2018)† – 82.6
STAMP (Sun et al., 2018)† 60.7 74.4
STAMP+RL (Sun et al., 2018)† 61.0 74.6
TRANX

w par. feed. + answer pruning† 68.4 78.6
w/o par. feed. + answer pruning† 68.6 78.6

Table 3: Exact match (EM) and execution (EX) accuracies
on WIKISQL. †Methods that use the contents of input tables.

two configurations, with or without parent feed-
ing (§ 2.3). Our system outperforms existing neu-
ral network-based approaches. This demonstrates
the effectiveness of TRANX in closed-domain se-
mantic parsing. Interestingly, we found the model
without parent feeding achieves slightly better ac-
curacy on GEO, probably because that its relative
simple grammar does not require extra handling of
parent information.

Code Generation Tab. 2 lists the results on
DJANGO. TRANX achieves state-of-the-art results
on DJANGO. We also find parent feeding yields
+1 point gain in accuracy, suggesting the impor-
tance of modeling parental connections in ASTs
with complex domain grammars (e.g., Python).

Tab. 3 shows the results on WIKISQL. We first
discuss our standard model which only uses infor-
mation of column names and do not use the con-
tents of input tables during inference, as listed in
the top two blocks in Tab. 3. We find TRANX, al-
though just with simple extensions to adapt to this
dataset, achieves impressive results and outper-
forms many task-specific methods. This demon-
strates that TRANX is easy to extend to incorpo-
rate task-specific information, while maintaining
its effectiveness. We also extend TRANX with a
very simple answer pruning strategy, where we
execute the candidate SQL queries in the beam
against the input table, and prune those that yield
empty execution results. Results are listed in the
bottom two-blocks in Tab. 3, where we compare
with systems that also use the contents of tables.
Surprisingly, this (frustratingly) simple extension
yields significant improvements, outperforming
many task-specific models that use specifically de-
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signed, heavily-engineered neural networks to in-
corporate information of table contents.

4 Conclusion
We present TRANX, a transition-based abstract
syntax parser. TRANX is generalizable, extensible
and effective, achieving strong results on semantic
parsing and code generation tasks.
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Abstract

Data2Text Studio is a platform for automated
text generation from structured data. It is
equipped with a Semi-HMMs model to ex-
tract high-quality templates and corresponding
trigger conditions from parallel data automati-
cally, which improves the interactivity and in-
terpretability of the generated text. In addition,
several easy-to-use tools are provided for de-
velopers to edit templates of pre-trained mod-
els, and APIs are released for developers to
call the pre-trained model to generate texts in
third-party applications. We conduct experi-
ments on ROTOWIRE datasets for template ex-
traction and text generation. The results show
that our model achieves improvements on both
tasks.

1 Introduction

Data-to-text generation, i.e., a technology which
takes structured data as input and produces text
that adequately and fluently describes this data as
output, has various applications on the generation
of sports news (Chen and Mooney, 2008; Kim and
Mooney, 2010; Mei et al., 2016; Wiseman et al.,
2017), product descriptions (Wang et al., 2017),
weather reports (Liang et al., 2009; Angeli et al.,
2010; Mei et al., 2016) and short biographies (Le-
bret et al., 2016; Chisholm et al., 2017). In another
scenario, it is possible albeit a little awkward for a
virtual assistant like Microsoft Cortana to read out
structured data when responding to users’ queries.
it is more user friendly for a virtual assistant to
identify and read out the essential part of the struc-
tured data in natural language to make it easier to
understand. In these cases, it is inefficient and
expensive to generate texts using human writers,

∗ Contribution during the internship at Microsoft Re-
search Asia.

while an automatic text generation system would
be helpful.

There are two main challenges for data-to-text
generation systems: 1) Interactivity: For a devel-
oper, it should be able to customize the text gen-
eration model and control the generated texts. 2)
Interpretability: the generated texts should be con-
sistent with the structured data. For example, we
can say “with a massive 8 GB of memory” for a
laptop computer while “a massive 2 GB” is in-
appropriate. Rule-based approaches (Moore and
Paris, 1993; Hovy, 1993; Reiter and Dale, 2000;
Belz, 2007; Bouayad-Agha et al., 2011) encode
domain knowledge into the generation system and
then produce high-quality texts, while the con-
struction of the system is expensive and heavily
depends on domain experts. Statistical approaches
are employed to reduce extensive development
time by learning rules from historical data (Langk-
ilde and Knight, 1998; Liang et al., 2009; Duboue
and McKeown, 2003; Howald et al., 2013). How-
ever, statistical approaches are prone to generating
texts with mistakes, because they don’t know how
to use specific phrases under various application
conditions.

To address the second challenge, we propose a
Semi-HMMs model to automatically extract tem-
plates and corresponding trigger conditions from
parallel training data. Trigger conditions are ex-
plicit latent semantic annotations between paired
structured data and texts, which support learning
how to use specific phrases under the particular
condition and then improve the interactivity and
interpretability of the generated text compared to
traditional template-based methods. More impor-
tantly, obtaining text generation trigger conditions
automatically from alignment distribution could
significantly reduce human editing workload com-
pared with other commercial systems, e.g., Word-
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Figure 1: The simplified architecture of the Data2Text Studio.

Smith, Arria and Quill1. For example, although
WordSmith provides functional tools to help de-
velopers create templates and generation rules, it
still needs to create rules from scratch manually.

For the first challenge, we demonstrate the
Data2Text Studio, a powerful platform equipped
with the proposed Semi-HMMs model, to assist
developers to generate texts from structured data
in their own applications. Currently, this system
provides several pre-trained models covering dif-
ferent domains: sports headline generation, re-
sume generation, product description generation,
etc. Developers can also train their own models
by uploading parallel data. After model training,
developers can revise the model, preview the gen-
erated texts or call the APIs to generate texts in
third-party applications. All the processes are sim-
ple and friendly.

We conduct experiments on the ROTOWIRE

dataset (Wiseman et al., 2017) to evaluate the
performance of template extraction and overall
text generation. The results show that our model
achieves improvements on both tasks. The rest of
this paper is organized as follows: Section 2 de-
scribes the architecture of Data2Text Studio. Sec-
tion 3 proposes the main algorithm. Section 4
shows the experiment results.

2 Architecture

Fig. 1 shows the simplified architecture of the
Data2Text Studio. It mainly consists of three com-
ponents: 1) model training, 2) model revision and
3) text generation. For typical usages, develop-
ers can directly choose the pre-trained model to
generate high-quality texts. To develop a cus-
tomized text generation model: First, develop-

1http://automatedinsights.com, http://
arria.com and http://narrativescience.com

Figure 2: Extracted templates of NBA headlines.
Bracket indicates the slot, and words in it indicates
the corresponding attribute of structured data.

ers need to upload parallel data which consists of
texts and corresponding structured data to train the
model, and then training components will extract
the templates and corresponding trigger conditions
from training data automatically; secondly, devel-
opers could leverage the built-in tools to further
revise the extracted templates and trigger condi-
tions manually; finally, developers could preview
the generated texts of the customized model, and
the APIs are provided to generate texts in bulk or
generate texts in third-party applications. In the
following, we will introduce these modules in de-
tail.

2.1 Model Training

We adopt the template-based solution for the
Data2Text Studio. It can generate texts with high
accuracy and fluency, which can be used in busi-
ness applications directly. Several previous stud-
ies (Liang et al., 2009; Wang et al., 2017; Kon-
dadadi et al., 2013) can be applied to extract tem-
plates from parallel data. To address the chal-
lenges introduced in Section 1, we propose a
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(a) Template revision. The center part shows the template with
slots, and the bottom part shows the trigger conditions.

(b) Generated texts preview. Multiple headlines are gener-
ated for the same game to ensure variety.

Figure 3: Data2Text Studio Interface

Semi-HMMs model to extract templates and cor-
responding trigger conditions from parallel data
(see Section 3.1 for the algorithm). Fig. 2 presents
an example of the extracted templates from NBA
Headline parallel data, which consists of the score-
board and the corresponding news.

2.2 Model Revision

The trained model provides a better starting point
for developers to avoid creating a model from
scratch. If necessary, developers can revise the
trained model by editing the extracted templates
and their corresponding trigger conditions. Fig. 3a
shows the interface of template editing. Three
mechanisms are designed to manage templates
and corresponding trigger conditions: 1) Data slot:
the input structured data will be filled into the slot
to generate texts. 2) Synonyms: it is constructed
by a list of phrases, and one of them will be cho-
sen randomly during the generation process. 3)
Branch: the trigger condition to define usage sce-
nario for the specific phrase. Our Semi-HMMs
model in Section 3.1 can learn such data slots and
trigger conditions automatically. Meanwhile, de-
velopers can also revise them if necessary.

2.3 Text Generation

Given the structured data, the system will gen-
erate corresponding texts with the trained model.
Fig. 3b shows an example for NBA headline gen-
eration. The left-hand side shows the input struc-

tured data which contains the attributes of the
game. The right-hand side shows multiple gen-
erated texts for this game to help developers check
the quality of the generated texts.

2.4 API for Third-Party Applications

To use the text generation service in third-party
applications, an API is created for each trained
model. Once the structured data is posted through
the API, the system will deliver the generated text
back to third-party applications automatically. In
this way, developers can leave the development
work for a text generation model in the Data2Text
Studio. Fig. 4 shows three application scenarios:
sports headline generation, user profile generation
based on LinkedIn data and car insight generation.

3 The Proposed Algorithm

In this section, we introduce the proposed algo-
rithm for templates extraction and corresponding
trigger conditions mining.

3.1 Template Extraction

A main challenge of templates extraction is the
alignment between text and structured data. We
adopt the model given by Liang et al. (2009),
which presents a 3-tier HMMs to automatically
align words to the fields of structured data. These
aligned words could be strings, like brand names,
or numbers copied from the data.
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(a) Sports Headline (b) LinkedIn Profile (c) Car Description

Figure 4: Example applications by using the Data2Text API.

The Boston Celtics   (   7   -   5   )   blew out the Brooklyn Nets   (   2   -   11   )   120   -   95   on Friday  .
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Figure 5: Example of Trigger Mechanism. Words in blue dashed boxes are particular phrases generated by
our model under the specific rules. For example, “blew out” will be generated when “Team Points.delta”
overs 17 under the automatically extracted rules.

Another challenge is the lexical choice, which
refers to choosing contextually-appropriate words
to express non-linguistic data. For example, in
a basketball game report, the author tends to use
blow out only when the score difference is very
large. Lexical choice is very subtle and differs
from author to author, thus we enrich the align-
ment model with a Gaussian emission probability
from words to numbers in the data.

The garbage collection problem is severe in the
original model of Liang et al. (2009), which means
that most of the words are wrongly aligned to in-
frequent fields that should remain unaligned (i.e,
aligned to null). Here we incorporate the Posterior
Regularization proposed by Graça et al. (2010),
which could add constraints into models with la-
tent variables while keeping the model tractable at
the same time. In practice, we set a lower bound
on the number of unaligned words, which could
significantly alleviate the garbage collection prob-
lem.

In a nutshell, we propose a generative model,
Ps(w, π|l), where s is the world state, namely,
the structured data, w is the observed words, π is
the segmentation of words, and l represents tags,

which could be the fields of the structured data
(e.g. Team Name) or simple operations on spe-
cific fields (e.g. score difference). Let c be the
segments of sentence w segmented by π. We fur-
ther make a Markov assumption and factorize it
into:

P (c|l) =
∏

t

P (lt|lt−1) · Ps(ct|lt), (1)

where ct represents the segment at time stamp
t, which is annotated with tag lt. For different
types of fields, we use different methods to model
Ps(c

t|lt).
During the training process, our goal is to max-

imize the complete data likelihood:

L(θ) =
∏

(s,w)∈D

∑

l,π

Ps(l, π,w; θ),

where D represents the whole training data. Once
the model has been trained, we use Viterbi-like
dynamic programming to perform the MAP infer-
ence to segment the texts and to assign the most
likely tags for each span.

We derive an expectation-maximization (EM)
algorithm to perform maximum likelihood esti-
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mation, and introduce a soft statistical regulariza-
tion to guide the model towards a better solution.
Specifically, we design a special NULL tag for un-
aligned words, and we “encourage” it to annotate
at least half of the words. For more details, please
refer to Qin et al. (2018).

3.2 Trigger Mechanism
As proposed in 3.1, we use Gaussian distribution
to model the probability of alignment between nu-
merical values and phrases. Hence our model can
tell us not only where the word comes from, but
also the distribution of numbers it is aligned to.
For example, after training, our model success-
fully aligns “blow out” to the score difference, and
shows that the mean value of score difference is
17 when this phrase is used. With this informa-
tion, we could set a “trigger” on the aligned words.
Trigger is a scheme which determines under what
conditions a template could be used. For example,
templates with “blow out” aligned to score differ-
ence can only be used when the score difference
is around 17, where blew out would have a higher
probability than defeated. So we could obtain a
rule like this:

i f t e a m p o i n t s d e l t a > 1 7 :
use ( blew o u t )

e l s e :
use ( d e f e a t e d )

With such rules, our model will be able to use dif-
ferent words under various conditions.

Now that the templates and triggers are ready
for use, for text generation, we fill the templates
with structured data under corresponding applica-
ble trigger conditions.

4 Experiments

In this section, we will report the performance of
the proposed model on template extraction and
on overall text generation, both evaluated on the
ROTOWIRE subset of the Wiseman et al. (2017)
dataset.

Precision Recall F1
Liang09 0.319 0.643 0.426
Liang09+PR 0.397 0.640 0.490
Semi-HMMs 0.254 0.765 0.381
Semi-HMMs+PR 0.504 0.786 0.614

Table 1: Word-level tag assignment results.

4.1 Template Extraction Evaluation

We conduct an experiment and compare with
Liang et al. (2009)’s system as the baseline. It is
difficult to evaluate the accuracy of tag assignment
for the whole dataset, since the executable tags are
not annotated in the original data. We recruit three
human annotators which are familiar with basket-
ball games to label a random sample consisting of
300 sentences from the test set. The annotators
were told to judge whether each word span is re-
lated to the table, and which label they are related
to. Finally, we calculate the precision and recall
for non-NULL tag assignments at word-level.

The results are shown at Table 1. We can ob-
serve that our initial model indeed outperforms the
baseline system in recall, while posterior regular-
ization helps a lot to avoid distraction from irrel-
evant information that should be tagged as NULL
without sacrificing the recall performance.

4.2 Overall Text Generation Evaluation

We also test the performance of extracted tem-
plates in overall text generation, by comparing
with the baseline using the same heuristics de-
scribed in Section 3.2. To generate document-level
texts, we first generate a sentence describing the
scoreline result for every game, followed by three
sentences describing other information about team
performance. While maintaining that no template
is repeatedly used, we then choose the template
with the highest score for the top ten players sorted
by their game points. We report automatic met-
rics including BLEU scores and those based on
relation extraction as proposed by Wiseman et al.
(2017): precision & number of unique relations in
generation (RG), precision & recall for content se-
lection (CS), and content ordering (CO) score. Be-
sides these automatic metrics for various aspects
in NLG, we also conduct human evaluation on in-
formation correctness (1-5 scale ratings, the higher
the better). We ask four human raters who are flu-
ent in English and familiar with basketball to rate
outputs for 30 random games. Results are shown
in Table 2 with Kendall’s W measuring the inter
annotator agreement. We can observe that tem-
plates derived from our model indeed outperform
those from the baseline system.

5 Conclusion and Future Work

To summarize, Data2Text Studio is a platform for
automated text generation from structured data.
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Model RG(P%) RG(#) CS(P%) CS(R%) CO BLEU Correctness
Liang09+PR 85.83 33.29 14.33 31.09 6.25 8.34 2.60

SemiHMM+PR 90.47 41.79 21.63 50.17 9.63 9.45 3.58
Gold-standard 91.77 12.84 100 100 100 100 4.88

Table 2: Results for text generation. (Kendall’s W=0.83 from correctness raters.)

It not only provides several pre-trained models
which could generate high-quality texts from data
but also is very easy to train new models by up-
loading parallel data. In addition, this system is
equipped with the proposed Semi-HMMs model
which could extract templates and corresponding
trigger conditions from parallel data automatically
and supports learning how to use specific phrases
under the particular condition. Experiment results
on the ROTOWIRE dataset show that the proposed
model outperforms the baseline for template ex-
traction and text generation.

In the future, we will integrate more power-
ful pre-trained models into this system in terms
of data domain and text fidelity. For the tem-
plate extraction model, we will learn more com-
plex grounding rules to enhance the model power.
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Abstract

We present SetExpander, the term set expan-
sion system based NLP Architect by Intel AI
Lab. SetExpander is a corpus-based system
for expanding a seed set of terms into a more
complete set of terms that belong to the same
semantic class. It implements an iterative end-
to-end workflow and enables users to easily se-
lect a seed set of terms, expand it, view the ex-
panded set, validate it, re-expand the validated
set and store it, thus simplifying the extrac-
tion of domain-specific fine-grained semantic
classes. SetExpander has been used success-
fully in real-life use cases including integra-
tion into an automated recruitment system and
an issues and defects resolution system.1

1 Introduction

Term set expansion is the task of expanding a
given partial set of terms into a more complete
set of terms that belong to the same semantic
class. For example, given a seed of personal
assistant application terms like ‘Siri’ and ‘Cor-
tana’, the expanded set is expected to include addi-
tional terms such as ‘Amazon Echo’ and ‘Google
Now’. Many NLP-based information extraction
applications, such as relation extraction or docu-
ment matching, require the extraction of terms be-
longing to fine-grained semantic classes as a basic
building block. A practical approach to extracting
such terms is to apply a term set expansion system.
The input seed set for such systems may contain as
few as 2 to 10 terms, which is practical to obtain.
SetExpander uses a corpus-based approach based
on the distributional similarity hypothesis (Harris,
1954), stating that semantically similar words ap-
pear in similar contexts. Linear bag-of-words con-

1A video demo of SetExpander is available
at https://drive.google.com/open?id=
1e545bB87Autsch36DjnJHmq3HWfSd1Rv (some
images were blurred for privacy reasons).

text is widely used to compute semantic similar-
ity. However, it typically captures more topical
and less functional similarity, while for the pur-
pose of set expansion, we need to capture more
functional and less topical similarity.2 For exam-
ple, given a seed term like the programming lan-
guage ’Python’, we would like the expanded set to
include other programming languages with similar
characteristics, but we would not like it to include
terms like ‘bytecode’ or ‘high-level programming
language’ despite these terms being semantically
related to ‘Python’ in linear bag-of-words con-
texts. Moreover, for the purpose of set expan-
sion, a seed set contains more than one term and
the terms of the expanded set are expected to be
as functionally similar to all the terms of the seed
set as possible. For example, ‘orange’ is function-
ally similar to ‘red’ (color) and to ‘apple’ (fruit),
but if the seed set contains both ‘orange’ and ‘yel-
low’ then only ‘red’ should be part of the expanded
set. However, we do not want to capture only the
term sense; we also wish to capture the granular-
ity within a category. For example, ‘orange’ is
functionally similar to both ‘apple’ and ‘lemon’;
however, if the seed set contains ‘orange’ and ‘ba-
nana’ (fruits), the expanded set is expected to con-
tain both ‘apple’ and ‘lemon’; but if the seed set
is ‘orange’ and ‘grapefruit’ (citrus fruits), then the
expanded set is expected to contain ‘lemon’ but
not ‘apple’.

While term set expansion has received atten-
tion from both industry and academia, there are
only a handful of available implementations. Rel-
ative to prior work, the contribution of this paper
is twofold. First, it presents an iterative end-to-end

2We use the terminology introduced by (Turney, 2012):
the topic of a term is characterized by the nouns that occur in
its neighborhood while the function of a term is characterized
by the syntactic context that relates it to the verbs that occur
in its neighborhood.
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workflow that enables users to select an input cor-
pus, train multiple embedding models and com-
bine them; after which the user can easily select a
seed set of terms, expand it, view the expanded set,
validate it, iteratively re-expand the validated set
and store it. Second, it describes the SetExpander
application that provides these abilities. SetEx-
pander is based on a novel corpus-based set expan-
sion algorithm. This algorithm combines multi-
context term embeddings using a neural classi-
fier in order to capture different aspects of seman-
tic similarity and to make the system more ro-
bust across different semantic classes and differ-
ent domains. The algorithm is briefly described
in Section 3. Our system has been used success-
fully in several real-life use cases. One of them
is an automated recruitment system that matches
job descriptions with job-applicant resumes. An-
other use case involves enhancing a software de-
velopment process by detecting and reducing the
amount of duplicate defects in a validation sys-
tem. Section 5 includes a detailed description of
both use cases. The system is distributed as open
source software under the Apache license as part
of NLP Architect by Intel AI Lab.3

2 Related Work

State-of-the-art set expansion techniques return
the k nearest neighbors around the seed terms
as the expanded set, where terms are represented
by their co-occurrence or embedding vectors in a
training corpus. Vectors are constructed accord-
ing to different context types, such as linear bag-
of-words context (Pantel et al., 2009; Shi et al.,
2010; Rong et al., 2016; Zaheer et al., 2017; Gyl-
lensten and Sahlgren, 2018), explicit lists (Roark
and Charniak, 1998; Sarmento et al., 2007; He
and Xin, 2011), coordinational patterns (Sarmento
et al., 2007) and unary patterns (Rong et al., 2016;
Shen et al., 2017). SetExpander looks at additional
context types that can capture functional seman-
tic similarities and combines context type embed-
dings using a neural classifier.

Google Sets, now discontinued, was one of
the earliest web applications for term set expan-
sion. It used methods like latent semantic index-
ing to pre-compute lists of similar words from the
web. Word Grab Bag4 is another web application

3http://nlp_architect.nervanasys.com/
term_set_expansion.html

4www.wordgrabbag.com

based on a method that builds lists dynamically us-
ing word2vec embeddings based on linear bag-of-
word contexts, but their algorithm is not publicly
described. Later, Wang and Cohen (2007) pro-
posed the SEAL (Set Expander for Any Language)
system which automatically finds semi-structured
web pages that contain ‘lists of’ items, and then
aggregates these lists so that the most promising
items are ranked higher. In our paper, we describe
an iterative end-to-end system, including model
training and using additional context types.

Pantel et al. (2009) propose a highly scalable
algorithm, implemented in the MapReduce frame-
work, for computing semantic similarity, where
terms are represented by large and sparse co-
occurrence vectors. SetExpander ensures scala-
bility by representing terms with small and dense
embeddings vectors.

The current paper extends (Mamou et al., 2018)
paper.

3 Algorithm Overview

3.1 Term Extraction and Representation

Our approach is based on representing any term of
an (unlabeled) training corpus by its word embed-
dings in order to estimate the similarity between
seed terms and candidate expansion terms.

Noun phrases provide good approximation for
candidate terms and are extracted in our system us-
ing a noun phrase chunker.5 Term variations, such
as aliases, acronyms and synonyms, which refer
to the same entity, are grouped together.6 Next,
we use term groups as input units for embedding
training; this enables obtaining more contextual
information compared to using individual terms,
thus enhancing embedding model robustness. In
the remainder of this paper, by language abuse,
term will be used instead of term group.

While word2vec originally uses a linear bag-
of-words context around the focus term to learn
the term embeddings, the literature describes other
possible context types. For each focus term, we
extract context units of different types, as follows
(see examples in Table 1).

5http://nlp_architect.nervanasys.com/
chunker.html

6For that, we use a heuristic algorithm based on text
normalization, abbreviation web resources, edit distance and
word2vec similarity. For example, New York, New-York, NY,
NYC and New York City are grouped.

20



Context Example sentence Focus Context units
type term
Linear Siri uses voice queries and a Siri uses, voice queries, natural
win = 5 natural language user interface. language user interface
List Experience in Image processing, Image Signal processing, Computer Vision

Signal processing, Computer Vision. processing
Dep Turing studied as an undergraduate

... at King’s College, Cambridge.
studied (Turing/nsubj), (undergraduate/-

prep as), (King’s College/prep at)
SP Apple and Orange juice drink ... Apple Orange
UP In the U.S. state of Alaska ... Alaska U.S. state of

Table 1: Examples of extracted contexts per context type.

Linear Bag-of-Words Context. This context
type is defined by neighboring context units within
a fixed length window of context units, denoted by
win, around the focus term. Both terms and other
words can be context units. One of its implemen-
tations is word2vec (Mikolov et al., 2013), widely
used for NLP tasks including set expansion.

Explicit Lists. Context units consist of terms co-
occurring with the focus term in textual lists such
as comma separated lists and bullet lists (Roark
and Charniak, 1998).

Syntactic Dependency Context (Dep). This
context type is defined by the syntactic depen-
dency relations in which the focus term partici-
pates (Levy and Goldberg, 2014). Context units
consist of terms or other words, along with the
type and the direction of the dependency relation.
This context type has not been used for set expan-
sion in prior work. However, Levy and Goldberg
(2014) showed that this context yields more func-
tional similarities of a co-hyponym nature than
is yielded by linear bag-of-words context, which
suggests its relevance for set expansion.

Symmetric Patterns (SP). Context units con-
sist of terms co-occurring with the focus term
in symmetric patterns (Davidov and Rappoport,
2006). For example, the symmetric pattern ‘X
rather than Y’ captures a certain semantic related-
ness between the terms X and Y. This context type
generalizes coordinational patterns (‘X and Y’, ‘X
or Y’), which have been used for set expansion.

Unary Patterns (UP). This context type is de-
fined by the unary patterns in which the focus term
occurs (Rong et al., 2016). Context units consist
of n-grams of terms and other words, in which the

focus term occurs; ‘ ’ denotes the placeholder of
the focus term in Table 1.7

We found that indeed in different domains and
for different semantic classes, better similarities
are found using different context types. The differ-
ent contexts thus complement each other by cap-
turing different types of semantic relations. For
example, explicit list contexts worked well for
the automated recruitment system use case, while
unary patterns contexts worked well for the issues
and defects resolution use case (discussed in Sec-
tion 5). Moreover, explicit lists, syntactic depen-
dency, symmetric patterns and unary patterns con-
text types tend to capture functional rather than
topical semantic similarities. We train a separate
term embedding model for each of the five con-
text types and thus, for each term, we obtain five
different representations.

Terms are represented by their linear bag-
of-words window context embeddings using the
word2vec toolkit 8 and by arbitrary context em-
beddings using the generic word2vecf toolkit.9.
For each focus term in the corpus, <focus term,
context unit> pairs are extracted from the corpus
and are then fed to the embeddings training al-
gorithm. Concerning linear bag-of-words context
type, some hyperparameters of the term embed-
dings training can be tuned to optimize the set ex-
pansion task; in particular, a smaller window size

7Following Rong et al. (2016), we extract six n-
grams per focus term. Given a sentence fragment
c−3 c−2 c−1 t c1 c2 c3 where t is the focus term and ci
are the context units, the following n-grams are extracted:
(c−3 c−2 c−1 t c1), (c−2 c−1 t c1 c2), (c−2 c−1 t c1),
(c−1 t c1 c2 c3), (c−1 t c1 c2), (c−1 t c1).

8http://code.google.com/archive/p/
word2vec

9http://bitbucket.org/yoavgo/
word2vecf
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seems to capture functional rather than topical se-
mantic similarities (Levy and Goldberg, 2014).

3.2 Multi-Context Term Similarity

To make set expansion more robust, we aim
to combine multi-context embeddings. Follow-
ing (Berant et al., 2012), who train a Support Vec-
tor Machine (SVM) to combine different similar-
ity score features, we train a Multilayer Perceptron
(MLP) classifier that predicts whether a candidate
term should be part of the expanded set based on
ten similarity scores (considered as input features)
obtained by the five different context types and
two different similarity-scoring methods. The two
similarity scores are estimated by the cosine sim-
ilarity between the centroid of the seed terms and
each candidate term, and by the average pairwise
cosine similarity between each seed term and each
candidate term; both methods ensure that the can-
didate term is similar to all the seed terms. MLP is
trained on a labeled training set of seed terms and
candidate terms.

3.3 Implementation and Evaluation

NLP Architect by Intel AI Lab 10 has been used
for noun phrase chunking, dependency parsing
and term embeddings model training. The perfor-
mance of the algorithm was first evaluated by the
Mean Average Precision at different top n values
(MAP@n). MAP@10, MAP@20 and MAP@50
on an English Wikipedia based dataset 11 are re-
spectively 0.83, 0.74 and 0.63. These figures indi-
cate the quite useful performance of the algorithm,
which was further assessed by the use cases de-
scribed in Section 5.

4 System Workflow and Application

This section describes the iterative end-to-end
workflow of SetExpander, as depicted in Figure 1.

Steps 1 & 2: Selecting an Input Corpus and
Training Models. The first step of the flow is
to select an input corpus, performed by select-
ing Open (not shown) from the File menu (see the
red rectangle in Figure 2). The second step of the
flow is to train the models based on the selected
corpus, performed by selecting Train Models (not

10https://github.com/NervanaSystems/
nlp-architect

11Dataset is described at http://nlp_architect.
nervanasys.com/term_set_expansion.html.

shown) from the Tools menu (see the yellow rect-
angle in Figure 2). The “train models” step ex-
tracts term groups from the corpus, trains the com-
bined term groups embedding models (Section
3.1) and the MLP classifier that predicts whether a
candidate term should be part of the expanded set
(Section 3.2).

Steps 3 & 4: Selecting and Expanding a Seed
Set. Figure 2 also shows the seed set selection
and expansion user interface. Each row in the dis-
played table corresponds to a different term group.
The top 5000 term group names are displayed un-
der the Expression column, sorted by their TF-IDF
based importance score. Term groups that include
more than one term are highlighted in bold, and
are represented in the display, by the term with
the highest importance score among the terms of
the group. Hovering over such a group opens a
drop-down list that displays all the terms within
the group. The user can choose to exclude spe-
cific terms from the group if their semantic mean-
ing does not align with that of the group. The Fil-
ter text box is used for searching for specific term
groups. Upon selecting (clicking) a term group,
the context view on the right hand side of Figure 2
(blurred) displays text snippets from the input cor-
pus that include terms that are part of the selected
term group (highlighted in green). The context
view enables the user to verify the semantic mean-
ing of terms in various contexts in the topical do-
main.

The user can create a seed set assembled from
specific term groups by checking their Expand
checkbox (see the red circle in Figure 2). The user
can set a name for the semantic category of the
seed set. This name will be used for displaying and
storing the seed set and the resulting expanded set
of terms. The category name can be selected from
a predefined list of category names or added as a
new custom category name (see the drop down list
in Figure 2). Once the seed set is assembled, the
user can expand the seed set by selecting the Ex-
pand option (not shown) in the Tools menu.

Steps 5 & 6: Edit, Validate and Re-expand.
Figure 3 shows the output of the expansion pro-
cess. The Certainty score represents the relat-
edness of each expanded term group to the seed
set, as determined by the MLP classifier (Section
3.2). The Certainty scores of term groups that
were manually selected as part of the seed set are
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Figure 1: SetExpander end-to-end workflow.

Figure 2: SetExpander user interface for seed selection and expansion.

Figure 3: SetExpander user interface for expansion re-
sults output. Seed terms are ‘java’ and ‘python’.

set to 1. The user can validate each expanded item
by checking the Completed checkbox. The vali-
dated list can then be saved and later used as a fine-
grained semantic class input to external applica-
tions. Following validation, the user can perform
re-expansion by creating a new seed set based on
the validated expanded terms and the original seed
set terms.

5 Field Use Cases

This section describes two use cases in which Se-
tExpander has been successfully used.

Automated Recruitment System. Human
matching of applicant resumes to open positions
in organizations is time-consuming and costly.
Automated recruitment systems enable recruiters
to speed up and refine this process. The recruiter
provides an open position description and then the
system scans the organizations resume repository

searching for the best matches. One of the main
features that affect the matching is the skills list,
for example, a good match between an applicant
and an open position regarding specific program-
ming skills or experience using specific tools is
significant for the overall matching. However,
manual generation and maintenance of compre-
hensive and updated skills lists is tedious and
difficult to scale. SetExpander was integrated into
such a recruitment system. Recruiters used the
system’s user interface (Figures 2 & 3) to generate
fine-grained skills lists based on small seed sets
for eighteen engineering job position categories.
We evaluated the recruitment system use case
for different skill classes. The system achieved a
precision of 94.5%, 98.0% and 70.5% at the top
100 applicants, for the job position categories of
Software Machine Learning Engineer, Firmware
Engineer and ADAS Senior Software Engineer,
respectively.

Issues and Defects Resolution. Quick identi-
fication of duplicate defects is critical for effi-
cient software development. The aim of auto-
mated issues and defects resolution systems is to
find duplicates in large repositories of millions of
software defects used by dozens of development
teams. This task is challenging because the same
defect may have different title names and different
textual descriptions. The legacy solution relied on
manually constructed lists of tens of thousands of
terms, which were built over several weeks. Our
term set expansion application was integrated into
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such a system and was used for generating do-
main specific semantic categories such as product
names, process names, technical terms, etc. The
integrated system enhanced the duplicate defects
detection precision by more than 10% and sped-
up the term list generation process from several
weeks to hours.

6 Conclusion

We presented SetExpander, a corpus-based system
for set expansion which enables users to select a
seed set of terms, expand it, validate it, re-expand
the validated set and store it. The expanded sets
can then be used as a domain specific semantic
classes for downstream applications. Our system
was used in several real-world use cases, among
them, an automated recruitment system and an is-
sues and defects resolution system.
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Abstract

MorAz is an open-source morphological ana-
lyzer for Azerbaijani Turkish. The analyzer is
available through both as a website for interac-
tive exploration and as a RESTful web service
for integration into a natural language pro-
cessing pipeline. MorAz implements the mor-
phology of Azerbaijani Turkish following a
two-level approach using Helsinki finite-state
transducer and wraps the analyzer with python
scripts in a Django instance.

1 Introduction

Morphological analysis is a crucial part of pro-
cessing languages with complex morphologies,
such as the agglutinative Azerbaijani Turkish.
The morphological analysis provides a number of
“readings” or analysis for each word, as a part of
the overall NLP task. Indeed, morphological anal-
ysis yields some properties of a word like “stem”,
“root” and morphological role of “suffixes” inside
word. Naturally, when the number of suffixes and
their combination increase, so does the number of
possible analysis of a word.

Since its application to morphology by Kosken-
niemi [Koskenniemi, 1983], Finite State Trans-
ducer (FST) has become a favored computational
tool for representing morphology and phonology.
In the two-level approach developed in Kosken-
niemi [Koskenniemi, 1983], the morphotactics is
represented as a separate FST in the first level. The
output of the first level is then re-written by a se-
quence of phonological re-write rules.

The two-level approach to morphology has been
successfully applied to many languages with sev-
eral publicly available analyzers, [Karp et al.,
1992], [Piskorski et al., 2009]. There are also a
number of open-source toolkits that provide the
underlying FST implementation, [Hulden, 2009],
[Lindén et al., 2011], [Schmid, 2005].

In this paper, we present an open-source FST
implementation of the full morphology of Azer-
baijani Turkish (AT). Noun and Verb morphology
were previously discussed in [Ehsani et al., 2017].
The source code is available for use as a local an-
alyzer. It is also available as a RESTful web ser-
vice.

The rest of the paper is organized as follows. In
the next section, we review related work. In Sec-
tion 3, we outline the structure of MorAz. Section
4 introduces the website and the web service of
MorAz. In Section 5, we report some statistics on
the performance of the analyzer. Finally, the paper
finishes with some concluding remarks.

2 Related analyzers

MorAz is the first complete morphological ana-
lyzer for AT. There is also a partial implementation
of AT morphology within the Apertium project
[Forcada et al., 2011]. This analyzer is based upon
the Trmorph [Çöltekin, 2010] with the assump-
tion that the Azerbaijani Turkish and Anatolian
Turkish are similar, whereas our analyzer was de-
veloped from scratch directly for the Azerbaijani
Turkish. Apertiums coverage of the morphotac-
tics and phonology and the extent of its lexicon
are quite narrow compared with MorAz. So, Aper-
tium Azerbaijani analyzer is not sufficient for test-
ing. Moreover, the only way to use Apertium an-
alyzer is through incorporating the code base into
the NLP pipeline, with all its dependencies and li-
braries. The web service interface to MorAz does
not require anything other than json construc-
tors and parsers. The manually constructed lex-
icon of MorAz reduces the number of redundant
analyses due to trivial derivations resulting from
an automatic root lexicon such as the one used in
Apertium. The coverage of morphotactics rules in
MorAz is wider and thus results in correct anal-
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yses where Apertium analyzer results in out-of-
vocabulary analyses.

Morphological analyzers for other Turkic lan-
guages have varying levels of completeness and
availability. Among these, the most widely stud-
ied language is Anatolian Turkish. [Oflazer, 1994]
presented a two-level description and implemen-
tation of Turkish morphology. Their implemen-
tation uses xfst [Beesley and Karttunen, 2003]
as the underlying FST implementation. Their ana-
lyzer is not available publicly. Following the same
approach as Oflazer’s, Şahin’s [Şahin et al., 2013],
re-implemented the analyzer on Xerox [Beesley
and Karttunen, 2003]. Şahin’s analyzer is avail-
able through a web interface and as a web service,
though, the source is closed. TRMorph [Çöltekin,
2010] is an open-source analyzer for Anatolian
Turkish, implemented over SFST. It is available
as an interactive web tool but lacks a web service
interface. Zemberek [Akın and Akın, 2007] is an-
other open-source, Java-based analyzer for Anato-
lian Turkish.

For Kazakh, there is an open-source analyzer in
Apertium project. There is also, the analyzer de-
scribed in [Kessikbayeva and Cicekli, 2016], how-
ever, currently, the implementation is not publicly
available. For Turkmen and Uighur, the analyz-
ers described in [Tantug et al., 2006] and [Orhun
et al., 2009] are not publicly available.

3 Structure of MorAz

Azerbaijani Turkish (AT) is a Turkic language
spoken by about 30 million people, mainly in Iran
and Azerbaijan. AT is an agglutinative language
with a predominant SOV word order, although
scrambling is common especially in spoken form.
The phonology of AT has vowel harmony, devoic-
ing, and apocope. Written AT uses Latin alphabet
in Azerbaijan and Arabic alphabet in Iran. The
current implementation of MorAz works with the
Latin alphabet.

The FST description of the morphology of AT
as implemented in MorAz consists of 4 main parts;
nominal and verb inflections, nominal predicate,
and derivation. Derivation FST is the bridge that
connects the other 3 FSTs. In detail, the derivation
FST has 36, nominal inflection has 36, nominal
predicate has 22 and verb inflection has 145 rules.
Morphotactics level which is also called level 1
has 239 rules and 67 states in total. Complete FST
diagram of MorAz is shown in Figure 2. Since ad-

jectives in AT behave like nouns when their suffix-
ation is concerned, we treat adjective and nouns as
a single morphological class Nominal. At a mor-
phosyntactic level, there will still be two distinct
POS tags for adjectives and nouns. In MorAz, we
used 8 morphological categories: Nominal, Verb,
Predicate, Adverb, Number, Postposition and In-
terjection.

In MorAz we represent the abstract form of a
morpheme either as a key-value pair or just as a
key.

The key-value form is more suited for consis-
tently representing the inflection paradigms where
a zero surface realization of the abstract mor-
pheme corresponds to a particular assignment of
the inflection feature. For example, Number fea-
ture has zero surface form when Singular. When it
is Plural, it is realized as -lar or -l@r depending on
vowel harmony. Since every Nominal has a Num-
ber feature, we reserve a number slot in Nominal
Inflection.

We denote the key-value abstract morphemes as
<Key Mnemonic:Value>.

When a morphological feature is optional, we
use just a mnemonic key to represent the corre-
sponding morpheme in the form <Key>. For ex-
ample, all derivational morphemes are optional.

The following example illustrates the use of ab-
stract morphemes.

(1) x@st@likd@n

x@st@<NOM>
<State><NOM>
<Num:Sg><Poss:No><Case:Abl>

The documentation for all the mnemonic keys
and their possible values are provided on the web-
site of MorAz. There are a total of 38 keys in the
key-value pair form and 40 optional keys, 20 of
which correspond to derivational morphemes.

Figure 1 gives the FST for Nominal inflection as
an illustration of the morphotactics of MorAz. The
expansion of transition labels sn1-sn1 is given in
full in the expanded diagrams on the MorAz web-
site.

The root lexicon includes 2707 verb roots,
35547 nominal roots as well as 14937 person
names and 929 adverbs. We obtained the root
lexicon of MorAz, by reducing a large lexicon of
roots. In the reduction, we manually eliminated
the roots that can be trivially derived from other
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Nom
<NOM>

Pl Sg

Poss2Poss1

Fam
Case

<Num:Pl>
:-lA

r <Num:Sg>:-φ

sn
1

sn2 sn
3

<Fam>
:-lA

r<Fam>:-gil
<Fam>:-gill@r sn4

Figure 1: Nominal inflection

roots that are not eliminated. The cases where the
derived form undergoes a meaning drift away from
the one that the derivational morpheme nominally
entails are distinguished. If the drift is so large that
the meaning of the derivation cannot be inferred
from those of the root and the suffixes, then a new
word needs to be added to the dictionary [Ehsani
et al., 2018]. For example, the large lexicon con-
tains both

(2) x@st@
x@st@<NOM>
sick

and

(3) x@st@lik
x@st@<NOM><State>
sickness

where 3 is trivially derived from 2.
In AT, there are 4 distinct morphemes for

Causative and 2 morphemes for Passive.
In order to handle the selection of Causative

and Passive morphemes, we manually marked our
verb lexicon of about 2700 verb roots with 15
verb classes. These include the classes represent-
ing the cases where a verb root cannot be suffixed
with Causative for some intransitive verbs and the
cases where a Passive is semantically impossible.
For example, “öyren” (learn) has no Causative and
“dol” (be filled) has no Passive form.

The second level of MorAz deals with the
phonology. The first level output consists of

Archiphoneme Surface forms
A @, a
I ı, i, u, ü
K k, y
Q q, ğ
D d, t
N d, n

Table 1: Archiphonemes used at the first level output
of MorAz

base morphemes and archmorphemes. Archmor-
phemes use 5 archiphonemes which are given in
Table 1.

The archiphoneme A maps to its surface form
to satisfy back-front harmony. Similarly, I maps
to its surface forms under back-front and round-
edness harmony. K and Q choose their surface
forms through palatalization and velarization, re-
spectively. D chooses its surface form to adapt
to the voicing feature of its context. Finally, N is
a convenience archiphoneme that we use to unify
two surface forms of the Ablative morpheme.

A common phonological phenomenon in AT is
the insertion of epenthetic letters y, n, ş, and s.
The choice of the epenthesis phoneme depends on
the phonological and morphological context. In
MorAz implementation, we consider epenthetic as
optional phonemes attached to morphemes. So,
the phonological rules in the second level drop
the epenthetic depending only on the phonologi-
cal context.

4 Website and API

MorAz uses Helsinki finite-state transducer
(HSFT) for the implementation of the two-level
morphology. We wrapped the compiled analyzer
with python scripts in a Django web server. The
source code for the analyzer is available in GitHub
1.

MorAz website includes an interactive query
screen shown in Figure 3. It allows querying mul-
tiple tokens separated by line breaks.

The web service API 2 uses the json format
for posting the list of tokens to be analyzed. The
output is also in json format as an array of ar-
rays where the innermost array contains the list of
analyses for a single token.

1https://github.com/berkeozenc/MorAz
2http://ddil.isikun.edu.tr/morazws/
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Figure 2: Complete FST Diagram of MorAz

5 Statistics

In order to measure the performance of MorAz,
we ran it over an input text collected from BBC
Az@rbaycanca. Since MorAz lexicon is not com-
plete in terms of named entities, we eliminated
from the input all the tokens that start with cap-
ital letters. What remained was a test input is a
list of 10890 distinct Azerbaijani words. We also
eliminated punctuation marks.

Of all the tokens fed into the analyzer, MorAz
did not return an analysis for %23.92 of total
words. For the ones that it provided an analysis, on
average there were 1.96 analyses per word. Since
the token is Azerbaijani word, it is possible to use
them to test other Azerbaijani morphological ana-
lyzers.

6 Conclusion

In this paper, we presented MorAz, an open-
source morphological analyzer for Azerbaijani
Turkish. MorAz provides an interactive query in-
terface for short pieces of tokenized text through

its website. For larger inputs, it exposes a simple
RESTful web interface.

MorAz has a manually crafted minimal lexicon,
with an aim to reduce the number of redundant
analyses. Manual configuration is an ongoing pro-
cess and we modify the lexicon by inspecting the
results of analyses.

As a further development, we are planning to
provide an interactive tool to generate surface
forms out of abstract morphemes which will be
useful for exploring the language.

References
Ahmet Afsin Akın and Mehmet Dündar Akın. Zem-

berek, an open source nlp framework for turkic lan-
guages. Structure, 10:1–5, 2007.

Kenneth R. Beesley and Lauri Karttunen. Finite State
Morphology. CSLI Publications,, Stanford, CA,
2003.
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Figure 3: Interactive query in MorAz.
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Eryiğit. Redefinition of turkish morphology using
flag diacritics. In Proceedings of The Tenth Sym-
posium on Natural Language Processing (SNLP-
2013), Phuket, Thailand, October 2013.

Helmut Schmid. A programming language for finite
state transducers. In FSMNLP, volume 4002, pages
308–309, 2005.
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Abstract

Deep learning models for NLP are potent
but not readily interpretable. It prevents re-
searchers from improving a model’s perfor-
mance efficiently and users from applying it
for a task which requires a high level of trust
in the system. We present a visualisation tool
which aims to illuminate the inner workings of
a specific LSTM model for question answer-
ing. It plots heatmaps of neurons’ firings and
allows a user to check the dependency between
neurons and manual features. The system pos-
sesses an interactive web-interface and can be
adapted to other models and domains.

1 Introduction

Deep learning models have gained popularity in
the last years due to their state-of-the-art per-
formance combined with an end-to-end pipeline.
However, even though these models do not require
manual feature engineering, this advantage turns
into a shortcoming when it comes to the interpre-
tation of the model. Neural networks are consid-
ered black boxes by the majority of their users.
Such low interpretability leads to a low level of
trust in the system’s decisions. Therefore, meth-
ods for interpreting neural networks are attracting
increasing interest due to their need for practical
applications.

Existing visualisation methods mainly focus on
computer vision tasks. It raises the issue that not
all of them can be easily adapted to the NLP do-
main since text preprocessing operates with no-
ticeably different units. Furthermore, while some
neural architectures such as CNNs, provide rela-
tively clear feature illustrations, this is not the case
for RNNs, which are dominant for many text pro-
cessing tasks. Few researchers have addressed the
issue of visualising the inner workings of RNNs,
especially in an interactive way.

Our ultimate goal is to allow a researcher to
check how interpretable the features in an RNN
are automatically. The first step would be to check
the dependency between a given manual feature
and the features produced by the deep learning
model. The next one is to develop a method to ex-
tract structural patterns from uninterpretable fea-
tures. The last step would be to generate sugges-
tions that would explain such patterns automati-
cally. In this work, we address the first step and
supply a visualisation tool for manually carrying
out the second step.

This paper is a report on the visualisation sys-
tem for LSTMs in the area of question answering.
We present a new interactive web-interface which
currently focuses on a specific system but can po-
tentially be adapted to other models and domains.
The proposed system aims to aid the development
of deep learning models in NLP by providing a
tool for data visualisation.

The paper is divided into three sections. The
first section provides a brief overview of the re-
lated work. The system is described in the second
section, and our conclusions are drawn in the final
section.

2 Related work

A considerable amount of literature has been pub-
lished on neural attention models (Vaswani et al.,
2017; Li et al., 2015b). Most of them contain
heat maps to illustrate the work of the attention
mechanism. These plots provide insight into what
the model sees as the more important parts of
the sentence when making a prediction. For in-
stance, self-attention might learn patterns related
to syntactical properties of the text (Vaswani et al.,
2017) or sentiment aspects (Li et al., 2015b). Re-
cently researchers have also focused on illustrating
the behaviour of machine translation sequence-to-
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Figure 1: The second part of the interface. Left and right columns contain the ground truth correct and wrong
answers respectively, highlighted according to a chosen neuron. The question is stated in the middle, a t-SNE plot
is given under it. The heatmaps of neuron activations are placed below.

sequence architectures (Lee et al., 2017). Such
systems include visualisations of the search tree
for the beam search along with attention.

More recent research by (Karpathy et al., 2015)
reveals that a small percentage of cells in LSTM
learns interpretable patterns. For instance, a cell
might correspond to the position in the line, indi-
cate the depth of the nested structure or turn on
inside quotes. Our system is greatly inspired by
this research.

In (Li et al., 2015a) authors investigate vi-
sualisations of compositionality in NLP, basing
their work on computer vision approaches. They
provide t-SNE (van der Maaten and Hinton,
2008) plots for clause compositions and introduce
saliency heatmaps. The latter indicates how neu-
rons contribute to the final decision based on the
first order derivatives.

Moreover, (Strobelt et al., 2016) demonstrated
a system for visual analysis of hidden state dy-
namics in recurrent neural networks. The system,
called LSTMVis, allows the researcher to check
the hypothesis about local state changes against a
similar pattern in the entire dataset, and align it
with the textual annotations.

Finally, (Jia and Liang, 2017) show that a ques-
tion answering system can be surprisingly unreli-
able when presented with artificial adversarial ex-
amples. They suggest that this can happen be-
cause a neural network learns heuristics, which are
easy to fool. Hence, we hypothesise that a system
which uses meaningful (from a human perspec-
tive) features might not only be more user-friendly
but also demonstrate higher robustness.

3 System

Our system consists of two different interfaces.
The first one visualises the scores and attention
distribution produced by the model on answers to
a user-defined question. The second one allows
a user to iterate through fixed question-answer
pairs to investigate the inner workings of a model.
These inner workings are displayed in three sepa-
rate views: General, Neuron and Correlation. In
the General one, a user can observe t-SNE plots
and heat maps for all neurons on the texts of the
current question-answer pair from the dataset (see
Figure 1 for the layout demonstration). In the Neu-
ron view, the user can investigate the behaviour of
one particular neuron further. Finally, in the Cor-
relation part, the user can see the statistical mea-
sures for the dependency between a chosen man-
ual feature and all neurons.

3.1 Deep learning model

Our system currently works with the Attentive
(Bahdanau et al., 2014) QALSTM model. The
method is essentially the same as (Tan et al., 2016)
with some adjustments. Most importantly, we use
two stacked shared LSTMs instead of a single one
(the number of units is 96 and 64 respectively).
We used Adam (Kingma and Ba, 2014) optimi-
sation instead of SGD and cross entropy loss in-
stead of margin ranking loss. Moreover, we modi-
fied the parameters: the embeddings are not train-
able, dropout is not used, and the learning rate
is set to 0.001. The main dataset used in the
current stage is SemEval 2017 Task 3 Subtask A
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(Nakov et al., 2017). The word embeddings are
word2vec (Mikolov et al., 2013) of dimension 300
pre-trained on Google News. The texts are lower-
cased and tokenised using built-in Keras functions.

Generally speaking, any pre-trained Keras
model involving an attention mechanism and an
LSTM can be loaded into the interface. The only
requirement would be to provide the layer names
to retrieve softmax attention scores and LSTM
weights.

3.2 Key features

A pre-trained model is loaded from a Keras check-
point: the weights are obtained from a .h5 file and
the architecture from a .json. In case of an error, a
message is shown to the user with the description.
The dataset with the texts of question-answer pairs
is loaded in either of two ways (denoted as D-I and
D-II). It can be preloaded from a custom pickle
file containing a pandas data frame. This method
is suitable if the candidate answers are known at
the test phase. Otherwise, the dataset can be saved
into an index schema of documents which is com-
patible with the Whoosh (Chaput, 2007) library.
This will allow the system to retrieve candidate
answers based on a keyword match. It should be
noted that it is relatively easy to modify the code to
load other datasets as long as they have the fields
pool (array of incorrect answer ids), answer ids
(array of correct answer ids), question (question
text) and answer (candidate answer text). Lastly,
pre-trained word embeddings and the tokeniser are
loaded from pickled Keras objects.

Candidate answer retrieval and scoring. To
begin with, the system receives a question from the
user via a text field input. The question is filtered
by length: too long or empty questions are dis-
carded. Then, it is preprocessed to exclude out-of-
vocabulary (OOV) words. In addition, it is spell-
checked by the Whoosh library. If the question
contains words which lemmata are not in the vo-
cabulary of the system, a warning is displayed. As
mentioned at the beginning of this section, our sys-
tem is separated into two interfaces depending on
whether the question can be formulated by the user
or it is fixed in advance. The answers in the first
part are sorted by their score. In case the question
was present in the dataset, and we know the cor-
rect answer, we mark its text with a star icon for a
quicker performance assessment by the user. The
second interface allows the user to iterate through

Figure 2: The heatmap of attention scores.

the fixed question-answer pairs to investigate the
inner workings of the model. The answers in this
part are separated into columns, where the left col-
umn contains the ground truth correct answers and
the right one the ground truth incorrect answers.
The prediction of the model is illustrated with an
icon (cross mark for predicting the answer as in-
correct, checkmark for the correct), and the origi-
nal score is also displayed. This leads to a clearer
picture of the mistakes the model makes, which
will hopefully help researchers in eliminating pos-
sible sources of errors.

In D-II setting, after that, Whoosh’s Multifield-
Parser processes the question and attempts to re-
trieve candidate answers. If no candidates are
found at this step, it extends the search by also
checking the answer texts corresponding to the
questions in the index. In other words, it checks
not only the question-question similarity but also
answer-question. If still no results are retrieved,
the user receives an appropriate error message
with a prompt to reformulate his question. If can-
didate answers were found, they are preprocessed.
At this step, custom modifications, such as remov-
ing punctuation, can be added. In D-I setting, the
candidate answers are provided and thus retrieved
directly.

After that, the pre-trained deep learning model
is applied to the texts of the question and the can-
didate answers to receive their scores. In our case,
those are cosine similarities between LSTMs em-
beddings of the question and the candidate answer.

Attention visualisation. The next key feature
of our system is the visualisation of the atten-
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tion mechanism. In this part, we follow a tradi-
tional approach of using a heat map on the text.
Words are highlighted in red based on their atten-
tion scores: the higher the score, the more intense
the colour. The attention scores used in deciding
the opacity of the colour are scaled to make them
more visible. A user can still see the exact score
of the word in a tooltip by hovering over it. Op-
tionally, the user can adjust the attention threshold
A to only highlight words with an attention score
higher than A. Figure 2 shows an example of the
attention visualisation.

t-SNE. Another part of the visualisations is spe-
cific to the model we currently use. The objective
of this model is to learn a mapping to a new em-
bedding space where the question has a smaller
cosine distance to its correct answers than to the
incorrect ones. In order to investigate the resulting
space, we plot a t-SNE projection of the LSTM
output embeddings on each QA-pair. The red dots
correspond to the wrong answers, green - the cor-
rect ones and blue - the question. The perplexity
parameter, which is known to affect the meaning-
fulness of t-SNE plots greatly, can be adjusted by
the user with a corresponding text field input. The
default value is 5.

Weights visualisation. Besides visualising at-
tention, we develop an idea proposed by (Karpa-
thy et al., 2015), as we suggest that the neuron
behaviour in a question answering system might
differ across the answers categories. The illus-
tration is generated in two modes: heatmaps and
highlighting the text. Figure 1 demonstrates the
highlighted text mode and figure 3 - the corre-
sponding heatmaps. The red colour corresponds to
positive values and the blue to the negative ones.
The brighter the colour, the larger the absolute
value of the neuron output. The current model
works on a word level as opposed to character
level in (Karpathy et al., 2015). A researcher is
encouraged to manually analyse whether the neu-
rons align with easily interpretable patterns in the
text. If a particular neuron is of interest, the user
may see heatmaps in detail by navigating to the
Neuron view. There the heatmaps spanning only
this particular neuron on a subset of texts are plot-
ted. Figure 4 illustrates this mode. The user can
generate more heatmaps on random texts to check
for the consistency of a pattern. It should be noted
that for large systems or long texts the plots can

become difficult to analyse. We attempt to allevi-
ate this by splitting the heatmaps into chunks by
ten words and 32 neurons.

Correlation coefficients. We hypothesise that
there is a dependency between a manual feature
and a neuron. However, manually checking the
heatmaps over a corpus for each neuron is time-
consuming. Hence, we provide the researchers
with additional information that might indicate
promising pairs of features and neurons. The addi-
tional information consists of three statistical mea-
sures: the Pearson and the Spearman rank cor-
relation coefficients and the Mutual Information
score. As nature (discrete or continuous) of a
user-defined manual feature is not known in ad-
vance, we provide all three scores by default. If
the value of the coefficient is higher than a thresh-
old of T , the text of the indicator will be high-
lighted in green. If the value is lower than −T ,
it will be highlighted in red. The user can ad-
just this threshold value with a corresponding text
field input. The default value of T is 0.5. The
user can input their own features. The format is a
nested Python list of the features values for words
in texts. Alternatively, the user can choose from
one of the suggested features. The suggested fea-
tures include the following: is the token a stop-
word? Does the token consist of alphabetic char-
acter? The length of the token in characters? Is
the token a noun/a verb/an adjective? Is the to-
ken a named entity? Is the token a question word
(what, how)?

The values for these features are computed with
the SpaCy (Honnibal and Johnson, 2015) library.
Besides, the user can see some numerical charac-
teristics of neuron values: maximum, minimum,
median and mean values. He can also choose the
number of texts to use, and whether they are sam-
pled randomly or sequentially from the dataset.
In case the user would like to check the depen-
dency on a particular subset, he may input the ex-
act indices for the question-answer pairs from the
dataset. By default, the first ten instances in the
dataset are used to speed up the computation pro-
cess.

3.3 Technical implementation

The visualisation application is a client-server sys-
tem with a web interface. It uses JQuery on the
client side and Python on the server side. The ap-
plication is built with the Flask (Ronacher, 2018)
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Figure 3: A heatmap of all the neuron’s firings on a
given text.

Figure 4: A heatmap of the given neuron’s firings on a
given text. Each cell corresponds to a word (in left to
right order). The red colour corresponds to positive val-
ues and the blue to the negative ones. The more intense
the colour, the larger the absolute value of the neuron
output.

framework. For text preprocessing we use SpaCy
(Honnibal and Johnson, 2015) and NLTK (Loper
and Bird, 2002). Heatmaps and t-SNE results are
plotted with the matplotlib (Hunter, 2007) library
and sklearn (Pedregosa et al., 2011). The main
deep learning framework is Keras (Chollet, 2015),
but there is also a preliminary attempt to include
PyTorch (Paszke et al., 2017) models. Statisti-
cal measures were calculated using scipy (Jones
et al., 2001–).

3.4 Use cases

Regarding possible use cases, we can suggest at
least five possible scenarios.

The first is to investigate possible sources of er-
ror by analysing the model’s hidden vectors and
attention scores.

The second promising application is to illus-
trate the difference between models. This can be
done by loading two different models and compar-
ing their heatmaps and attention distributions. For

example, if two models with similar performance
are given, the preference might go to the one with
more explainable features.

The third scenario is a simplification of a model
into a rule-based or machine learning approach. It
can be seen as a compromise where we use a deep
learning approach to extract features that might
not be obvious for a human, and then transfer them
to other models.

The fourth way to use the system is to try to in-
terpret the features learnt by the network. For in-
stance, while exploring the heatmaps, we noticed
that the model seems to highlight words in the an-
swers which are semantically relevant to the ques-
tion (i.e., ”money” when a person asks for a bank
recommendation). It also often reacts to the ques-
tion phrases (”how much”, and so on).

Finally, we believe that interactive visualisa-
tions of LSTM hidden vectors might be enticing
and helpful in education for students and beginner
level practitioners.

4 Conclusion

Deep learning models for text processing are pow-
erful, but not easily interpretable. This low inter-
pretability leads to low trust in the systems deci-
sion and difficulties in improving its performance.
Thus, there is a need for efficient visualisation
tools that will illuminate the details of a neural net-
work’s decision making.

We have presented a prototype of a visualisation
system for the RNN model in the question answer-
ing domain. This paper outlines the key features
and structure of the system, along with the de-
tails of the technical implementation. The system
displays heat maps for attention scores and firings
of neurons and outputs correlation coefficients be-
tween the neurons and manual features. The ap-
proach we develop would lend itself well for use
by machine comprehension researchers and devel-
opers.

Concerning possible improvements, there are
five main directions. The first is to employ an au-
tomatic search for a structural pattern in neurons
firing. The second is to transform neurons into
transferable features which can be adapted to other
models and tasks. For instance, if we see that the
same type of a feature is extracted by several suc-
cessful question answering systems, it might make
sense to apply them in dialogue generation. The
third is the need for more advanced statistical anal-
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ysis. The fourth possible improvement is the in-
corporation of a direct comparison of two models
in an interactive mode. Finally, the system can be
extended to character-based models.

Future work will concentrate on extending the
system to support other frameworks and visualisa-
tion techniques, such as saliency heatmaps. We
also plan to include use cases for different do-
mains, e.g. machine translation.
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Abstract

Neural networks models have gained unprece-
dented popularity in natural language process-
ing due to their state-of-the-art performance
and the flexible end-to-end training scheme.
Despite their advantages, the lack of inter-
pretability hinders the deployment and refine-
ment of the models. In this work, we present
a flexible visualization library for creating
customized visual analytic environments, in
which the user can investigate and interrogate
the relationships among the input, the model
internals (i.e., attention), and the output pre-
dictions, which in turn shed light on the model
decision-making process.

1 Introduction

Deep neural networks have been successfully ap-
plied to various natural language processing tasks.
As the design of neural networks evolves, there
is a clear trend of increasing model complexity
in terms of both the architecture and the param-
eter count. Although expressive models help im-
prove the prediction performance, the fundamen-
tal lack of interpretability leads many researchers
to consider neural network models black boxes.
The ability to interpret model internals and rea-
son about predictions is essential for understand-
ing the limitation of the models and improving
upon them.

Recently, the attention networks have recently
become widely-adopted (Bahdanau et al., 2015;
Seo et al., 2017; Parikh et al., 2016b; Vaswani
et al., 2017). Attention not only improves
the model performance but also yields inter-
pretable intermediate representations (i.e., align-
ment among words). As a result, attention can pro-
vide a natural interface for analyzing the internals
of neural networks. Conducting analysis directly
on the raw attention values can be challenging for
human users, and therefore, visual representations

that highlight word alignments between sentences
have been proposed, such as the bipartite graph
and the heatmap of the attention matrix (Li et al.,
2015, 2016; Lee et al., 2017). However, many
challenges remain. Firstly, for some NLP tasks,
the word sequences pair for which the attention is
computed can be highly asymmetrical (i.e., in ma-
chine comprehension, the context paragraph can
be much longer than the question sentence), which
the standard visual encoding cannot adequately
handle. Also, many previous works present the
attention in a static setting. However, the ability
to provide an interactive environment in which the
user can instantaneously look at how changes in
the input affect the attention, and how small varia-
tions in the attention alter the prediction, is crucial
for interpreting the model. Finally, many previ-
ous visualization efforts, despite revealing many
exciting results, focus more on illustrating poten-
tially useful visualization techniques than on pro-
viding a flexible software tool that can be easily
integrated into an existing code base. As a result,
applying these proposed techniques to real-world
examples may involve substantial engineering ef-
fort, which could prevent wide adoption.
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Figure 1: Perturbation-driven interrogation of the end-
to-end models that follow the encoder, attention, and
classifier structure. The user can generate a small per-
turbation of the input (i.e., replacing synonyms, para-
phrasing), edit the attention, and observe the changes.

To address these challenges in interpreting
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attention-based models, we introduce a Python li-
brary that allows users to create web-based in-
teractive visual analytics environments, in which
they can interrogate the model by perturbing the
input text and observing the effects on the atten-
tion and prediction, or modifying the attention and
studying how it affects predictions (see Figure 1).
We demonstrate our library applied to two NLP
tasks: natural language inference (NLI) and ma-
chine comprehension (MC).

2 Related Works

Due to the increasing demand for model inter-
pretability, many previous works have been pro-
posed for making sense of NLP models by exam-
ining individual predictions as well as the model
mechanism as a whole. In recent work, Li
et al. (2015) investigated the composability of the
vector-based text representations using instance-
level attribution techniques that originated from
the vision community (e.g., Zeiler and Fergus,
2014). In a study of the representation of erasure,
Li et al. (2016) explained neural model decisions
by exploring the impact of altering or removing
the components of the model (i.e., changing the
dimension count of hidden units or input words)
on the prediction performance.

Besides interpreting the model via carefully de-
signed experiments, several interactive demo/vi-
sualization systems, such as AllenNLP’s demos
(http://demo.allennlp.org/), often rely
on visual encodings to summarize the model pre-
dictions. These systems provide a flexible envi-
ronment in which the user can experiment with
the various inputs and perform error analysis. The
hidden state properties of the LSTM are visual-
ized and investigated in the LSTMvis visualiza-
tion system (Strobelt et al., 2018). Lee et al.
(2017) visualized the beam search and attention
component in neural machine translation models,
in which the user can dynamically change the
probability for the next step of the search tree or
change the weight of the attention. In the visual-
ization work on question answering (Rücklé and
Gurevych, 2017), the system shows the text con-
text and highlights the critical phrase that is used
to answer the question.

3 Visualization System

As illustrated in Figure 1, many recent end-to-end
NLP models follow a similar encoder–attention–

classifier structure. The attention stage provides a
window to peek into the model decision-making
process. However, the static attention alone does
not tell the whole story. Our proposed system uses
a perturbation-driven exploration strategy that al-
lows the user to manually or automatically perturb
part of the pipeline and observe the changes down-
stream. The system consists of several visualiza-
tion components that can be selectively combined
to form a functional interactive system for a given
task. In the following section, we will cover some
of the essential components; the usage of all com-
ponents can be found in the accompanying video
link.

Figure 2: The interface for showing input sentences.
The user can manually edit the words or apply au-
tomatic perturbation/paraphrasing of the inputs. In
the “perturbed” drop-down menu, the blue background
highlights words not in the original sentence.

3.1 Input Sentences Perturbation

Due to the discrete nature of natural language,
automatically perturbing a sentence for sensitiv-
ity analysis can be particularly challenging (com-
pared to other domains such as images) — small
changes in words can lead to drastic differences in
the semantics of the sentences. To reduce the po-
tential semantic deviation, we allow for a straight-
forward perturbation method by replacing nouns
and verbs by their synonyms in WordNet (Miller,
1995). However, synonym replacement does not
guarantee that the meaning of the sentence re-
mains the same. Furthermore, WordNet often pro-
duces rare words or obscure usages that may lead
to less meaningful sentences.

To improve the perturbation quality, we also al-
low for a translation-based paraphrasing technique
similar to that proposed by Mallinson et al. (2017).
Here, we translate the original English sentence
into several other languages and then pivot back
to English. Provided the translation produces a
good result (in our case, we use the Google Cloud
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Translation Platform), we can obtain paraphrases
of the original sentence (see Figure 2, where the
drop-down menu shows some of the perturbed
sentences).

decision 
boundary

density
contour 

map

Figure 3: Summary of the prediction results of the per-
turbed input for the natural language inference model.
The prediction is encoded as a point in the barycentric
coordinate system of the triangle, in which each vertex
corresponds to one prediction label.

3.2 Prediction Visualization

Efficient visual encoding for prediction is crucial
for communicating the model behavior, and to
fully support the input perturbation feature, the vi-
sual encoding should also allow multiple predic-
tions to be shown in the same visualization.

For the natural language inference task, as il-
lustrated in Figure 3, the predicted probabilities
are encoded via a triangular barycentric coordinate
system, where the vertices represent the three pos-
sible predictions (namely, entailment, contradic-
tion, and neutral). The prediction for the original
unperturbed input is illustrated by a larger yellow
circle, whereas the prediction of perturbed inputs
is represented by smaller gray circles.

A density contour of the prediction is computed
to emphasize the highly cluttered areas and detect
outliers.

3.3 Attention Visualization

As illustrated in Figures 4(a)(b), the most widely
adopted visual encodings for attention are bipartite
graphs (a) and heatmaps (b). In the graph attention
view (Figure 4(a)), the edge thickness corresponds
to the attention value of the word pairs. The graph
view is suitable for highlighting the most domi-
nant alignments. However, the edges may become
cluttered if multiple attention values are high. The

matrix attention view (Figure 4(b)) resolves these
issues, despite being more verbose and less ef-
ficient in highlighting the most dominant align-
ments. We also enable the linkage between high-
lighted actions in both views (see Figure 4(a)(b),
where one alignment relationship is highlighted).

We augment these standard visual encodings
with grammar structure to address the challenge
of long sentences. The text can be dynamically
simplified based on the dependency tree (see Fig-
ure 4(a1)). We also show how the dependency in-
formation can potentially improve the prediction
result in Section 4.1. To facilitate the perturbation
of attention (see Figure 1), as illustrated in Fig-
ure 4(c), we implement an interface for directly
manipulating the attention value.

However, when the text sequence becomes sig-
nificantly longer, i.e., a full paragraph in the ma-
chine comprehension task, even the simplified
sentence cannot be meaningfully represented in
the graph or matrix visual encoding. To address
this visualization challenge, as illustrated in Fig-
ure 4(d), we introduce a hierarchical representa-
tion. Here, a pure graphical encoding (the color
bars marked by att2) is used to capture the ag-
gregated attention information for the whole para-
graph. The user can focus on localized attention
information by selecting a pixel bar that repre-
sents a single sentence (the colored blocks in the
bar correspond to individual works). We also link
this attention representation with the matrix form,
such that whenever a sentence is selected the lo-
cal attention is shown in the matrix view (see Fig-
ure 6(a)).

3.4 Implementation
The initial setup cost and unnecessary learning
curve are often the barriers to broad adaptation
of a tool. Therefore, instead of designing a vi-
sualization system as a monolithic standalone ap-
plication, we implement the proposed system as
a Python library with modularity and ease of use
in mind. The different pieces of the visualization
(i.e., matrix-based attention encoding) can be ac-
cessed individually or combined with other com-
ponents to fit one’s workflow via a simple API.
More importantly, the library-based design allows
easy integration with the existing model imple-
mented in Python. The code for creating an in-
teractive exploration environment for a machine
comprehension model is illustrated below.
from visPackage import MCModule
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(a) Bipartite Graph Attention Representation (b) Matrix Attention Representation

Dependency Tree

(c) Attention Editing 
Interface

(a1)

(d) Zoomable Attention Representation

Figure 4: Attention visualization. A bipartite graph encoding is adopted in the graph attention view (a), in which
the edge thickness corresponds to the attention value. The same attention values can also be directly visualized
in the matrix form (b). The user can edit the attention values via the pop-up interface illustrated in (c). We
overlay the dependency tree (a1) grammar structure to highlight important words and allow simplification of com-
plex sentences (shown in the video). For highly asymmetric attention, we utilize a zoomable hierarchical visual
representation (d). The user can focus on the individual sentence by selecting the summary visualization.

from bidaf_src import bidafModelInterface
from NLPutility import translationPerturbation

#initialize machine comprehension model
model = bidafModelInterface(

wordDict="data/bidaf/squad.word.dict",
wordVec="data/bidaf/glove.hdf5",
model="data/bidaf/bidaf.ema")

gen = translationPerturbation()
#visualization components
visLayout = {

"column":[{"row": ["Paragraph",
"AttentionSubMatrix"]},

{"row": ["AttentionAsymmetric"]}]
}

#setup interface
modelVis = MCModule(visLayout)
modelVis.setPredictionHook(model.predict)
modelVis.setAttentionHook(model.attention)
modelVis.setSentenceHook(gen.perturbSentence)
#open browser for the web-based visualization
modelVis.show()

Listing 1: Code for setting up the visualization
system shown in Figure 6(a).

4 Applications

We demonstrate the proposed visualization system
on the decomposable attention network (Parikh
et al., 2016a) for the NLI task and the BIDAF
model (Seo et al., 2017) for the MC task.

4.1 Natural Language Inference
The NLI task predicts the entailment relationship
between a premise sentence (P) and a hypothe-

sis sentence (H). The attention matrix captures the
alignment of words between these two sentences.
Here we give an example of how a wrong predic-
tion can be corrected by editing attention values.

As illustrated in Figure 5(a), the input sentence
pair (P:“A woman in a green jacket is drinking
tea.” H:“A woman is drinking green tea.”) is pre-
dicted to be entailment, which is incorrect. By ex-
amining the attention, we can see the word green
in “green jacket” is aligned to the green in “green
tea.” However, these two greens modify differ-
ent nouns, which potentially leads to the wrong
prediction. The grammatical structure is visually
shown in the form of the dependency tree. How-
ever, the model does not have access to the syn-
tactic information and mistakenly assumes the two
greens modify the same thing. To correct the mis-
take, we can edit the attention value and remove
the align between these two “greens” (see (c)(b)).
As expected, the prediction label is corrected (neu-
tral).

4.2 Machine Comprehension

In the machine comprehension task, the goal is to
select a span of text as the answer to a question
sentence. The attention information is encoded
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(c) Corrected 
prediction(a) Different dependency structure (b) Edit the attention

Figure 5: An illustration of the attention editing process. The dependency structure is shown in (a), where the two
“greens” decorate different nouns. By removing the “wrong” alignment in (b), the original prediction entailment
is corrected to neutral in (c).

(a) Machine comprehension visualization interface (b) Evaluate the model via inputs perturbation

a3

a1 a2
b1

b2

b3

Figure 6: In the machine comprehension visualization interface (a), the p1, p2 colored bar (in a3) illustrates the
predicted start and end index of the answer in the context (the deeper the red, the higher the probability). The
most likely answer is shown in (a1). The global attention and local attention are visualized by (a2, a3). We can
evaluate the robustness of the prediction by perturbing the question sentence (b1, b3). As illustrated in (b1, b2), by
removing the word “partial”, the model still finds the correct answer (albeit different, as the sentence perturbation
changes the exact meaning of the question).

as a bidirectional alignment (i.e., from context to
question and vice versa). Here, we refer the con-
text to question attention as att1 and the question
to context attention as att2 (which is a vector in-
stead of a matrix according to Seo et al. (2017)).
In this demo, we apply a min max normalization
for att2 after the softmax layer to better distinguish
different attention values.

As illustrated in Figure 6, we represent att2 as
colored bars with a yellow-green-blue colormap.
Each rectangular bar corresponds to one sentence.
The user can focus on individual sentences by
clicking on the rectangular bar (see Figure 6). The
p1, p2 colored bars (white-red colormap) illustrate
the predicted probabilities of the start and the end

index for the answer (the deeper the higher). In
Figure 6(a3), the sentence containing the answer
exhibits good alignment with the question (e.g.,
“Two” with “many”). Interestingly, the number
“9” (in “Falcon 9”) is also aligned with “many”,
which may lead to problems.

The user can explore the robustness of the
model by examining how the prediction varies
when the question is perturbed. As illustrated in
(b1, and b2), the perturbation removes the word
“partial” in the original sentence, which leads the
model to produce a different yet correct answer
(“No”). Referring to (a1), we can see the word
“No” exhibits the second highest probability for
the original question. The user can also manually
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edit the text. As shown in (b3), the model still pro-
duces the correct answer when changing the ques-
tion from “how many” to “which”.

5 Discussion

In this work, we introduce a visualization library
for creating customized environments that allows
the user to interrogate the relationships among dif-
ferent parts of the model pipeline via interactive
queries. We demonstrate the usability and flexi-
bility of the tool by configuring the visual com-
ponents to investigate models for different NLP
tasks (e.g., NLI, MC). We also conducted a small-
scale user evaluation, in which five Ph.D.-level
students with an NLP background spent 30 min-
utes with the tool and then provided feedback.
Most suggested the environment allowed them to
refine queries iteratively and identify potential is-
sues with the model, but some also mentioned the
tool might not provide enough guidance for users
who do not have an in-depth understanding of the
model at hand.

Even though we designed the individual compo-
nents with versatility in mind, due to a large num-
ber of variants of attention networks, we found it
difficult to ensure compatibility with all the avail-
able configurations. In the future, we plan to im-
prove upon the current attention interface, release
the library as an open-source package, and expand
the visualization components to handle tasks such
as neural machine translation and more.
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Abstract
Most machine learning systems for natural lan-
guage processing are tailored to specific tasks.
As a result, comparability of models across
tasks is missing and their applicability to new
tasks is limited. This affects end users without
machine learning experience as well as model
developers. To address these limitations, we
present DERE, a novel framework for declara-
tive specification and compilation of template-
based information extraction. It uses a generic
specification language for the task and for data
annotations in terms of spans and frames. This
formalism enables the representation of a large
variety of natural language processing chal-
lenges. The backend can be instantiated by dif-
ferent models, following different paradigms.
The clear separation of frame specification and
model backend will ease the implementation
of new models and the evaluation of different
models across different tasks. Furthermore,
it simplifies transfer learning, joint learning
across tasks and/or domains as well as the as-
sessment of model generalizability. DERE is
available as open-source software.

1 Introduction

A large number of tasks in natural language pro-
cessing (NLP) are information extraction (IE) tasks,
such as n-ary relation extraction (Doddington et al.,
2004; Mintz et al., 2009; Hendrickx et al., 2010),
semantic role labeling (Das et al., 2014) and event
extraction (Kim et al., 2009; Doddington et al.,
2004). Researchers address these tasks with a vari-
ety of different model paradigms, such as support
vector machines (Rink and Harabagiu, 2010), con-
volutional neural networks (Collobert et al., 2011;
Zeng et al., 2014) and recurrent neural networks
(Tang et al., 2015; Nguyen et al., 2016).

This landscape of different tasks and models
gives rise to four challenges: (C1) Lack of gener-

∗All authors contributed equally.

alizability: Most models are tailored to a specific
task or setup, making it hard to transfer lessons
learned between tasks; (C2) Lack of comparabil-
ity: Although benchmark datasets are available
for most tasks, end-to-end evaluation typically in-
cludes peripheral aspects, such as preprocessing
components – thus, it is unclear to what extent re-
ported improvements mark actual advances in the
core models or model components; (C3) Difficulty
of reusability: Given task-specific models inside
complex systems, it is hard to reuse specific code
or models; (C4) Difficulty of usage: Users typically
have limited areas of expertise, but IE systems span
a range of such areas. Thus, developers of IE tools
may have trouble properly (re)training complex
machine learning models, and end users without
ML or CS background might even be unable to use
existing tools.

To tackle these challenges, we develop the
general framework DERE (Declarative Relation
Extraction). It enables users to (i) specify (novel
or established) IE tasks, (ii) compile models and
transfer them across tasks without additional de-
velopment effort, (iii) develop and evaluate models
across tasks, (iv) formulate and address research
questions, such as the investigation of model gen-
eralizability across tasks, transfer learning, or joint
learning across tasks and/or domains, and (v) verify
the generalizability of models by applying them to
a large variety of tasks.

DERE achieves this by providing (a) a general
mechanism to declaratively specify IE tasks and
(b) a shared processing framework that decouples
frontend and backend. This provides an attractive
shared basis for modeling tasks which are typically
perceived as being very different. In this paper, we
use BioNLP event extraction and aspect-based sen-
timent analysis (ABSA) as examples. At the same
time, the decoupling exposes accessible interfaces
for different user groups (cf. Section 3).
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Generic frame

BioNLP event extraction task
Aspect-based 

sentiment analysis task

Frame 1 <Regulation>

Trigger: regulation
Theme: IL-4

IL-4 gene regulation in general involves the 
nuclear factor of activated T cells (NFAT) family 
of transcription factors, of which NFAT1 and 
NFAT2 are most prominent in peripheral T cells.

This toaster is very stylish. 

Frame 2 <Regulation>

Trigger: involves
Theme: Frame 1
Cause: NFAT1

Frame 2 <Positive>

Trigger: very stylish
Target: toaster

Frame <type>

trigger:  span
slot 1:   {span | frame}
…
slot n:   {span | frame}

instantiation

extraction

Figure 1: Example formalizations of two different tasks
in terms of frames, slots, and spans.

The declarative specification of a task (which
we call a schema) builds upon spans and relations
between spans as basic concepts which are used by
essentially all IE tasks. To model n-ary relations,
we propose a slot-filling scheme in which frames
model n-ary relations and their arguments. Figure 1
shows the general structure of frames (below) and
two concrete instantiations for ABSA and BioNLP
(above). Each frame is triggered (anchored) by
a span, e.g., a subjective evaluating phrase like
“very stylish” or a BioNLP event trigger, such as
“regulation” or “involves”.

Frames hold a task-specific number of typed
slots, filled by relation arguments. The frames for
ABSA have a slot filled by the target (aspect) of the
sentiment while the frames for the BioNLP regula-
tion event hold a Theme slot and an optional Cause
slot. While triggers are always textual spans, slots
can be filled by either spans or frames, depending
on the task specification. We argue that this sim-
ple setup can model most IE tasks. Note that the
framework poses no theoretical restrictions to the
window from which frames are extracted. Thus, it
can model sentence-level, document-level as well
as multi-document tasks.

2 Related Work

Several applications require the joint extraction
of spans and relations between spans, such as the
BioNLP shared task (Kim et al., 2009), seman-
tic role labeling (Das et al., 2014) or (temporal)
slot filling (Surdeanu, 2013). However, all sys-

tems we are aware of for solving these tasks are
tailored to specific scenarios (Angeli et al., 2016;
Adel et al., 2016, i.a.). As a result, it is not straight-
forward to apply them to other use cases. In con-
trast, our framework is designed to be task- and
domain-independent.

Clarke et al. (2012) develop an NLP component
manager which combines several existing NLP
tools in a pipeline. Similarly, Curran (2003) aims
at a general NLP infrastructure but only reports im-
plementations of non-relational sequence-tagging
tasks. Examples of the few available toolkits which
are intended to provide users with the possibility
of automatically extracting information from text
data are Jet (Java Extraction Toolkit), GATE (Gen-
eral Architecture for Text Engineering, Cunning-
ham et al., 2013), UIMA (Unstructured Informa-
tion Management Architecture, Ferrucci and Lally,
2004), FACTORIE (McCallum et al., 2009) and
Stanbol which integrates other NLP frameworks,
e.g., OpenNLP (Morton et al., 2005).

Stanbol and OpenNLP, however, focus on tag-
ging tasks and do not provide tools for relation
extraction. FACTORIE is a general approach to
formulate factor graphs for arbitrary tasks. Our
framework takes arbitrary model paradigms as a
backend and is focused on IE, which enables the
abstraction layers introduced earlier. Jet, on the
other hand, is an IE engine developed specifically
for the ACE task specification.

GATE is most similar to our framework in scope.
It offers both a framework for programmers and
an environment for language engineers and com-
putational linguists. However, it is a very general
framework and working with it requires both do-
main and machine learning knowledge. In contrast,
our framework provides end users with an interface
for training models on new tasks without requiring
any specific knowledge.

3 Framework Design

Use Cases. We address the needs of the follow-
ing three user groups with associated use cases:
(1) Researchers/Model developers: Our framework
helps researchers to formulate their models in a
task-independent manner, such that they can be
tested and compared across tasks. This addresses
challenges C1, C2 and C3 mentioned in Section 1.
(2) Developers of IE tools for a new use case: Our
framework provides a common interface to models
previously developed for other tasks. Those mod-
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Frontend: Backend:

Task schema
XML

Annotation Data
(BRAT/XML)

Text Data
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basis for

annotates

defines Baseline model Configuration

...

Other model
e.g. graphical model,
deep learning model

Configuration

High-level configuration

Figure 2: Structure of the DERE framework.

els can be integrated and interchanged for new use
cases. This addresses challenges C3 and C4 from
Section 1. (3) Users of IE tools: With the common
interface our framework provides, end-users do not
need to know theoretical details about models but
can still use different models for their use case.
This addresses challenge C4 from Section 1.

Framework Structure. Figure 2 illustrates the
structure of the DERE framework. It is composed
of two main components: The frontend comprises
the user specification of the task (“task schema”),
including the types of spans and entities to be iden-
tified, and the possible relations that can exist be-
tween them. It manages reading corpora and anno-
tation files and provides an interface for users. The
backend hosts the models that make actual predic-
tions for spans, frames, and slots, given the task
schema, and their configurations. DERE backends
follow a modular design, wherein different back-
ends, using different methods for prediction, can
be used interchangeably with minimal changes to
the frontend.

Task Schemata. DERE represents all relations
r ∈ R in terms of two types of entities: spans and
frames. A span s ∈ S is a contiguous span of text
from the input corpus. Each span has a type t ∈ TS ,
corresponding to the kind of entity that that span
represents. The set of possible span types TS is
specified by the user for the task. A frame f ∈ F
represents a relationship between multiple spans
or other frames. Each frame contains a number of
named slots l ∈ L. These slots can each be filled
by zero or more other spans or frames. The set
of frame types TF , like span types, is task-specific.
For each frame type, the user specifies a set of slots,
and for each slot, what types of frames or spans
can fill it, plus optional cardinality constraints.

We represent a task schema as an XML file. Fig-
ure 3 gives an example task schema file, for a sub-

<deREschema name="BioNLP-ST 2009" ver="0.01" auth="Klinger">
<spantypes>
<span name="Protein" predict="False"/>
<span name="Gene_expression" anchors="Gene_expression"

predict="True"/>
<span name="Binding" anchors="Binding" predict="True"/>

</spantypes>
<frames>
<frame name="Gene_expression">
<slot name="Theme" types="Protein" cardinality="1"/>

</frame>
<frame name="Binding">
<slot name="Theme" types="Protein" mincardinality="0"/>

</frame>
</frames>

</deREschema>

Figure 3: A small but complete task schema for part
of the BioNLP shared task. Three span types are speci-
fied: Protein, Gene expression, and Binding.
The latter two anchor frames of the same name. Both
frames possess a single slot Theme which can be filled
by Protein spans. Gene expression frames
always have exactly one Theme, while Binding
frames may have zero or more Themes.

T1 Protein 1650 1655 IP-10
T2 Protein 951 955 PU.1
T3 Protein 1665 1670 ISG54
T4 Protein 978 992 CSF receptor
T5 Binding 932 937 binds
T6 Gene_expression 1634 1644 expression
E1 Binding:T5 Theme:T2 Theme2:T4
E2 Gene_expression:T6 Theme:T1
E3 Gene_expression:T6 Theme:T3

Figure 4: An example annotation in BRAT format, fol-
lowing the task specification from Figure 3. The text-
bound annotations T are the span annotations, the event
annotations E define our frames.

set of the BioNLP shared task (Kim et al., 2009).
Note that this specification defines a directed graph
with spans and frames as vertices V = S ∪ F and
relations as edges: E = R.

Data Files. Annotated data, needed for train-
ing models, are provided to DERE as annotation
files. We currently support annotations in the BRAT

(Stenetorp et al., 2012) format, cf. Figure 4.

4 Proof-of-Concept System

As a proof of concept, we present the following
system consisting of a pipeline of traditional NLP
formalizations: First, spans relevant for the task
are identified. Then, a classifier decides for each
pair of relevant spans which slots of which frame
they are likely to fill. Finally, a heuristic decod-
ing step compiles the results into frames. Figure 5
illustrates this pipeline. The proof-of-concept sys-
tem only supports non-recursive structures: slots of
frames cannot be filled by other frames, but must
be filled by spans – i.e., the right-hand BioNLP
frame from Figure 1 could not be predicted in this
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(1)

(2)

... migrating B2 complex contains both p50 and p55 ...
Localization Protein Protein

theme
theme

(3)

Localization
: migrating

theme: p50
theme: p55

−−−−→

Localization
: migrating

theme: p50

Localization
: migrating

theme: p55

Figure 5: Proof-of-concept pipeline: span identifi-
cation (1), slot classification (2), and decoding into
frames (3). : frame anchors (triggers)

implementation. Note that this is only a proof-of-
concept baseline but the framework is not limited
to pipeline models. In the future, we will develop
joint models that can cope with recursive structures.

Span Identification. We cast the span identifi-
cation problem as a BIO-style sequence-labeling
task that predicts the span boundaries. To model
overlapping spans, we train one model per span
type which outputs all spans of that type. Our
proof-of-concept system uses conditional random
fields (CRF, Lafferty et al., 2001). The feature
set consists of the lower-cased words, their stems,
their shape (orthographic case, digits, punctuation),
and a flag indicating whether the word is included
in a task-specific gazetteer. All features (except
the last one) are applicable to any NLP task. The
gazetteer feature is based on a simple lexicon of
label-specific words (e.g., positive words for detect-
ing positive spans for sentiment analysis) and can
be instantiated without any technical knowledge.

Slot Classification. Once the spans are identi-
fied, the slot classifier is used to predict which slots
of which frame they are likely to fill. We break this
question down to a classification task at the level of
span pairs – one anchor span representing a frame,
and another span representing a potential argument.
The search space is restricted to those pairs with
compatible types according to the schema.

Formally, the classifier takes as input the set S
of all spans identified previously, along with a task
schema. For each pair (si, sj) ∈ S2 of spans fol-
lowing the task schema, our classifier produces as
output either a single relation label rij , or NR (no
relation)1 if the two spans are unrelated. Conceptu-
ally, two spans si and sj are related iff si anchors a
frame, and sj fills a slot in that same frame. Rela-
tion labels rij are pairs (fi, lj) ∈ TF ×L, where fi

1We generate negative examples automatically.

is the frame type anchored by si and lj is the slot
type in fi that sj fills. This enables us to model, e.g.,
in the task schema in Figure 3, BINDING.THEME

and GENE EXPRESSION.THEME as separate rela-
tions. A linear support vector machine is used to
predict the most likely relation label (or NR). Users
can enable subsampling of negative examples.

As outlined in the introduction, the features we
take into account are included with the aim of be-
ing task-agnostic. Intra-span features are types of
identified spans and the bag of words in both spans.
Inter-span features take into account context. We
use the bag of words of tokens between the spans,
and of the tokens on the shortest path connecting
the spans in a parsed dependency tree, which we
assume to accurately capture the relationship ex-
pressed by the slot that links the two spans. Since
spans can contain multiple tokens, there can be
several shortest paths between tokens from the two
spans. Under the assumption that tokens in a span
are closely related to each other, we select the short-
est of these paths. In addition, we also use a bag
of bigrams of alternating label-token sequence on
that same path. Finally, we measure the length of
the shortest path and the token distance.

Decoding. Once the slot classifier identifies
all related span pairs, the decoding step gener-
ates frames. Pairs of spans (si, sj) that stand in
a relation r are first partitioned into equivalence
classes Ch according to their anchor span (i.e.,
(si, sj) ∈ Ci). It would be possible to produce
one frame for each equivalence class Ch, anchored
by the common anchoring span sh, and with slots
filled according to each span pair’s relation label
r. However, as equivalence classes can be arbi-
trarily large, this would allow for each slot to be
filled by arbitrarily many spans (as illustrated in the
bottom-left of Figure 5). As the task schema might
impose cardinality constraints, further processing is
required to ensure that all produced frames are con-
sistent with the task schema. For each equivalence
class Ch, we consider all possible legal frames –
i.e., all frames that are consistent with the task
schema and whose slots are filled according to
some subset of Ch. Of these legal frames, we retain
all maximally-filled legal frames (see bottom-right
of Figure 5).

Evaluation and Results. To prove the feasabil-
ity of our proof of concept, we report results with
this configuration on the 2009 BioNLP shared task,
for which we re-use the original evaluation machin-
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Event Class Precision Recall F1

Gene expression 68.12 57.30 62.25
Transcription 70.59 14.63 24.24
Protein catabolism 64.00 76.19 69.57
Phosphorylation 65.85 57.45 61.36
Localization 78.57 41.51 54.32

SVT-TOTAL 68.46 50.27 57.97

Table 1: Performance of the proof-of-concept system
for biomedical relation extraction (BioNLP’09 dev set)

Sentiment Class Precision Recall F1

Positive 41.07 24.19 28.57
Negative 26.68 7.15 11.00
Neutral 5.83 4.50 5.08

Table 2: Performance of the proof-of-concept sys-
tem for aspect based sentiment analysis (10-fold cross-
validation on USAGE corpus).

ery. The evaluation calculates the F1 scores for
the individual frames (events in the BioNLP task)
using a soft matching for trigger boundaries and
approximate recursive matching. Table 1 provides
the results of our simple system on that task. Due
to the restriction of our proof of concept to non-
recursive structures (cf. Section 4), we only report
on the BioNLP event types where all slots are filled
by spans. In comparison to the second-ranked sys-
tem, which also reports results on dev (Buyko et al.,
2009), our performance is slightly lower (1 percent-
age point less for protein catabolism, 13pp less
for gene expression and phosphorylation, but 11pp
more for localization). This confirms the general
usability of our general method.

Correspondingly, Table 2 provides the current re-
sults of the same model on the USAGE corpus for
aspect based sentiment analysis (Klinger and Cimi-
ano, 2014), with 10-fold crossvalidation on the En-
glish subset. In comparison to previous results, our
numbers are very low. Previous work showed that
this is tackled by joint inference, which we did not
implement yet (Klinger and Cimiano, 2013; Yang
and Cardie, 2013). However, this proof-of-concept
implementation of the same model already shows
the reusability of our framework by only changing
the task schema specification. It motivates and en-
ables further research on reusable models across
tasks with different needs.

Technical Details and Availability. The frame-
work is implemented in Python, following an
object-oriented design for frontend and backends
to support easy interchangeability of components.

The choice of Python will also help with future in-
tegration of neural network models. For the proof-
of-concept backend, we use scikit-learn for fea-
ture extraction and training (Pedregosa et al., 2011)
with crfsuite and liblinear. Tokenization and stem-
ming is done with NLTK (Loper and Bird, 2002),
dependency features are extracted with spacy (Hon-
nibal and Johnson, 2015) and dependency graphs
are stored and processed using NetworkX (Schult,
2008). The code is available under the Apache 2.0
License.2

5 Conclusion and Future Work

This paper presented DERE, a general framework
for declarative specification and compilation of
template-based slot filling. It addresses the needs of
three groups of users: backend model developers,
developers of information extraction tools for new
use cases and end users of information extraction
tools. vEspecially, it simplifies the evaluation and
comparison of new information extraction models
across tasks as well as the straightforward appli-
cation of existing models to new tasks. By our
general design of spans and frames, it is possible to
apply DERE to a large variety of natural language
processing tasks, such as unary, binary and n-ary
relation extraction, event extraction, semantic role
labeling, aspect-based sentiment analysis, etc.

As BRAT annotations are not as expressive as
our task schema files, we plan to extend the fron-
tend of DERE by supporting a native, XML-based
annotation format in the future. For the backend,
our goal is to develop a variety of state-of-the-art
models with joint span identification, slot classifi-
cation, and frame decoding, e.g., neural networks
with structured-prediction output layers (Lample
et al., 2016; Adel and Schütze, 2017, i.a.). Given
a variety of different models and tasks, we will be
able to address interesting research questions, such
a transfer learning and joint learning across tasks
and domains. We plan to further analyze the usage
of DERE and the possibilities it provides for inte-
grating different model types and configurations in
a multi-task oriented shared task.
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Abstract

In this paper, we present PAR4SEM, a seman-
tic writing aid tool based on adaptive para-
phrasing. Unlike many annotation tools that
are primarily used to collect training examples,
PAR4SEM is integrated into a real word appli-
cation, in this case a writing aid tool, in order
to collect training examples from usage data.
PAR4SEM is a tool, which supports an adap-
tive, iterative, and interactive process where
the underlying machine learning models are
updated for each iteration using new training
examples from usage data. After motivating
the use of ever-learning tools in NLP applica-
tions, we evaluate PAR4SEM by adopting it to
a text simplification task through mere usage.

1 Introduction

Natural language processing and semantic appli-
cations that depend on a machine learning com-
ponent require training data, i.e. examples from
which the machine learning algorithm learns from.
The training datasets require, most of the time,
manual annotation. Usually, such annotations are
conducted in a predefined cycle of annotation ac-
tivities. Once the annotation problem is identi-
fied, a standalone annotation tool along with the
annotation guideline is developed. At the end of
the annotation cycle, the collected dataset is fed to
the machine learning component, which produces
a static model that can be used thereafter in an ap-
plication.

Possible limitations of these annotation ap-
proaches are: 1) Developing a standalone anno-
tation tool is costly, sometimes expert or specially
trained annotators are required. 2) There is no di-
rect way to evaluate the dataset towards its effec-
tiveness for the real-world application. 3) It suf-
fers from what is known as concept drift, as the
annotation process is detached from the target ap-
plication, the dataset might get obsolete over time.

In this regard, we have dealt specifically with

the semantic annotation problem, using an adap-
tive, integrated, and personalized annotation pro-
cess. By adaptive, we mean that target appli-
cations do not require pre-existing training data,
rather it depends on the usage data from the user.
The machine learning model then adapts towards
the actual goal of the application over time. In-
stead of developing a standalone annotation tool,
the collection of training examples is integrated
inside a real-world application. Furthermore, our
approach is personalized in a sense that the train-
ing examples being collected are directly related to
the need of the user for the application at hand. Af-
ter all, the question is not: how good is the system
today? It is rather: how good will it be tomorrow
after we use it today?

Thus, such adaptive approaches have the fol-
lowing benefits:
Suggestion and correction options: Since the
model immediately starts learning from the usage
data, it can start predicting and suggesting recom-
mendations to the user immediately. Users can
evaluate and correct suggestions that in turn help
the model to learn from these corrections.
Less costly: As the collection of the training data
is based on usage data, it does not need a separate
annotation cycle.
Personalized: It exactly fits the need of the target
application, based on the requirement of the user.
Model-Life-Long Learning: As opposed to static
models that once deployed on the basis of training
data, adaptive models incorporate more training
data the longer they are used, which should lead
to better performance over time.

We have developed PAR4SEM, a semantic writ-
ing aid tool using an adaptive paraphrasing com-
ponent, which is used to provide context-aware
lexical paraphrases while composing texts. The
tool incorporates two adaptive models, namely
target identification and candidate ranking. The
adaptive target identification component is a clas-
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sification algorithm, which learns how to automat-
ically identify target units (such as words, phrases
or multi-word expressions), that need to be para-
phrased. When the user highlights target words
(usage data), it is considered as a training exam-
ple for the adaptive model.

The adaptive ranking model is a learning-to-
rank machine learning algorithm, which is used to
re-rank candidate suggestions provided for the tar-
get unit. We rely on existing paraphrase resources
such as PPDB 2.0, WordNet, distributional the-
saurus and word embeddings (see Section 2.1.1)
to generate candidate suggestions.

Some other examples for adaptive NLP setups
include: 1) online learning for ranking, example
Yogatama et al. (2014) who tackle the pairwise
learning-to-ranking problem via a scalable online
learning approach, 2) adaptive machine translation
(MT), e.g. Denkowski et al. (2014) describe a
framework for building adaptive MT systems that
learn from post-editor feedback, and 3) incremen-
tal learning for spam filtering, e.g. Sheu et al.
(2017) use a window-based technique to estimate
for the condition of concept drift for each incom-
ing new email.

We have evaluated our approach with a lexical
simplification task use-case. The lexical simplifi-
cation task contains complex word identification
(adaptive target identification) and simpler candi-
date selection (adaptive ranking) components.

As far as our knowledge concerned, PAR4SEM

is the first tool in the semantic and NLP research
community, where adaptive technologies are inte-
grated into a real-world application. PAR4SEM

is open source1 and the associated data collected
for the lexical simplification use-case are publicly
available. The live demo of PAR4SEM is avail-
able at https://ltmaggie.informatik.
uni-hamburg.de/par4sem.

2 System Architecture of PAR4SEM

The PAR4SEM system consists of backend, fron-
tend, and API components. The backend compo-
nent is responsible for NLP related pre-processing,
adaptive machine learning model generation, data
storage, etc. The frontend component sends re-
quests to the backend, highlights target units,
presents candidate suggestions, sends user inter-
action to the database and so on. The API compo-
nent transforms the frontend requests to the back-

1https://uhh-lt.github.io/par4sem/

end and returns responses to the frontend. Figure
1 shows the three main components of PAR4SEM

and their interactions.

Figure 1: The main components of PAR4SEM

2.1 The Backend Component

The backend component consists of several mod-
ules. For the adaptive paraphrasing system, the
first component is to identify possible target units
(such as single words, phrases, or multi-word ex-
pressions). For our lexical simplification use-case,
the target units identification component is instan-
tiated with the datasets obtained from Yimam et al.
(2017a,b, 2018). The adaptive target identification
unit then keeps on learning from the usage data
(when the user highlights portions of the text to
get paraphrase candidate suggestions).

Once target units are marked or recognized (by
the target unit identification system), the next step
is to generate possible candidate suggestion for the
target unit (paraphrase candidates). The candidate
suggestion module includes candidate generation
and candidate ranking sub-modules. Section 2.1.1
discusses our approaches to generating and rank-
ing paraphrase candidates in detail.

2.1.1 Paraphrasing Resources
Paraphrase resources are datasets where target
units are associated with a list of candidate units
equivalent in meaning, possibly ranked by their
meaning similarity. One can refer to the work of
Ho et al. (2014) about the details on how para-
phrase resources are produced, but we will briefly
discuss the different types of paraphrase resources
that are used in generating candidate suggestions
for PAR4SEM.
PPDB 2.0: The Paraphrase Database (PPDB)
is a collection of over 100 million paraphrases
that was automatically constructed using a bilin-
gual pivoting method. Recently released PPDB
2.0 includes improved paraphrase rankings, en-
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tailment relations, style information, and distribu-
tional similarity measures for each paraphrase rule
(Pavlick et al., 2015).
WordNet: We use WordNet synonyms, which
are described as words that denote the same con-
cept and are interchangeable in many contexts
(Miller, 1995), to produce candidate suggestions
for a given target unit.
Distributional Thesaurus – JoBimText: We use
JoBimText, an open source platform for large-
scale distributional semantics based on graph rep-
resentations (Biemann and Riedl, 2013), to extract
candidate suggestions that are semantically simi-
lar to the target unit.
Phrase2Vec: We train a Phrase2Vec model
(Mikolov et al., 2013) using English Wikipedia
and the AQUAINT corpus of English news text
(Graff, 2002). Mikolov et al. (2013) pointed out
that it is possible to extend the word based embed-
dings model to phrase-based model using a data-
driven approach where each phrase or multi-word
expressions are considered as individual tokens
during the training process. We have used a to-
tal of 79,349 multiword expression and phrase re-
sources as given in Yimam et al. (2016). We train
the Phrase2Vec embeddings with 200 dimensions
using skip-gram training and a window size of 5.
We have retrieved the top 10 similar words to the
target units as candidate suggestions.

2.1.2 Adaptive Machine Learning
PAR4SEM incorporates two adaptive machine
learning models. The first one is used to identify
target units (target adaption) in a text while the
second one is used to rank candidate suggestions
(ranking adaption). Both models make use of us-
age data as a training example. The target adaption
model predicts target units based on the usage data
(training examples) and sends them to the fron-
tend component, which are then highlighted for
the user. If the user replaced the highlighted tar-
get units, they are considered as positive training
examples for the next iteration.

The ranking adaption model first generates can-
didate paraphrases using the paraphrase resource
datasets (see Section 2.1.1). As all the candidates
generated from the paraphrase resources might not
be relevant to the target unit at a context, or as
the number of candidates to be displayed might
be excessively large (for example the PPDB 2.0
resource alone might produce hundreds of candi-
dates for a target unit), we re-rank the candidate

suggestions using a learning-to-rank adaptive ma-
chine learning model. Figure 2 displays the pro-
cess of the adaptive models while Figure 3 dis-
plays the pipeline (as a loop) used in the gener-
ations of the adaptive models.

Figure 2: The main and sub-processes of target and
ranking adaption components of PAR4SEM.

Figure 3: The loop for the generation of the adaptive
models of PAR4SEM.

The whole process is iterative, interactive, and
adaptive in a sense that the underlying models
(both target adaption and ranking adaption) get us-
age data continuously from the user. The models
get updated for each iteration, where n examples
conducted in a batch mode without model update,
and provide better suggestions (as target units or
candidate suggestions) for the next iteration. The
user interacts with the tool, probably accepting or
rejecting tool suggestions, which is fed as a train-
ing signal for the next iterations model. Figure 4
shows the entirety of interactions, iterations, and
adaptive processes of the PAR4SEM system. In the
first iteration, the ranking is provided using a base-
line language model while for the subsequent iter-
ations, the usage data from the previous batches
(t-1) is used to train a model that is used to rank
the current batch (t).
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Figure 4: The iterative and adaptive interaction of
PAR4SEM.

2.1.3 Backend Technologies
The backend components are fully implemented
using the Java programming language. Text seg-
mentation such as sentence splitting, tokenization,
lemmatization, and parts of speech tagging is han-
dled using the Apache OpenNLP2 library.

For the target unit identification system, we
have used Datumbox3, a powerful open-source
machine learning framework written in Java. We
have used specifically the Adaboost classification
algorithm.

For the ranking model, RankLib, which is the
well-known library for the learning to rank algo-
rithms from the Lemur4 project is integrated. All
the data related to PAR4SEM interactions (usage
data, time, and user details) are stored in a MySQL
database.

2.2 Frontend Components

The frontend component of PAR4SEM is designed
where document composing with a semantic para-
phrasing capability is integrated seamlessly. It is a
web-based application allowing access either on a
local installation or over the internet.

2.2.1 UI Components for Paraphrasing
The frontend part of PAR4SEM comprises differ-
ent modules. The most important UI component is
the text editing interface (Figure 5) that allows for
adding text, highlighting target units, and display-
ing candidate suggestions. 1 is the main area to
compose (or paste) texts. The operational buttons
( 2 ) are used to perform some actions such as to
undo and redo (composing, target unit highlight-
ing, and paraphrase ranking), automatically high-
lighting target units, and clear the text area. Target

2https://opennlp.apache.org/
3http://www.datumbox.com/
4https://sourceforge.net/p/lemur/wiki/

RankLib/

units are underlined in cyan color and highlighted
in yellow background color as a link ( 3 ) which
enables users to click, display, and select candidate
suggestions for a replacement ( 4 ).

Figure 5: The PAR4SEM text editing component that is
used to compose texts, highlight target units, and dis-
play candidate suggestions for the target units.

2.2.2 Frontend Technologies
The frontend components are implemented using
HTML, CSS and JavaScript technologies. For
the text highlighting and candidate suggestion re-
placement, the jQuery Spellchecker5 module is
slightly modified to incorporate the semantic high-
lighting (underline in cyan and a yellow back-
ground). The accompanied documentation and
datasets of PAR4SEM6 are hosted at Github pages.

2.3 RESTful API Component
Semantic technologies, those like PAR4SEM in-
corporates highly dynamic dimensions. One di-
mension is that the paraphrase resources can be
varied depending on the need of the application.
Another dimension is that the application can be
in different languages. If the backend and the
frontend technologies are highly coupled, it will
be difficult to reuse the application for different
languages, resources, and applications. To solve
this problem, we have developed PAR4SEM using
a RESTful API (aka. microservices) as a middle-
ware between the backend and the frontend com-
ponents.

The API component consumes requests (get-
ting target units and candidate suggestions) or re-
sources (saving usage data such as selection of
new target units, user’s preference for candidate
ranking, user and machine information) from the
frontend and transfers them to the backend. The

5http://jquery-spellchecker.badsyntax.
co/

6https://uhh-lt.github.io/par4sem/
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backend component translates the requests or re-
sources and handles them accordingly. Spring
Boot7 is used to implement the API services.

2.3.1 Installation and Deployment
As PAR4SEM consists of different technologies,
machine learning setups, resources, and configura-
tions, we opted to provide a Docker-based installa-
tion and deployment options. While it is possible
to fully install the tool on ones own server, we also
provide an API access for the whole backend ser-
vices. This allows users to quickly and easily in-
stall the frontend component and relay on our API
service calls for the rest of the communications.

3 Use-case – Adaptive Text
Simplification using Crowdsourcing

An appropriate use case for adaptive paraphrasing
is lexical text simplification. Lexical simplifica-
tion aims to reduce the complexity of texts due to
difficult words or phrases in the text (Siddharthan,
Advaith, 2014). We have used PAR4SEM particu-
larly for text simplification task with an emphasis
of making texts accessible for language learners,
children, and people with disabilities.

We conducted the experiment by integrating the
tool into the Amazon Mechanical Turk (MTurk)8

crowdsourcing and employ workers to simplify
texts using the integrated adaptive paraphrasing
system. While PAR4SEM is installed and run on
our local server, we make use of the MTurk’s
external HIT functionality to embed and conduct
the text simplification experiment. Once workers
have access to our embedded tool in the MTurk
browser, they will be redirected to our local instal-
lation to complete the simplification task. Figure 5
shows the PAR4SEM user interface to perform text
simplification task by the workers while Figure 7
shows the instructions as they appeared inside the
MTurk’s browser.

We asked workers to simplify the text for the
target readers, by using the embedded paraphras-
ing system. Difficult words or phrases are auto-
matically highlighted so that workers can click and
see possible candidate suggestions. The experi-
ment was conducted over 9 iterations, where the
ranking model is updated using the training dataset
(usage data) collected in the previous iterations.
The first iteration does not use ranking model but

7https://projects.spring.io/
spring-boot/

8https://www.mturk.com/

Figure 6: Learning curve showing the increase of
NDCG@10 score over 9 iterations.

candidates are presented using a default language-
model-based ranking. In (Yimam and Biemann,
2018) we have shown that the adaptive paraphras-
ing system adopts very well to text simplification,
improving the NDCG (Wang et al., 2013) score
from 60.66 to 75.70. Figure 6 shows the learning
curve for the different iterations conducted in the
experiment.

4 Conclusion

In this paper, we have described PAR4SEM, a se-
mantic writing aid tool based on an embedded
adaptive paraphrasing system. Unlike most an-
notation tools, which are developed exclusively
to collect training examples for machine learning
applications, PAR4SEM implements an adaptive
paraphrasing system where training examples are
obtained from usage data.

To the best of our knowledge, PAR4SEM is the
first of its kind where machine learning models are
improved based on usage data and user feedback
(correction of suggestions) for semantic applica-
tions. PAR4SEM is used in a text simplification
use-case. Evaluation of the system showed that
the adaptive paraphrasing system for text simplifi-
cation successfully adapted to the target task in a
small number of iterations.

For future work, we would like to evaluate the
system in an open task setting where users can
paraphrase resp. simplify self-provided texts, and
explore how groups of similar users can be uti-
lized to provide adaptations for their respective
sub-goals.
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Seid Muhie Yimam, Héctor Martı́nez Alonso, Martin
Riedl, and Chris Biemann. 2016. Learning Para-
phrasing for Multiword Expressions. In Proc. of the
12th Workshop on MWE, pages 1–10, Berlin, Ger-
many.

Seid Muhie Yimam, Sanja Štajner, Martin Riedl, and
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Abstract

We present a three-part toolkit for developing
morphological analyzers for languages with-
out natural word boundaries. The first part is
a lattice-based morphological analysis library
that uses a combination of linear and recurrent
neural net language models for analysis. The
other parts are a tool for exposing problems
in the trained model and a partial annotation
tool. Our morphological analyzer for Japanese
achieves new SOTA on Jumandic-based cor-
pora while being 250 times faster than the
previous one. We also perform a small ex-
periment and quantitive analysis of using our
toolkit.

1 Introduction

Processing scriptio continua natural languages, or
languages without natural word boundaries, like
space in English, frequently requires performing
tokenization into morphemes in the natural lan-
guage processing pipeline. Usually, tokenization
is done together with part of speech (POS) tag-
ging, pronunciation estimation or other subtasks.
This process is usually referred to as morphologi-
cal analysis.

A morphological analyzer is useful from a prac-
tical point of view only if it is fast as well as highly
accurate in its analysis. Because morphological
analysis is very important to languages without
word boundaries (like Japanese), there already ex-
ist many approaches and tools for performing it.
Morphological analyzers usually use two kinds
of resources: a dictionary which defines possible
morphemes and an annotated corpus which is used
to train an analysis model for connecting mor-
phemes together.

Modern morphological analyzers achieve high
accuracy (a segmentation F1 score of > .99 for
Japanese) on established domains like newspaper.
However, when using them on out-of-domain or

open domain data (like web texts) the accuracy de-
creases, and it is difficult to improve that accuracy
without creating costly annotations by trained ex-
perts.

The Juman++ Japanese morphological analyzer
(Morita et al. 2015, referred to also as V1), which
uses a combination of a linear model and a neu-
ral network-based language model (RNNLM) to
compute a semantic plausibility of a segmentation.
Juman++ has achieved state-of-the-art analysis ac-
curacy on Jumandic (the JUMAN dictionary and
segmentation standard (Kurohashi and Kawahara,
2012)) based corpora, and drastically reduced the
number of intolerable analysis errors. Unfortu-
nately, its execution speed was extremely slow and
this has limited the practical usage of Juman++.

We have developed a morphological analysis
toolkit consisting of three components: a morpho-
logical analyzer and two support tools which help
with the development of analysis models. The an-
alyzer is a complete rewrite of core ideas of Ju-
man++, released as Juman++ V21 (Tolmachev and
Kurohashi, 2018). Our reimplementation is more
than 250 times faster than V1, reaching the speed
of traditional analyzers, at the same time achieving
better accuracy than V1.

We have also developed a tool which uses raw,
unannotated data and gives an insight into prob-
lematic dictionary and grammar points, together
with finding sentences which contain situations
not present in training data by exploiting differ-
ences in the analysis that arise from using different
beam search configurations. It is bundled with V2.
Also, we have developed a partial annotation tool
which makes it easy to review problematic sen-
tences and create partial annotation data for im-
proving the analysis2. To the best of our knowl-

1https://github.com/ku-nlp/jumanpp
2https://github.com/eiennohito/

nlp-tools-demo

54



edge, a similar set of tools has never been devel-
oped before. Juman++ V2 and the development
tools are language and segmentation standard in-
dependent and are released under the permissive
Apache 2 open source license.

2 Related Work

KyTea (Neubig et al., 2011) is a similar tool that
can perform morphological analysis for languages
with the continuous script. It can also be trained
using partial annotation data and output point-wise
confidence scores for the analysis result which
were used for creating partially annotated data in
an active learning scenario. Still, by using a point-
wise approach and estimating auxiliary tags (like
POS) after computing segmentation, KyTea trades
off accuracy for simplicity. Juman++ is faster, has
better accuracy, does tag estimation jointly with
segmentation, uses an online learning approach
and can use longer contexts in forms of RNNLM
and trigram features.

3 Juman++ Morphological Analyzer V2

Juman++ V2 is implemented with modern C++,
with the intention to be used not only as a pro-
gram, but also as an embeddable library, usable in
a multi-threaded environment. Additionally, V2 is
not hardwired to a particular dictionary and can
use partially annotated data for training.

Juman++ is a lattice-based analyzer. For an in-
put sentence, it looks up all possible morphemes
from a dictionary, makes a lattice from them, and
assigns a score s to each path going through the
lattice. The path with the highest score is consid-
ered to be the analysis result. The score s consists
of two components: a feature-based linear model
score sl and an RNNLM score sRNN, which are
combined as

s = sl + α(sRNN + β),

where α and β are scale and bias hyperparam-
eters respectively. The RNNLM score is a log-
probability score from the language model.

The linear score is defined as

sl =
∑

t∈p
f(t, p)w,

where f(t, p) is an indicator vector which contains
features, extracted for a node t in a path p, and w
is a model weight vector. Features use dictionary

information of the node t and at most two previous
nodes and their surface surroundings. Weights are
learned using the Soft Confidence Weighted algo-
rithm (Wang et al., 2016).

In practice, it is intractable to compute scores
for all paths through the lattice. Instead, we use
beam search. Additionally, because the RNNLM
is computationally-heavy, we compute the RNN
score only for the paths which remain in the beam
of the special end-of-string token. The overall de-
sign is to cut off improbable analysis results with
a simple model and then re-rank by RNNLM.

3.1 Search Space Trimming

One of important optimizations of V2 is the re-
duction of search space by changing the beam
search operation mode. Because the Juman++ lin-
ear model uses up to 3-gram features, the beam
searching procedure has to deal with combinato-
rial explosion caused by higher order n-gram fea-
tures. V1 uses local beams of width j, meaning
that each lattice node keeps j incoming paths with
top scores. The rest of the paths are discarded. The
problem is that paths are discarded after evaluating
their scores and the number of evaluations is still
large. Most of the sentences have several bound-
aries which have 20-30 both left and right nodes.
Because almost all these paths are useless, we do
not want to consider them in the analysis at all.

The first improvement is to use only paths end-
ing on left nodes with top k scores instead of using
all left paths. Connections for the remaining paths
are not considered. We refer to this process as left
global beam. The application of the left global
beam is shown in Figure 1a.

The second improvement is the right global
beam, displayed in Figure 1b. As the first sub-
step, we use top l(≤ k) paths ending at left nodes
to compute scores of right nodes. After that, we
evaluate the connections from the remaining k− l
left paths to the top-scoredm right nodes. The rest
of connections are not considered.

We call search using local beams as full beam.
In comparison to that, a combination of left and
right global beams is referred to as trimmed beam
because it uses significantly smaller search space.

3.2 Partially Annotated Data

Juman++ V2 supports both training with partially
annotated data and soft-constrainted analysis us-
ing partially annotated data as constraints.
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(a) Left global beam. k = 2. Top left paths are displayed
in orange. Remaining left paths are displayed in solid gray.
Non-considered paths are displayed as dashed blue arrows.
Considered paths are solid blue.
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(b) Right global beam. l = m = 1. A top left path and a
top right node are displayed in green. Orange paths via the
boundary were used for scoring right nodes. Solid blue path
via the boundary connects the remaining k− l top left paths
the top right nodes. Dashed blue paths are not considered.

Figure 1: Trimming the search space using the global beams

There exist three types of annotations: bound-
ary (break here), non-boundary (no break here)
and word. A word annotation means that a se-
quence of characters must not contain boundaries
inside it; additionally, the word can have tags at-
tached to it, meaning that the analysis result also
must have these tags.

For training, we need to provide sets of correct
and incorrect features for the training algorithm. A
feature computed from the correct path would be
correct, and a feature containing any lattice node
that is not contained in the correct path would be
incorrect.

When using the fully annotated data, there ex-
ist only a single correct path. However, for partial
annotated data, there could exist multiple allowed
paths through the lattice. Because of this, when
training using the partially annotated data, we use
several highly-scored candidates which do not vi-
olate annotation requirements instead of the only
correct path as in the case of fully annotated data.

3.3 Performance Comparison

We compare both speed and accuracy of five
different Japanese morphological analyzers: JU-
MAN3, MeCab4, KyTea, Juman++ (V1) and Ju-
man++ (V2). For both versions of Juman++ we
report results both using and not using RNNLM
(noRNN).

Analysis speed We used a desktop computer
with Intel i7-6850K CPU, 64GB of RAM and
Ubuntu 16.04 Linux for analysis speed compar-
ison. The models were trained from scratch us-

3http://nlp.ist.i.kyoto-u.ac.jp/EN/
index.php?JUMAN

4http://taku910.github.io/mecab/

Analyzer Speed (sents/s) Ratio

JUMAN 8,802 1.00
MeCab 52,410 0.17
KyTea (Jumandic) 4,892 1.79
KyTea (Unidic) 1,995 4.41
V1 noRNN 27 328.82
V1 RNN 16 535.72
V2 noRNN 7,422 1.18
V2 RNN 4,803 1.83

Table 1: Morphological analysis speed comparison

ing the same Juman++ dictionary, the Kyoto Uni-
versity5 (KU) and KWDLC6 corpora for all mor-
phological analyzers except JUMAN, which is not
trainable. For KyTea we also report the throughput
using the Unidic-based models, which are avail-
able for download from the KyTea website. A
Jumandic-based model for KyTea was learned us-
ing default parameters. V1 uses the full beam of
width j = 5. V2 uses trimmed beam with param-
eters j = 5, k = 6, l = 1, m = 5. All analyzers
were using only a single thread.

Table 1 shows the analysis speed of the consid-
ered morphological analyzers and speed ratio as
compared to JUMAN. The speed was measured by
analyzing 50k sentences from a web corpus. Each
analyzer was launched five times and the median
time was used for computing the analysis speed.
V2 noRNN is only 20% slower than JUMAN
while having a considerably complex model. V2

5 http://nlp.ist.i.kyoto-u.ac.jp/EN/
index.php?Kyoto University Text Corpus

6 http://nlp.ist.i.kyoto-u.ac.jp/EN/
index.php?KWDLC
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KU KWDLC
Analyzer Seg +Pos Seg +Pos

JUMAN 98.41 97.20 98.10 97.01
KyTea 99.12 98.16 98.00 96.75
MeCab 99.14 98.58 98.28 97.61
V1 noRNN 98.94 98.42 97.66 96.95
V1 RNN 99.38 98.95 98.41 97.87
V2 noRNN 99.44 98.98 98.44 97.79
V2 RNN 99.51 99.05 98.67 98.02

Table 2: F1 scores of morphological analyzers on
Jumandic-based corpora. Seg is segmentation;
+Pos is correctly guessing the POS-tags after seg-
mentation.

RNN has 1.8 times the execution speed of JU-
MAN and is more than 250 times faster than V1.

Accuracy Table 2 shows F1 scores for both the
KU and KWDLC corpora. A concatenation of
training sections of both corpora was used to train
a combined model; the reported scores are for
the test sections. MeCab and V2 have hyperpa-
rameters optimized using Spearmint (Snoek et al.,
2012).

V2 RNN achieves a higher F1 score than the
previous SOTA of V1 RNN. Even the scores of
V2 noRNN are higher in some cases than those of
V1 RNN. Note that the scores of V1 noRNN are
one of the lowest, and thus we hypothesize that
the number of training iterations of the V1 linear
model was not sufficient. However, it was difficult
to increase it because of very slow analysis speed.

With V2, we could find an optimal number of it-
erations for learning the linear model with the best
accuracy. The other reason for the improved ac-
curacy for V2 is that it uses surface character and
character type features.

4 Beam Search Diffs as Active Learning

We compared the accuracy of the trimmed beam
search to the full configuration in the in-domain
setting. For this experiment, we trained the model
using 1 pass of full beam search followed by 4
passes of trimmed beam search for the optimal
number of iterations for different trimmed beam
parameters. Figure 2 shows the F1 score average
on 10-fold cross-validation over the KU corpus. It
can be seen that the accuracy of the models does
not fall even if using very small global beam sizes.
Nevertheless, we noticed that there exist sentences

1 2 3 4 5 6
test 

98.4

98.6

98.8

99.0

99.2

train =1
train =2
train =3
train =4
train =5
train =6

Figure 2: Cross-validation test F1 score average on
the KU corpus for POS tags when using different
global beam parameters k = m = ρ, l = 1. Red
dotted line at the top is F1 score of a model without
global beams.

when the full and trimmed search configurations
do not agree on the top-scoring path when analyz-
ing random web sentences and produce diffs.

To get a better picture, we analyzed a large
number of sentences from a raw Japanese cor-
pus, crawled from the web. On average,
0.38% (1969/510595) of sentences were diffs, a
relatively small number. In contrary to our expec-
tations, the full beam analysis was correct only in
around 50% of the cases. The rest of sentences
had both of analysis variants incorrect either be-
cause the dictionary did not support the language
phenomena (20%) or lack of coverage by the train-
ing data (10%); the trimmed beam analysis was
the correct one (10%); and other situations that
were difficult to decide or impossible to analyze
correctly like typos.

Based on these insights, we believe that the diffs
can be treated as a result of selection by the Query-
by-Committee active learning algorithm with two
committee members (Settles and Craven, 2008;
Seung et al., 1992). We think that diffs actually
reveal problems not only with a training corpus
(the goal of active learning) but also with an anal-
ysis dictionary as well. Note that we are using
exactly the same model in both beam modes and
the only difference is beam configuration. So, a
diff can form only if trimmed beam ranking was
not learned correctly either because the model ca-
pacity was not enough, features were not strong
enough, or the situation was not present in the
training data.

When the beam size at training is very small,
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the model does not learn to rank for the trimmed
case well enough, lowering the accuracy on larger
beam sizes. Increasing the beam size above three
makes the trimmed beam score indistinguishable
with the full beam. On the other hand, the model
loses accuracy on smaller beam sizes at test time,
because the trimmed ranking fails in those situ-
ations. Thus we believe that the model capacity
and the feature set should be enough to capture
the ranking and the diffs are caused mostly by the
lack of training data. The fact that the diffs in-
clude situations when it is impossible to produce
the correct analysis at all, namely lack of dictio-
nary words and typos, confirms our belief.

On the other hand, we also believe that the cor-
rections of places pointed by diffs are not going
to significantly improve benchmark scores exactly
because of the same reason. The benchmark cor-
pus will usually be relatively in-domain and not
contain dictionary or grammar problems, because
they would be fixed when creating the corpus. So
we hope that this method would be useful to im-
prove real world morphological analysis accuracy
and for domain adaptation.

5 Partial Annotation Tool

Because the diffs must be reviewed by human an-
notators to be useful as training data, we have de-
veloped a partial annotation tool based on a simple
idea: to allow annotators to select a correct anal-
ysis from two candidates. The output of the tool
can be used as partially annotated training data.

5.1 Tool Description

The tool is a web application, implemented in
Scala. As an input, it uses sentences with some
parts being diffs, which are produced by a tool
bundled with the Juman++ V2 distribution. For
each sentence, annotators are asked to select a cor-
rect variant, correct an analysis if both are not cor-
rect, or report if it is impossible to select a correct
analysis or there is a problem with the sentence
itself.

A sentence diff view is shown in Figure 3. The
annotation targets are diffs: we want annotators to
choose a correct analysis from the possible vari-
ants, which are displayed side-by-side. A sen-
tence can contain more than one annotation target
in general and each variant can contain more than
one morpheme. Non-diff parts form contexts and
are displayed in grey. The tool shows diffs in an

Analysis 
variant 1

Context

Context

Analysis 
variant 2

Special Tags

Figure 3: Annotation tool: diff view. UI explana-
tions are in blue. Variant 1 is selected.

unspecified order. In the shown example, the left
variant is selected as the correct one. The area in
the middle of the target section contains a button
which activates an interactive analysis mode and
buttons for assigning special tags in the case when
the mistake in the target part is due to a typo or a
phenomenon that we do not want to support in the
automatic analysis, such as netspeak.

In the case when both analyses are incorrect, an
annotator can use the interactive analysis mode,
shown in Figure 4, which performs constrained
morphological analysis. Constraint nodes are
shown in blue. A full beam analysis becomes ini-
tial constraints.

The interactive analysis mode uses lattice infor-
mation from the Juman++ to provide morpheme
candidates for constraints. It is possible to show
either all morphemes containing a focused charac-
ter or morphemes spanning exactly selected char-
acters. The corrected analysis replaces the closest
diff variant which was not selected by any annota-
tor yet, or creates a new variant if replacing is not
possible. Finally, if there are no variants, annota-
tors can select a character span and report that it is
impossible to choose a correct morpheme in this
sentence for that span.

5.2 Annotation Experiment

We performed a small scale annotation experiment
using the developed annotation tool. For the ex-
periment, we trained a model on the concatenation
of the training and test data from both benchmark
corpora and the copy of data augmented by re-
moving “ga”, “ha” and “wo” case markers, which
are often omitted in the spoken language so that
the model would be more robust to case marker
omission. Using this model we have collected sen-
tences which contained diffs, as described in Sec-
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Figure 4: Annotation tool: interactive analysis.
Constraint nodes background is blue. Other anal-
ysis variants for the last constraint node are dis-
played after the gray indent. The “CL” button re-
moves a constraint.

tion 4. We asked two annotators to work for three
hours each.

During the allocated time, the two annotators
could review 111 and 112 sentences each. Both
the annotators started annotating rather slowly,
while gradually increasing their annotation speed.
An inter-annotator agreement was 0.819. The an-
notators have selected at least one of analysis can-
didates in most (82%) cases; the rest were special
tags.

We also checked sentences where the annotators
did not agree on the correct analysis, but both the
annotations were analysis results (9 in total). Each
of them was difficult to decide even for us. We be-
lieve that the relatively large number of sentences
which caused annotators to spend a long time on
annotation is caused by the fact that the diff ex-
tractor selects difficult cases.

6 Conclusion and Future Work

We present Juman++ V2: a morphological anal-
ysis and tokenization toolkit for languages with
the continuous script. Our current implementa-
tion focuses on Japanese and the Jumandic-based
segmentation standard, but the core library is lan-
guage independent. Juman++ V2 achieves a new

state-of-the-art accuracy for both the Kyoto Uni-
versity and KWDLC corpora while drastically re-
ducing the analysis time compared to Juman++
V1. Juman++ V2 can be used as a library and
can use both fully and partially annotated data for
training.

We also release a morphological analysis devel-
oper tool which reveals problematic places of a
dictionary and segmentation standard using only
unannotated data by comparing the analysis re-
sults in the two different beam search configura-
tions. Also, we release the partial annotation tool
for easily viewing and fixing these problems.

We plan to create a Unidic version of Ju-
man++ V2 and use it to annotate readings of
the Jumandic-based corpora, which are currently
rather arbitrary, enabling the Jumandic-based
models to estimate correct readings as well. We
also plan to continue collecting partially annotated
data and release a partially annotated web corpus.
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Abstract

In times of fake news and alternative facts,
pro and con arguments on controversial top-
ics are of increasing importance. Recently,
we presented args.me as the first search en-
gine for arguments on the web. In its initial
version, args.me ranked arguments solely by
their relevance to a topic queried for, making it
hard to learn about the diverse topical aspects
covered by the search results. To tackle this
shortcoming, we integrated a visualization in-
terface for result exploration in args.me that
provides an instant overview of the main as-
pects in a barycentric coordinate system. This
topic space is generated ad-hoc from con-
troversial issues on Wikipedia and argument-
specific LDA models. In two case studies, we
demonstrate how individual arguments can be
found easily through interactions with the visu-
alization, such as highlighting and filtering.

1 Introduction

For many controversial topics in life and politics,
people disagree on what is the right stance towards
them, be it the need for feminism, the influence of
religion, or the assassination of dictators. Stance is
affected by the subjective assessment and weight-
ing of pro and con arguments on the diverse aspects
of a topic (Kock, 2007). Building stance in a self-
determined manner is getting harder and harder
in times of fake news and alternative facts, due to
the unclear reliability of many sources and their
bias in stance and covered aspects. This was our
societal motivation for the development of the first
dedicated argument search engine, args.me.1

args.me allows querying for arbitrary controver-
sial topics. As search results, it opposes pro and con
arguments from the web, ranked by their computed
relevance to the topic. args.me is non-commercial
and aims to avoid bias towards either stance. In

1Also known as just args, found at: https://args.me

(Wachsmuth et al., 2017b), we introduced the soft-
ware framework and the initial argument index un-
derlying args.me as well as its basic user interface.

In its first version, args.me presented arguments
in textual form with linked sources, similar to the
web page snippets of conventional search engines,
but with color-encoded stance. Examples are given
below in Figures 1 and 2. This is adequate for com-
prehending those arguments deemed most relevant.
Unlike for many general information needs (Croft
et al., 2009), however, reading the top results is not
enough for building an informed stance. Rather,
diverse aspects of a controversial topic need to be
explored. In our recent study with 97 international
users, aspect coverage was seen as the second most
important ranking criterion — after source reliabil-
ity but before recency, user ratings, and others.2 A
simple relevance ranking of possibly thousands of
arguments provides weak support in that regard.

This paper shows a novel way of presenting ar-
gument search results, which we designed and inte-
grated into args.me to support a rapid exploration
of the aspects of a topic. In particular, we visualize
this topic space in a barycentric coordinate system
(Riehmann et al., 2018), representing the distribu-
tion of pro and con arguments over the main cov-
ered aspects (see Figure 3). Possible aspects were
derived offline from the Wikipedia list of controver-
sial issues3 as well as from LDA topic models built
based on the 291k arguments in our index, whereas
the aspects actually visualized are derived ad-hoc
from the search results. Through interactions with
the visualization, a user can easily highlight and
filter arguments on the aspects of interest. In two
case studies, we demonstrate how the visualization
speeds up argument search notably.

2The user study, also including other questions related to
argument search, is going to be published in another venue.

3Issue list: https://en.wikipedia.org/wiki/
Wikipedia:List_of_controversial_issues
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Figure 1: The pro vs. con view of args.me, showing the
argument search results for the query “feminism”.

2 Related Work

Different systems to visually create and analyze
arguments have been introduced in the past. Some
of their visualizations serve as a mind map to sup-
port ongoing discussions, such as gIBIS (Conklin
and Begeman, 1988), Belvedere (Suthers et al.,
1995), ArgVis (Karamanou et al., 2011), Dicode
(Tzagarakis and Karacapilidis, 2013), and Debate-
Graph (Baldwin and Price, 2018). Others allow
for evaluating the structure and schemes of argu-
ments, such as Araucaria (Reed and Rowe, 2004),
Rationale (van Gelder, 2007), ArgueApply (Pührer,
2017), Argunet (Betz et al., 2018), and Truthmap-
ping (Truthmapping, 2018).

To support achieving consensus in a discussion,
SEAS (Lowrance et al., 2000), VUE (Baroni et al.,
2015), and Dialectic Map (Niu, 2016) provide a
combination of automatic argument analysis and vi-
sual argument summaries. With similar intentions,
Lexical Episode Plots (Gold et al., 2015), ConToVi
(El-Assady et al., 2016), NEREx (El-Assady et al.,
2017), and Jentner et al. (2017) visualize specific
aspects of transcribed discussions.

All these works focus on single arguments or
the set of arguments within a single debate or text.
In contrast, we present a visualization that summa-
rizes arguments from many different texts. Unlike
in (Wachsmuth et al., 2017a), where we illustrated
structural argumentation patterns in the texts of a
corpus, here we target the content of arguments.
As the above-mentioned system ConToVi, we visu-
alize the topic space covered by a set of arguments.
While ConToVi provides insights into the flow of
aspects during the discussion of a controversial
topic, our visualization aims to make arguments
on specific aspects easily findable. Moreover, we
allow arguments to cover a weighted distribution of
multiple aspects rather than only a single aspect.

Figure 2: The overall ranking view of the initial version
of args.me, showing results for the query “feminism”.

3 Argument Search with args.me

As presented in (Wachsmuth et al., 2017b), the ini-
tial version of args.me follows approved concepts
of conventional search engines (such as Google or
Bing), but it adapts them to the specific goals of ar-
gument search. Via the interface of args.me, users
can enter free text queries on controversial topics,
such as “feminism” and “assassination of dictators”.
While conventional search engines return links to
web pages along with short textual excerpts as re-
sults, args.me directly returns all arguments found
to be relevant, linked to their source web pages.

Originally, args.me provided two views that dis-
played the found arguments in a textual result list
with color-encoded stance, as shown in Figures 1
and 2: a pro vs. con view that opposes the most rele-
vant pros and cons, and an overall ranking view that
ranks all arguments by their relevance irrespective
of stance. A fundamental question in this regard is
what arguments are actually deemed most relevant?
Argument search implies specific ranking criteria,
such as recency, perceived quality, aspect coverage,
and source reliability. Assessing these criteria is
all but trivial and partly unsolved. In its current
state (mid 2018), args.me therefore still relies on
standard information retrieval measures (Robertson
and Zaragoza, 2009), i.e., it ranks arguments higher
the more they match the words in the query.

So far, however, for many queries the top-ranked
arguments neither appear to be the strongest on
the given topic, nor do they cover the whole di-
versity of the topic. Having only a textual result
list can then make it hard to find the best argu-
ments or specific arguments of interest. This is
why we aimed for new ways to support an efficient
search space exploration — one main goal of infor-
mation visualization (Munzner, 2014). While our
recent user study suggested that source reliability
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Figure 3: Topic space visualization for the query “fem-
inism”, positioning the retrieved arguments according
to the eight main covered aspects and other.

is most important (see Section 1), the 291,440 argu-
ments currently indexed by args.me anyway come
from five selected sources only (Wachsmuth et al.,
2017b). Instead, we thus focus on the second most
important ranking criterion: aspect coverage.

4 Visualization of the Topic Space

For building an informed stance on a controversial
topic, obtaining insights into the variety of aspects
touched by the topic is crucial. We aid this process
by accompanying the textual result list in args.me
with a topic space visualization, which puts the
aspects covered by the listed arguments into the
focus, highlights the main aspect of each argument,
and groups arguments covering similar aspects.

4.1 Determining Topical Aspects
The first step to develop the visualization was to
build a topic model that can represent the aspects
of each argument in the result list. We compared
two alternative approaches for this purpose:

First, we computed the relative distribution of
all the over 1000 terms from the Wikipedia list of
controversial issues in each indexed argument. For
instance, if “Women” occurs ten times, “Woman”
six times, “Feminism” four times, and no other
term, then we have (Women 0.5, Woman 0.3, Femi-
nism 0.2) with implicit zeros for all others. Second,
we performed LDA topic modeling (Blei et al.,
2003) based on the words in all arguments from
our index. With an interval size of 10, we tested
all numbers of topics from 10 to 100 and chose the

Aspect 1

Aspect 2

Aspect 3Aspect 4

Aspect 5

0.2

0.3

0.5

Figure 4: Positioning an argument glyph in the topic
space: the black arrow shows the linear combination of
weighted vertices (Aspect 3 0.2, Aspect 5 0.3, Aspect 1
0.5). The glyph itself points to the main covered aspect.

number that minimized perplexity: 40. Each aspect
is then represented by all words of one LDA topic,
and the relative aspect distribution is calculated by
counting the occurrence of all associated words
in each argument. We found the Wikipedia-based
topic model to be more convincing, which is why
it is set as the default in args.me.4

4.2 Visualizing Topical Aspects
To visualize the aspect-based topic space, we opted
for generalized barycentric coordinates (Meyer
et al., 2002), as they naturally fit our purpose: We
represent an argument as a linear combination of
weights for all aspects, while barycentric coordi-
nates represent a point as a linear combination of
the vertices of a polygon (both adding up to 1.0).
Thus, the topic model can be used as input for the
visualization without recalculation. Figure 3 shows
the visualization of the results for the query “femi-
nism”, consisting of two main elements: the topic
space and the argument glyphs within this space.

The topic space is depicted as a regular poly-
gon with one vertex for each represented aspect.
Both given topic model alternatives comprise too
many aspects to depict them all. To reduce visual
clutter in favor of a lean visualization, we limit
the maximum number of visualized aspects, such
that readability is not diminished. In particular,
we keep only those eight aspects that are the most
frequent in the argument search results. All other
aspects are merged into a ninth aspect “other”. The
labels for the aspects are short terms in case of the
Wikipedia-based topic model or visualized as word
clouds in case of the LDA topic model.

Each argument glyph represents one argument
in the form of a colored circle (green for pro, red

4The LDA alternative can be activated in args.me by chang-
ing the value of the v-parameter in the URL field to “lda”.
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Figure 5: Hovering over an argument reveals the as-
pects it covers (main aspect marked by a small arrow).

for con) with a small arrow pointing to the main
covered aspect. The glyphs are positioned based
on their aspect distribution: the stronger one aspect,
the stronger a glyph is “pulled” in that direction,
as sketched in Figure 4. Accordingly, similar argu-
ments are placed spatially near to each other. To
ensure the visibility of all glyphs and to avoid over-
plotting, arguments placed on top of each other are
aggregated into a single glyph. The glyph size de-
pends on a logarithmic mapping of the number of
represented arguments. Since arguments with both
stances may be grouped, the color of an aggregate
glyph represents the majority stance of all argu-
ments contained, from green (all pro), over gray
(balanced pro/con), to red (all con).

4.3 Interacting with Topical Aspects

The integration of our visualization into args.me is
shown below in Figures 7 and 8. This new topic
space view replaces the old overall ranking view: it
includes the textual argument ranking and adds the
visualization to the right. At first, the visualization
shows only the information outlined above, but it
provides further details upon interaction.

Barycentric coordinates are ambiguous and may
place arguments with different aspects at similar
locations. For disambiguation, users can hover over
a glyph to reveal all covered aspects, as exemplified
in Figure 5. The represented arguments are also
highlighted in the textual list, given that they appear
on the current result page. Vice versa, hovering
over a textual argument highlights the respective
glyph with a wide green or red border.

Figure 6: Selecting arguments in the topic space visual-
ization filters them in the textual result list of args.me.

In addition, the visualization enables a filtering
of the textual results: A user can select one or more
arguments by clicking or brushing (see Figure 6),
in order to narrow down the list to the aspects of
interest. All other arguments are grayed out.

5 Case Studies

To verify the benefit of our visualization, we finally
explore two typical use cases of argument search:
topic space exploration and search refinement.

5.1 Topic Space Exploration
First, we consider a query for “feminism”. 659
arguments are returned by args.me for this topic, as
shown in Figure 7. While the top-ranked arguments
seem highly relevant in general, our visualization
reveals that also some rather specific aspects are
covered by the search results, such as “Abortion”
and “United Nations”. Interacting with the visual-
ization helps explore the entire topic space.

In particular, hovering over the argument glyphs
clarifies what aspects they exactly cover, such as
“Woman”, “Women”, and “Feminism” itself for the
highlighted argument in Figure 7. After a first ex-
ploration via hovering, a result subset of interest
can be filtered through brushing, say, the four top-
most glyphs (see Figure 6 above). The selected
arguments are then shown at the top of the textual
result list (all below are grayed out). From the se-
lected arguments, we learn that Emma Watson has
made the need for feminism a point at the United
Nations, whereas the claimed necessity of abortion
is used as an analogy to justify the necessity of
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Figure 7: The args.me search results for the query “feminism”, along with the integrated topic space visualization.
The argument hovered over in the visualization is highlighted in the textual result list (“Women don’t need...”).

Figure 8: The single filtered args.me search result on the aspect Muammar Gaddafi for the query “assassination of
dictators”. The filtering is the result of clicking in the respective argument glyph in the topic space visualization.

feminism. Without the visualization, these insights
would have been hard to gain; the two respective
arguments were ranked at position #43 and #46.

5.2 Search Refinement

As a second example, we assume that a user looks
for new arguments on the “assassination of dicta-
tors”, for which args.me provides 119 results. If
the user wants to refine a search to restrict it to a
specific aspect of the topic only (e.g., to arguments
covering Muammar Gaddafi), a simple click on the
respective argument glyph in the topic space visu-
alization suffices, as illustrated in Figure 8. The
associated arguments are filtered and placed at the
top of the result list (only one argument in the illus-
trated case). With the existing interaction methods

of args.me, the argument text can be extended and
its source web page shows up after clicking on it.
In the old overall ranking view, the argument would
have been ranked at position #34.

6 Conclusion

This paper has presented a new visual interface for
our argument search engine, args.me. The visual-
ization supports users in learning about the topical
aspects covered by the arguments returned in re-
sponse to a query. In two case studies, we have
demonstrated how this topic space visualization
enables an efficient exploration and refinement of
argument search results. Future research on model-
ing the aspects of an argument can further enhance
the usability of the visualization.
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Abstract

This paper describes SentencePiece, a
language-independent subword tokenizer
and detokenizer designed for Neural-based
text processing, including Neural Machine
Translation. It provides open-source C++
and Python implementations for subword
units. While existing subword segmentation
tools assume that the input is pre-tokenized
into word sequences, SentencePiece can
train subword models directly from raw
sentences, which allows us to make a purely
end-to-end and language independent system.
We perform a validation experiment of NMT
on English-Japanese machine translation, and
find that it is possible to achieve comparable
accuracy to direct subword training from
raw sentences. We also compare the perfor-
mance of subword training and segmentation
with various configurations. SentencePiece
is available under the Apache 2 license at
https://github.com/google/sentencepiece.

1 Introduction

Deep neural networks are demonstrating a large
impact on Natural Language Processing. Neural
machine translation (NMT) (Bahdanau et al.,
2014; Luong et al., 2015; Wu et al., 2016;
Vaswani et al., 2017) has especially gained in-
creasing popularity, as it can leverage neural
networks to directly perform translations with
a simple end-to-end architecture. NMT has
shown remarkable results in several shared tasks
(Denkowski and Neubig, 2017; Nakazawa et al.,
2017), and its effective approach has had a strong
influence on other related NLP tasks such as
dialog generation (Vinyals and Le, 2015) and
automatic summarization (Rush et al., 2015).

Although NMT can potentially perform end-to-
end translation, many NMT systems are still re-
lying on language-dependent pre- and postproces-

sors, which have been used in traditional statisti-
cal machine translation (SMT) systems. Moses1,
a de-facto standard toolkit for SMT, implements
a reasonably useful pre- and postprocessor. How-
ever, it is built upon hand-crafted and language de-
pendent rules whose effectiveness for NMT has
not been proven. In addition, these tools are
mainly designed for European languages where
words are segmented with whitespaces. To train
NMT systems for non-segmented languages such
as Chinese, Korean and Japanese, we need to run
word segmenters independently. Such language-
dependent processing also makes it hard to train
multilingual NMT models (Johnson et al., 2016),
as we have to carefully manage the configurations
of pre- and postprocessors per language, while the
internal deep neural architectures are language-
independent.

As NMT approaches are standardized and mov-
ing forward to more language-agnostic architec-
tures, it is becoming more important for the NLP
community to develop a simple, efficient, repro-
ducible and language independent pre- and post-
processor that can easily be integrated into Neural
Network-based NLP systems, including NMT.

In this demo paper, we describe SentencePiece,
a simple and language independent text tokenizer
and detokenizer mainly for Neural Network-
based text generation systems where the size of
vocabulary is predetermined prior to the Neu-
ral model training. SentencePiece implements
two subword segmentation algorithms, byte-pair-
encoding (BPE) (Sennrich et al., 2016) and uni-
gram language model (Kudo, 2018), with the ex-
tension of direct training from raw sentences. Sen-
tencePiece enables building a purely end-to-end
system that does not depend on any language-
specific processing.

1http://www.statmt.org/moses/
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% spm_train −−input=data/input.txt
−−model_prefix=spm −−vocab_size=1000

% echo "Hello world." | spm_encode
−−model=spm.model

_He ll o _world .

% echo "Hello world." | spm_encode
−−model=spm.model −−output_format=id

151 88 21 887 6

% echo "_He ll o _world ." |
spm_decode −−model=spm.model

Hello world.

% echo "151 88 21 887 6" |
spm_decode −−model=spm.model

−−input_format=id
Hello world.

Figure 1: Commandline usage of SentencePiece

2 System Overview

SentencePiece comprises four main components:
Normalizer, Trainer, Encoder, and Decoder.
Normalizer is a module to normalize semantically-
equivalent Unicode characters into canonical
forms. Trainer trains the subword segmentation
model from the normalized corpus. We specify a
type of subword model as the parameter of Trainer.
Encoder internally executes Normalizer to nor-
malize the input text and tokenizes it into a sub-
word sequence with the subword model trained by
Trainer. Decoder converts the subword sequence
into the normalized text.

The roles of Encoder and Decoder correspond
to preprocessing (tokenization) and postprocess-
ing (detokenization) respectively. However, we
call them encoding and decoding as SentencePiece
manages the vocabulary to id mapping and can di-
rectly convert the text into an id sequence and vice
versa. Direct encoding and decoding to/from id
sequences are useful for most of NMT systems as
their input and output are id sequences.

Figure 1 presents end-to-end example
of SentencePiece training (spm_train),
encoding (spm_encode), and decoding
(spm_decode). We can see that the input text is
reversibly converted through spm_encode and
spm_decode.

3 Library Design

This section describes the design and implementa-
tion details of SentencePiece with command line
and code snippets.

3.1 Lossless Tokenization
The following raw and tokenized sentences are an
example of language-dependent preprocessing.

• Raw text: Hello world.
• Tokenized: [Hello] [world] [.]

One observation is that the raw text and tokenized
sequence are not reversibly convertible. The in-
formation that no space exists between “world”
and “.” is not kept in the tokenized sequence.
Detokenization, a process to restore the original
raw input from the tokenized sequence, has to be
language-dependent due to these irreversible oper-
ations. For example, while the detokenizer usually
puts whitespaces between the primitive tokens in
most European languages, no spaces are required
in Japanese and Chinese.

• Raw text: こんにちは世界。(Hello world.)
• Tokenized: [こんにちは] [世界] [。]

Such language specific processing has usually
been implemented in manually crafted rules,
which are expensive to write and maintain.

SentencePiece implements the Decoder as an
inverse operation of Encoder, i.e.,

Decode(Encode(Normalize(text))) =

Normalize(text).

We call this design lossless tokenization, in which
all the information to reproduce the normalized
text is preserved in the encoder’s output. The ba-
sic idea of lossless tokenization is to treat the in-
put text just as a sequence of Unicode characters.
Even whitespace is handled as a normal symbol.
For the sake of clarity, SentencePiece first escapes
the whitespace with a meta symbol _ (U+2581),
and tokenizes the input into an arbitrary subword
sequence, for example:

• Raw text: Hello_world.
• Tokenized: [Hello] [_wor] [ld] [.]

As the whitespace is preserved in the tokenized
text, we can detokenize the tokens without any am-
biguities with the following Python code.

detok = ’’.join(tokens).replace(’_’, ’ ’)

It should be noted that subword-nmt2 adopts a
different representation for subword units. It fo-
cuses on how the word is segmented into subwords
and uses @@ as an intra-word boundary marker.

2https://github.com/rsennrich/subword-nmt
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• Tokenized: [Hello] [wor] [@@ld] [@@.]

This representation can not always perform loss-
less tokenization, as an ambiguity remains in the
treatment of whitespaces. More specifically, it
is not possible to encode consecutive whitespaces
with this representation.

3.2 Efficient subword training and
segmentation

Existing subword segmentation tools train sub-
word models from pre-tokenized sentences.
Such pre-tokenization was introduced for an
efficient subword training (Sennrich et al.,
2016). However, we can not always assume
that pre-tokenization is available, especially for
non-segmented languages. In addition, pre-
tokenization makes it difficult to perform lossless
tokenization.

SentencePiece employs several speed-up tech-
niques both for training and segmentation to make
lossless tokenization with a large amount of raw
data. For example, given an input sentence (or
word) of length N , BPE segmentation requires
O(N2) computational cost when we naively scan
the pair of symbols in every iteration. Sentence-
Piece adopts an O(N log(N)) algorithm in which
the merged symbols are managed by a binary heap
(priority queue). In addition, the training and seg-
mentation complexities of unigram language mod-
els are linear to the size of input data.

3.3 Vocabulary id management

SentencePiece manages the vocabulary to id map-
ping to directly convert the input text into an id
sequence and vice versa. The size of vocabulary
is specified with the --vocab_size=<size>
flag of spm_train. While subword-nmt spec-
ifies the number of merge operations, Sentence-
Piece specifies the final size of vocabulary, as the
number of merge operations is a BPE specific pa-
rameter and can not be applicable to other segmen-
tation algorithms, e.g., unigram language model
(Kudo, 2018).

SentencePiece reserves vocabulary ids for
special meta symbols, e.g., unknown symbol
(<unk>), BOS (<s>), EOS (</s>) and padding
(<pad>). Their actual ids are configured with
command line flags. We can also define custom
meta symbols to encode contextual information as
virtual tokens. Examples include the language-
indicators, <2ja> and <2de>, for multilingual

U+41 U+302 U+300 <tab> U+1EA6
U+41 U+302 U+301 <tab> U+1EA4
...

Figure 2: Custom normalization rule in TSV

models (Johnson et al., 2016).

3.4 Customizable character normalization
Character normalization is an important prepro-
cessing step for handling real world text, which
consists of semantically-equivalent Unicode char-
acters. For example, Japanese fullwidth Latin
characters can be normalized into ASCII Latin
characters. Lowercasing is also an effective nor-
malization, depending on the application.

Character normalization has usually been im-
plemented as hand-crafted rules. Recently, Uni-
code standard Normalization Forms, e.g., NFC
and NFKC, have been widely used in many NLP
applications because of their better reproducibility
and strong support as Unicode standard.

By default, SentencePiece normalizes the in-
put text with the Unicode NFKC normalization.
The normalization rules are specified with the
--normalization_rule_name=nfkc flag
of spm_train. The normalization in Senten-
cepiece is implemented with string-to-string map-
ping and leftmost longest matching. The normal-
ization rules are compiled into a finite state trans-
ducer (Aho-Corasick automaton) to perform an ef-
ficient normalization3.

SentencePiece supports custom normalization
rules defined as a TSV file. Figure 2 shows an
example TSV file. In this example, the Unicode
sequence [U+41 U+302 U+300] is converted
into U+1EA64. When there are ambiguities
in the conversion, the longest rule is applied.
User defined TSV files are specified with the
--normalization_rule_tsv=<file>
flag of spm_train. Task-specific rules can
be defined by extending the default NFKC rules
provided as a TSV file in SentencePiece package.

3.5 Self-contained models
Recently, many researchers have provided pre-
trained NMT models for better reproduciblity of

3The original NFKC normalization requires CCC (Canon-
ical Combining Class) reordering, which is hard to model in
a finite state transducer. SentencePiece does not handle the
full CCC reordering and only implements a subset of NFKC
normalization.

4Note that tabs are used as the delimiter for source and
target sequence and spaces are used as the delimiter for indi-
vidual characters.
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their experimental results. However, it is not al-
ways stated how the data was preprocessed. (Post,
2018) reported that subtle differences in prepro-
cessing schemes can widely change BLEU scores.
Even using the Moses toolkit, it is not guaran-
teed to reproduce the same settings unless the con-
figurations of Moses (e.g., version and command
line flags) are clearly specified. Strictly speaking,
NFKC normalization may yield different results
depending on the Unicode version.

Ideally, all the rules and parameters for prepro-
cessing must be embedded into the model file in
a self-contained manner so that we can reproduce
the same experimental setting as long as we are
using the same model file.

The SentencePiece model is designed to be
purely self-contained. The model file includes not
only the vocabulary and segmentation parameters,
but also the pre-compiled finite state transducer for
character normalization. The behavior of Senten-
cePiece is determined only by the model file and
has no external dependencies. This design guaran-
tees a perfect reproducibility as well as allowing
to distribute the SentencePiece model file as part
of an NMT model. In addition, the developers of
SentencePiece can refine the (default) normaliza-
tion rules without having to worry about breaking
existing preprocessing behaviors.

The SentencePiece model is stored as a binary
wire format Protocol buffer5, a platform neutral
and extensible mechanism for serializing struc-
tured data. Protocol buffers help to safely serialize
structured data while keeping backward compati-
bility as well as extensibility.

3.6 Library API for on-the-fly processing

Text preprocessing is usually considered as offline
processing. Prior to the main NMT training, raw
input is preprocessed and converted into an id se-
quence with a standalone preprocessor.

Such off-line preprocessing has two problems.
First, standalone tools are not directly integrated
into the user-facing NMT applications which need
to preprocess user input on-the-fly. Second, off-
line preprocessing makes it hard to employ sub-
sentence level data augmentation and noise in-
jection, which aim at improving the accuracy
and robustness of the NMT models. There
are several studies to inject noise to input sen-

5https://developers.google.com/
protocol-buffers/

#include <sentencepiece_processor.h>
#include <sentencepiece_trainer.h>

SentencePieceTrainer::Train(
"--input=input.txt "
"--model_prefix=spm "
"--vocab_size=1000");

SentencePieceProcessor sp;
sp.Load("spm.model");

std::vector<std::string> pieces;
sp.Encode("Hello world.", &pieces);

std::vector<int> ids;
sp.Encode("Hello world.", &ids);

std::string text;
sp.Decode({151, 88, 21, 887, 6}, &text);

Figure 3: C++ API usage (The same as Figure 1.)

import sentencepiece as spm

params = (’--input=input.txt ’
’--model_prefix=spm ’
’--vocab_size=1000’)

spm.SentencePieceTrainer.Train(params)

sp = spm.SentencePieceProcessor()
sp.Load(’spm.model’)

print(sp.EncodeAsPieces(’Hello world.’))
print(sp.EncodeAsIds(’Hello world.’))
print(sp.DecodeIds([151, 88, 21, 887, 6]))

Figure 4: Python API usage (The same as Figure 1.)

tences by randomly changing the internal repre-
sentation of sentences. (Kudo, 2018) proposes
a subword regularization that randomly changes
the subword segmentation during NMT training.
(Lample et al., 2017; Artetxe et al., 2017) inde-
pendently proposed a denoising autoencoder in the
context of sequence-to-sequence learning, where
they randomly alter the word order of the input
sentence and the model is trained to reconstruct
the original sentence. It is hard to emulate this dy-
namic sampling and noise injection only with the
off-line processing.

SentencePiece not only provides a standalone
command line tool for off-line preprocessing but
supports a C++, Python and Tensorflow library
API for on-the-fly processing, which can easily
be integrated into existing NMT frameworks. Fig-
ures 3, 4 and 5 show example usages of the C++,
Python and TensorFlow API6. Figure 6 presents
example Python code for subword regularization
where one subword sequence is sampled accord-
ing to the unigram language model. We can find
that the text “New York” is tokenized differently

6As the Python and TensorFlow wrappers call the native
C++ API, there is no performance drop in their interfaces.
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import tensorflow as tf
import tf_sentencepiece as tfs

model = tf.gfile.GFile(’spm.model’, ’rb’).read()

input_text = tf.placeholder(tf.string, [None])
ids, lens = tfs.encode(input_text, model_proto=model,

out_type=tf.int32)
output_text = tfs.decode(ids, lens, model_proto=model)

with tf.Session() as sess:
text = [’Hello world.’, ’New York’]
ids_, lens_, output_text_ = sess.run([ids, lens,

output_text], feed_dict={input_text:text})

Figure 5: TensorFlow API usage
The SentencePiece model (model proto) is an attribute of
the TensorFlow operation and embedded into the TensorFlow
graph so the model and graph become purely self-contained.

>>> sp.Load(’spm.model’)
>>> for n in range(5):
... sp.SampleEncodeAsPieces(’New York’, −1, 0.1)
[’_’, ’N’, ’e’, ’w’, ’_York’]
[’_’, ’New’, ’_York’]
[’_’, ’New’, ’_Y’, ’o’, ’r’, ’k’]
[’_’, ’New’, ’_York’]
[’_’, ’New’, ’_York’]

Figure 6: Subword sampling with Python API

on each SampleEncodeAsPieces call. Please
see (Kudo, 2018) for the details on subword regu-
larization and its sampling hyperparameters.

4 Experiments

4.1 Comparison of different preprocessing

We validated the performance of the different
preprocessing on English-Japanese translation of
Wikipedia articles, as specified by the Kyoto Free
Translation Task (KFTT) 7. The training, develop-
ment and test data of KFTT consist of 440k, 1166
and 1160 sentences respectively.

We used GNMT (Wu et al., 2016) as the imple-
mentation of the NMT system in our experiments.
We generally followed the settings and training
procedure described in (Wu et al., 2016), however,
we changed the node and layer size of LSTM to be
512 and 6 respectively.

A word model is used as a baseline system.
We compared to SentencePiece (unigram lan-
guage model) with and without pre-tokenization.
SentencePiece with pre-tokenization is essentially
the same as the common NMT configuration
with subword-nmt. SentencePiece without pre-
tokenization directly trains the subword model
from raw sentences and does not use any exter-
nal resources. We used the Moses tokenizer8 and

7http://www.phontron.com/kftt
8http://www.statmt.org/moses/

Lang pair setting (source/target) # vocab. BLEU
ja→en Word model (baseline) 80k/80k 28.24

SentencePiece 8k (shared) 29.55
SentencePiece w/ pre-tok. 8k (shared) 29.85
Word/SentencePiece 80k/8k 27.24
SentencePiece/Word 8k/80k 29.14

en→ja Word model (baseline) 80k/80k 20.06
SentencePiece 8k (shared) 21.62
SentencePiece w/ pre-tok. 8k (shared) 20.86
Word/SentencePiece 80k/8k 21.41
SentencePiece/Word 8k/80k 19.94

Table 1: Translation Results (BLEU(%))

KyTea9 for English and Japanese pre-tokenization
respectively. The same tokenizers are applied to
the word model.

We used the case-sensitive BLEU score
(Papineni et al., 2002) as an evaluation metric.
As the output sentences are not segmented in
Japanese, we segmented them with KyTea for be-
fore calculating BLEU scores.

Table 1 shows the experimental results. First,
as can be seen in the table, subword segmen-
tations with SentencePiece consitently improve
the BLEU scores compared to the word model.
This result is consistent with previous work
(Sennrich et al., 2016). Second, it can be seen
that the pre-tokenization is not always necessary
to boost the BLEU scores. In Japanese to English,
the improvement is marginal and has no signifi-
cant difference. In English to Japanese, the BLEU
score is degraded with pre-tokenization.

We can find larger improvements in BLEU
when 1) SentencePiece is applied to Japanese, and
2) the target sentence is Japanese. As Japanese is
a non-segmented language, pre-tokenization acts
as a strong constraint to determine the final vo-
cabulary. It can be considered that the positive ef-
fects of unsupervised segmentation from raw input
worked effectively to find the domain-specific vo-
cabulary in Japanese.

4.2 Segmentation performance
Table 2 summarizes the training and segmentation
performance of various configurations.

We can see that the training and segmentation
speed of both SentencePiece and subword-nmt is
almost comparable on English data set regardless
of the choice of pre-tokenization. This is expected,
as English is a segmented language and the search
space for the vocabulary extraction is largely re-
stricted. On the other hand, SentencePiece shows

9http://www.phontron.com/kytea
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time (sec.)
Task Tool Pre-tok. Japanese English
Train subword-nmt yes 56.9 54.1

SentencePiece yes 10.1 16.8
subword-nmt no 528.0 94.7
SentencePiece no 217.3 21.8

Seg. subword-nmt yes 23.7 28.6
SentencePiece yes 8.2 20.3
subword-nmt no 216.2 36.1
SentencePiece no 5.9 20.3

Pre-tokenizaion KyTea(ja)/Moses(en) 24.6 15.8
Table 2: Segmentation performance. KFTT corpus (440k
sentences) is used for evaluation. Experiments are executed
on Linux with Xeon 3.5Ghz processors. The size of vocabu-
lary is 16k. Moses and KyTea tokenizers are used for English
and Japanese respectively. Note that we have to take the time
of pre-tokenization into account to make a fair comparison
with and without pre-tokenization. Because subword-nmt is
based on BPE, we used the BPE model in SentencePiece. We
found that BPE and unigram language models show almost
comparable performance.

larger performance improvements when applying
it to raw Japanese data (w/o pre-tok). The seg-
mentation speed of SentencePiece is about 380
times faster than that of subword-nmt in this set-
ting. This result strongly supports our claim that
SentencePiece is fast enough to be applied to raw
data and the pre-tokenization is not always neces-
sary. Consequently, SentencePiece helps to build a
purely data-driven and language-independent sys-
tem. The segmentation speed of SentencePiece is
around 21k and 74k sentences/sec. in English and
Japanese respectively, which is fast enough to be
executed on-the-fly.

5 Conclusions

In this paper, we introduced SentencePiece, an
open-source subword tokenizer and detokenizer
designed for Neural-based text processing. Sen-
tencePiece not only performs subword tokeniza-
tion, but directly converts the text into an id se-
quence, which helps to develop a purely end-to-
end system without replying on language specific
resources. The model file of SentencePiece is de-
signed to be self-contained to guarantee perfect
reproducibility of the normalization and subword
segmentation. We hope that SentencePiece will
provide a stable and reproducible text processing
tool for production use and help the research com-
munity to move to more language-agnostic and
multilingual architectures.
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Abstract

Automatic extraction of temporal information
is important for natural language understand-
ing. It involves two basic tasks: (1) Un-
derstanding time expressions that are men-
tioned explicitly in text (e.g., February 27,
1998 or tomorrow), and (2) Understanding
temporal information that is conveyed im-
plicitly via relations. This paper introduces
CogCompTime, a system that has these two
important functionalities. It incorporates the
most recent progress, achieves state-of-the-art
performance, and is publicly available.1 We
believe that this demo will provide valuable in-
sight for temporal understanding and be useful
for multiple time-aware applications.

1 Introduction

Time is an important dimension when we describe
the world because many facts are time-sensitive,
e.g., one’s place of residence, one’s employment,
or the progress of a conflict between countries.
Consequently, many applications can benefit from
temporal understanding in natural language, e.g.,
timeline construction (Do et al., 2012; Minard
et al., 2015), clinical events analysis (Jindal and
Roth, 2013; Bethard et al., 2015), question an-
swering (Llorens et al., 2015), and causality infer-
ence (Ning et al., 2018a).

Temporal understanding from natural language
requires two basic components (Verhagen et al.,
2007, 2010; UzZaman et al., 2013). The first, also
known as the Timex component, requires extract-
ing explicit time expressions in text (i.e., “Timex”)
and normalize them to a standard format. In Ex-
ample 1, the Timex is February 27, 1998 and its
normalized form is ‘1998-02-27”. Note that nor-
malization may also require a reference time for
Timexes like “tomorrow”, for which we need to

1http://cogcomp.org/page/publication_
view/844

know the document creation time (DCT). In ad-
dition to DATE, there are also other Timex types
including TIME (e.g., 8 am), DURATION (e.g., 3
years), and SET (e.g., every Monday).

Timexes carry temporal information explicitly,
but temporal information can also be conveyed im-
plicitly via temporal relations (i.e., “TempRel”).
In Example 2, there are two events: e1:exploded
and e2:died. The text does not tell us when they
happened, but we do know that there is a TempRel
between them, i.e., e1:exploded happened before
e2:died. The second basic component of tem-
poral understanding is thus the TempRel compo-
nent, which extracts TempRels automatically from
text. While the Timex component provides abso-
lute time anchors, the TempRel component pro-
vides the relative order of events. These two to-
gether provide a complete picture of the tempo-
ral dimension of a story, so they are naturally the
most important building blocks towards temporal
understanding.

Example 1: Presidents Leonid Kuchma of Ukraine and
Boris Yeltsin of Russia signed an economic cooperation
plan on (t1:February 27, 1998).
Example 2: A car (e1:exploded) in the middle of a
group of men playing volleyball. More than 10 people
have (e2:died), police said.

In this paper, we present CogCompTime (see
Fig. 1), a tool with both the Timex and TempRel
components, which are conceptually built on Zhao
et al. (2012) and Ning et al. (2017), respec-
tively. CogCompTime is a new implementation
that integrates both components and also incor-
porates the most recent advances in this area
(Ning et al., 2018a,b,c). Two highlights are:
First, CogCompTime achieves comparable perfor-
mance to state-of-the-art Timex systems, but is
almost two times faster than the second fastest,
HeidelTime (Strötgen and Gertz, 2010). Second,
CogCompTime improves the performance of the
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Figure 1: A snapshot of the interface of CogCompTime. From top to bottom: Input box, event and Timex
highlight, and two visualizations (timeline and graph). The document creation time was chosen to be 2018-05-15.

TempRel component by a large margin, from the
literature’s F1 ≈ 50 (UzZaman et al., 2013) to
F1 ≈ 70 (see details in Sec. 3). Given these
two contributions, we believe that CogCompTime
is a good demonstration of the state-of-the-art
in temporal understanding. In addition, since
CogCompTime is publicly available, it will pro-
vide easy access to users working on time-aware
applications, as well as valuable insight to re-
searchers seeking further improvements.

We briefly review the literature and explain in
detail the processing pipeline of CogCompTime
in Sec. 2: the Timex component, the Event Ex-
traction component, and the TempRel compo-
nent. Following that, we provide a benchmark
evaluation in Sec. 3 on the TempEval3 and the
MATRES datasets (UzZaman et al., 2013; Ning
et al., 2018c). Finally, we point out directions for
future work and conclude this paper.

2 System

The system pipeline of CogCompTime is shown
in Fig. 2: It takes raw text as input and uses
CogCompNLP (Khashabi et al., 2018) to extract
features such as lemmas, part-of-speech (POS)
tags, and semantic role labelings (SRL). Then
CogCompTime sequentially applies the Timex
component, the event extraction component, and
the TempRel component. Finally, both a graph
visualization and a timeline visualization are pro-
vided for the users. In the following, we will ex-

plain these main modules in detail.

2.1 Timex Component

Existing work on Timex extraction and normal-
ization falls into two categories: rule-based and
learning-based. Rule-based systems use regular
expressions to extract Timex in text and then deter-
ministic rules to normalize them (e.g., HeidelTime
(Strötgen and Gertz, 2010) and SUTime (Chang
and Manning, 2012)). Learning-based systems
use classification models to chunk out Timexes in
text and normalize them based on grammar pars-
ing (e.g., UWTime (Lee et al., 2014) and Pars-
ingTime (Angeli et al., 2012)). CogCompTime
adopts a mixed strategy: we use machine learning
in the Timex extraction step and rule parsing in
the normalization step. This mixed strategy, while
maintaining a state-of-the-art performance, signif-
icantly improves the computational efficiency of
the Timex component, as we show in Sec. 3.

Technically, the Timex extraction step can be
formulated as a generic text chunking problem and
the standard B(egin), I(nside), and O(utside) label-
ing scheme can be used. CogCompTime proposes
TemporalChunker, by retraining Illinois-Chunker
(Punyakanok and Roth, 2001) on top of the Timex
chunk annotations provided by the TempEval3
workshop (UzZaman et al., 2013). Here a ma-
chine learning based extraction algorithm signif-
icantly improves the computational efficiency by
quickly sifting out impossible text chunks, as com-
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Figure 2: System pipeline of CogCompTime: It preprocesses raw text input using CogCompNLP and then applies Timex,
Event Extraction, and TempRel components sequentially, with two user-friendly visualizations (i.e., graph-type visualization
and timeline-type visualization) provided at the end.

pared to regular expression matching, which has
to check every substring of text against regular ex-
pressions and is often slow. However, we do ad-
mit that learning-based extraction handles corner
cases not as well as rule-based systems because of
the limited training examples.

After Timexes are extracted, we apply rules to
normalize them. We think rule-based methods
are generally more natural for normalization: On
one hand, the desired formats of various types
of Timexes are already defined as rules by corre-
sponding annotation guidelines; on the other hand,
the intermediate steps of how one Timex is nor-
malized are not annotated in any existing datasets
(it is inherently hard to do so), so learning-based
methods usually have to introduce latent vari-
ables and need more training instances as a result.
Therefore, we have adopted a rule-based normal-
ization method. However, we admit that an obvi-
ous drawback is that the rule set needs to be re-
designed for every single language.

2.2 Event Extraction Component

Event extraction is closely related to how events
are defined. Generally speaking, an event is con-
sidered to be an action associated with the corre-
sponding participants. In the context of tempo-
ral understanding, events are usually represented
by their head verb token, so unlike the generic
chunking problem in Timex extraction, event ex-
traction can be formulated as a classification prob-
lem for each token. Specifically, CogCompTime
only considers those main-axis events, so event
extraction is simply a binary classification prob-
lem (i.e., whether or not a token is a main-axis
event or not). As defined by the MATRES annota-
tion scheme (Ning et al., 2018c), main-axis events
are those events that form the primary timeline of
a story and approximately 60%-70% of the verbs
are on the main-axis in MATRES. We extract lem-
mas and POS tags within a fixed window, SRL,

and prepositional phrase head, and train a sparse
averaged perceptron for event extraction.

2.3 TempRel Component
Temporal relations can be generally modeled by
a graph (called temporal graph), where the nodes
represent events and Timexes, and the edges
represent TempRels. With all the nodes ex-
tracted (by previous steps), the TempRel com-
ponent is to make predictions on the labels of
those edges. In this paper, the label set for
Event-Event TempRels is before, after, equal, and
vague and for Event-Timex TempRels is equal
and not-equal.2 State-of-the-art methods include,
e.g., ClearTK (Bethard, 2013), CAEVO (Cham-
bers et al., 2014), and Ning et al. (2017). The
TempRel task is known to be very difficult. Ning
et al. (2018c) attributes the difficulty partly to
the low inter-annotator agreement (IAA) of exist-
ing TempRel datasets and proposes a new Multi-
Axis Temporal RElations dataset of Start-points
(MATRES) with significantly improved IAA, so
for the TempRel task, we have chosen MATRES
as the benchmark in this paper.3

We also incorporate the recent progress of Ning
et al. (2017, 2018a,b). The feature set used for
TempRel is shown in Fig. 3, which contains fea-
tures derived individually from each node and
jointly from a node pair. Since a node can be ei-
ther an event or a Timex, an edge can also be ei-
ther an Event-Event edge or an Event-Timex edge
and the features have to vary a bit, as detailed
by Fig. 3. Note that for Event-Event edges, we
incorporate features from TemProb,4 which en-
codes prior knowledge of typical temporal orders

2The simplification of Event-Timex label set is due to our
observation that other labels have very low accuracies. As a
demo paper, we have chosen not to use them. However, we
think it is interesting and worth further investigation.

3Specifically, we only need to replace the TempRel anno-
tations in TempEval3 by the new annotations in MATRES.

4http://cogcomp.org/page/resource_
view/114
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of events (Ning et al., 2018b). With these fea-
tures, we also adopt the constraint-driven learn-
ing algorithm for TempRel classification proposed
in Ning et al. (2017) with sparse averaged per-
ceptron. Then our TempRel component assigns
local prediction scores (i.e., soft-max scores) to
each edge and solves an integer linear program-
ming (ILP) problem via Gurobi (Gurobi Optimiza-
tion, 2015) to achieve globally consistent temporal
graphs (please refer to Ning et al. (2018a) for de-
tails). CogCompTime is a unique package so far
that incorporates all the recent progress.

Figure 3: The primary features used in the TempRel com-
ponent (also standard features used in the literature). Since
there are two types of nodes (i.e., event and Timex), and two
types of TempRels (i.e., Event-Event and Event-Timex), we
put the common features above and split specific feature sets
below. Conjunctive features are not listed exhaustively here.

2.4 Visualization
As shown in Fig. 1, we highlight the extracted
Timexes and events in the text. Specifically for
Timexes, we also annotate their normalized val-
ues along with their chunks. We provide two
forms of visualization for the extracted TempRels.
Since TempRels can be naturally modeled by
a graph, a graph visualization is an obvious
choice and we use d3 (https://d3js.org/)
in CogCompTime. Additionally, we provide a
more compact visualization to those graphs via
timeline construction. Since a graph is only par-
tially ordered (as opposed to a timeline which is
fully ordered), we resort to the appearance order
of events in timeline construction when the tem-
poral order is vague according to its graph.

3 Benchmark Experiment

We used the dataset provided by the TempE-
val3 workshop, with the original train/test split in

our experiment: TimeBank and AQUAINT were
for training (256 articles), and Platinum was for
testing (20 articles). Note that we replaced the
TempRel annotations in the original TempEval3
datasets by MATRES due to its higher IAA. In the
Timex component, TemporalChunker by default
takes 10% of the train set as the development set,
and in other components, 5-fold cross-validation
was used for parameter tuning.

Table 1 evaluates the Timex component of
CogCompTime, comparing with state-of-the-art
systems. The “normalization” and “end-to-end”
columns were evaluated based on gold Timex
extraction and system Timex extraction, respec-
tively. The fact that CogCompTime had the
best extraction F1 and normalization accuracy but
not the best end-to-end performance is due to
our mixed strategy: Timexes extracted by our
learning-based TemporalChunker sometimes can-
not be normalized correctly by our rule-based nor-
malizer. This phenomenon is relatively more se-
vere in CogCompTime comparing to systems that
are consistently rule-based or learning-based in
both extraction and normalization. However, the
computational efficiency is improved significantly
by reducing the runtime of the second fastest,
HeidelTime, by more than 50%.

Table 2 shows the performance of the Event
Extraction and TempRel components. We also
copied the Timex extraction performance from Ta-
ble 1. Note that CogCompTime only extracts
those main-axis events as defined by MATRES.
Since Ning et al. (2018c) did not propose an
event extraction method, Table 2 is in fact the
first reported performance of event extraction on
MATRES and as we see, both the precision and
recall are better than those numbers reported in
TempEval3. Note that since CogCompTime works
on different annotations, this does not indicate that
our event extraction algorithm is better than those
participants in TempEval3; instead, this indicates
that the event extraction problem in MATRES is a
better-defined machine learning task.

The performance of TempRel extraction is fur-
ther evaluated in Table 2, both when the gold event
and Timex extraction is used and when system ex-
traction is used. As for Event-Event TempRels, we
also introduce a new relaxed metric5, where pre-
dictions of before/after are not penalized when the
gold label is vague. This is based on the definition

5This relaxed metric does not apply to Event-Timex
TempRels since the label set is only equal and not-equal, .
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Timex Systems Extraction Normalization End-to-end Runtime
P R F1 Accuracy F1 Seconds

HeidelTime (Strötgen and Gertz, 2010) 84.0 79.7 81.8 78.1† 78.1 18
SUTime (Chang and Manning, 2012) 80.0 81.1 80.6 69.8† 69.8 16

UWTime (Lee et al., 2014) 86.7 80.4 83.5 84.4 82.7 400
CogCompTime 86.5 83.3 84.9 84.7 76.8 7

Table 1: Performance of our Timex component compared with state-of-the-art systems on a benchmark dataset, the Platinum
dataset from the TempEval3 workshop (UzZaman et al., 2013). The “extraction” and “normalization” columns are the two
intermediate steps. “Normalization” was evaluated given gold extraction, while “end-to-end” means system extraction was
used. Runtimes were evaluated under the same setup.
†HeidelTime and SUTime have no clear-cut between extraction and normalization, so even if gold Timex chunks are fed in,
their extraction step cannot be easily skipped.

of vague in MATRES, i.e., to assign vague labels
when either before or after is reasonable. We think
this relaxed metric is more suitable when creating
timelines from temporal graphs, where an order
must be picked anyhow when two events have a
vague relation. When system extraction was used,
the TempRel performance saw a large drop. How-
ever, the performance here, although it is perhaps
still not sufficiently good for some applications,
is already a significant step forward in temporal
understanding. As a reference point, the best sys-
tem in TempEval3, ClearTK (Bethard, 2013), had
P=34.08, R=28.40, F1=30.98 (using system ex-
traction) and P=37.32, R=35.25, F1=36.26 (using
gold extraction). Again, given the dataset differ-
ence, these numbers are not directly comparable,
but it indicates that the MATRES dataset used here
probably has the TempRel task better defined and
we hope this demo paper will be a good showcase
of the new state-of-the-art.

P R F1

Event Extraction 83.5 87.0 85.2
Timex Extraction 86.5 83.3 84.9

Gold Extraction
Event-Event 61.6 70.9 65.9
Event-Event (Relaxed) 75.2 74.8 75.0
Event-Timex 84.6 84.6 84.6

System Extraction
Event-Event 48.4 58.0 52.8
Event-Event (Relaxed) 75.6 61.8 68.0
Event-Timex 79.5 61.1 69.0

Table 2: Performance of the Event/Timex Extraction and
TempRel components when gold/system extraction is used.
The relaxed metric does not penalize the system if a be-
fore/after prediction is made on a vague relation. Please also
refer to the text about this metric.

4 Future Work

We plan to further improve CogCompTime in the
following directions. First, the MATRES dataset
(Ning et al., 2018c) only considers verb events,
but nominal events are also very common and
important, so we plan to incorporate nominal

event extraction and corresponding TempRel ex-
traction. Second, CogCompTime currently does
not incorporate an event coreference component.
Since coreference is important for bridging long-
distance event pairs, it is a desirable feature. We
can adopt existing event coreferencing techniques
such as Peng et al. (2016) in the next step. Third,
CogCompTime currently only works on the main-
axis events as defined in MATRES. How to incor-
porate other axes, e.g., intention axis, opinion axis,
and hypothesis axis, requires further investigation.

5 Conclusion

This paper presents CogCompTime, a new pack-
age that, given raw text, (1) extracts time expres-
sions (Timex) and normalizes them to a standard
format, and (2) extracts events on the main time
axis of a story and the temporal relations between
events and Timexes. CogCompTime takes advan-
tage of many recent advances and achieves state-
of-the-art performance in both tasks. We think this
demo will be interesting for a broad audience be-
cause it is useful not only for identifying the short-
comings of existing methods, but also for applica-
tions that depend on the temporal understanding
of natural language text.
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Abstract

We introduce an advanced information extrac-
tion pipeline to automatically process very
large collections of unstructured textual data
for the purpose of investigative journalism.
The pipeline serves as a new input proces-
sor for the upcoming major release of our
New/s/leak 2.0 software, which we develop in
cooperation with a large German news organi-
zation. The use case is that journalists receive
a large collection of files up to several Giga-
bytes containing unknown contents. Collec-
tions may originate either from official disclo-
sures of documents, e.g. Freedom of Informa-
tion Act requests, or unofficial data leaks. Our
software prepares a visually-aided exploration
of the collection to quickly learn about poten-
tial stories contained in the data. It is based on
the automatic extraction of entities and their
co-occurrence in documents. In contrast to
comparable projects, we focus on the follow-
ing three major requirements particularly serv-
ing the use case of investigative journalism in
cross-border collaborations: 1) composition of
multiple state-of-the-art NLP tools for entity
extraction, 2) support of multi-lingual docu-
ment sets up to 40 languages, 3) fast and easy-
to-use extraction of full-text, metadata and en-
tities from various file formats.

1 Support Investigative Journalism

Journalists usually build up their stories around
entities of interest such as persons, organizations,
companies, events, and locations in combination
with the complex relations they have. This is es-
pecially true for investigative journalism which, in
the digital age, more and more is confronted to
find such relations between entities in large, un-
structured and heterogeneous data sources.

Usually, this data is buried in unstructured texts,
for instance from scanned and OCR-ed docu-
ments, letter correspondences, emails or protocols.
Sources typically range from 1) official disclo-
sures of administrative and business documents,

2) court-ordered revelation of internal communi-
cation, 3) answers to requests based on Freedom
of Information (FoI) acts, and 4) unofficial leaks
of confidential information. Well-known exam-
ples of such disclosed or leaked datasets are the
Enron email dataset (Keila and Skillicorn, 2005)
or the Panama Papers (O’Donovan et al., 2016).

To support investigative journalism in their
work, we have developed New/s/leak (Yimam
et al., 2016), a software implemented by experts
from natural language processing and visualiza-
tion in computer science in cooperation with jour-
nalists from Der Spiegel, a large German news or-
ganization. Due to its successful application in the
investigative research as well as continued feed-
back from academia, we further extend the func-
tionality of New/s/leak, which now incorporates
better pre-processing, information extraction and
deployment features. The new version New/s/leak
2.0 serves four central requirements that have not
been addressed by the first version or other ex-
isting solutions for investigative and forensic text
analysis:
Improved NLP processing: We use stable and
robust state-of-the-art natural language processing
(NLP) to automatically extract valuable informa-
tion for journalistic research. Our pipeline com-
bines extraction of temporal entities, named en-
tities, key-terms, regular expression patterns (e.g.
URLs, emails, phone numbers) and user-defined
dictionaries.
Multilingualism: Many tools only work for En-
glish documents or a few other ‘big languages’.
In the new version, our tool allows for automatic
language detection and information extraction in
40 different languages. Support of multilingual
collections and documents is specifically useful to
foster cross-country collaboration in journalism.
Multiple file formats: Extracting text and meta-
data from various file formats can be a daunting
task, especially in journalism where time is a very
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scarce resource. In our architecture, we include
a powerful data wrangling software to automatize
this process as much as possible. We further put
emphasis on scalability in our pipeline to be able
to process very large datasets. For easy deploy-
ment, New/s/leak 2.0 is distributed as a Docker
setup.
Keyword graphs: We have implemented key-
word network graphs, which is build based on the
set of keywords representing the current document
selection. The keyword network enables to fur-
ther improve the investigation process by display-
ing entity networks related to the keywords.

2 Related Work

There are already a handful of commercial and
open-source software products to support inves-
tigative journalism. Many of the existing tools
such as OpenRefine1, Datawrapper2, Tabula3, or
Sisense4 focus solemnly on structured data and
most of them are not freely available. For un-
structured text data, there are costly products for
forensic text analysis such as Intella5. Targeted
user groups are national intelligence agencies. For
smaller publishing houses, acquiring a license for
those products is simply not possible. Since we
also follow the main idea of openness and freedom
of information, we concentrate on other open-
source products to compare our software to.

DocumentCloud6 is an open-source tool specif-
ically designed for journalists to analyze, annotate
and publish findings from textual data. In addition
to full-text search, it offers named entity recogni-
tion (NER) based on OpenCalais7 for person and
location names. In addition to automatic NER for
multiple languages, our pipeline supports the iden-
tification of keyterms as well as temporal and user-
defined entities.

Overview (Brehmer et al., 2014) is another
open-source application developed by computer
scientists in collaboration with journalists to sup-
port investigative journalism. The application sup-
ports import of PDF, MS Office, and HTML doc-
uments, document clustering based on topic sim-
ilarity, a simple location entity detection, full-text

1http://openrefine.org
2https://www.datawrapper.de
3http://tabula.technology
4https://www.sisense.com
5https://www.vound-software.com
6https://www.documentcloud.org
7http://www.opencalais.com

search, and document tagging. Since this tool is
already mature and has successfully been used in
a number of published news stories, we adapted
some of its most useful features such as document
tagging, full-text search and a keyword-in-context
(KWIC) view for search hits.

The Jigsaw visual analytics (Görg et al., 2014)
system is a third tool that supports analyzing and
understanding of textual documents. The Jigsaw
system focuses on the extraction of entities us-
ing Gate tool suite for NLP (Cunningham et al.,
2013). Hence, support for multiple languages is
somewhat limited. It also lacks sophisticated data
import mechanisms.

The new version of New/s/leak was built tar-
geting these drawbacks and challenges. With
New/s/leak 2.0 we aim to support the journalist
throughout the entire process of collaboratively
analyzing large, complex and heterogeneous doc-
ument collections: data cleaning and formatting,
metadata extraction, information extraction, inter-
active filtering, visualization, close reading and
tagging, and providing provenance information.

3 Architecture

Figure 1 shows the overall architecture of
New/s/leak. In order to allow users to analyze
a wide range of document types, our system in-
cludes a document processing pipeline, which ex-
tracts text and metadata from a variety of doc-
ument types into a unified representation. On
this unified text representation, a number of NLP
pre-processing tasks are performed as a UIMA
pipeline (Ferrucci and Lally, 2004), e.g. automatic
identification of the document language, segmen-
tation into paragraph, sentence and token units,
and extraction of named entities, keywords and
metadata. ElasticSearch is used to store the pro-
cessed data and create aggregation queries for dif-
ferent entity types to generate network graphs.
The user interface is implemented with a RESTful
web service based on the Scala Play framework
in combination with an AngularJS browser app to
present information to the journalists. Visualiza-
tions are realized with D3 (Bostock et al., 2011).

In order to enable a seamless deployment of the
tool by journalists with limited technical skills, we
have integrated all of the required components of
the architecture into a Docker8 setup. Via docker-
compose, a software to orchestrate Docker con-

8https://www.docker.com
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Figure 1: Architecture of New/s/leak 2.0

tainers for complex architectures, end-users can
download and run locally a preconfigured version
of New/s/leak with one single command. Being
able to process data locally and even without any
connection to the internet is a vital prerequisite for
journalists when they work with sensitive data. All
necessary source code and installation instructions
can be found on our Github project page.9

4 Data Wrangling

Extracting text and metadata from various formats
into a format readable by a specific analysis tool
can be a tedious task. In an investigative journal-
ism scenario, it can even be a deal breaker since
time is an especially scarce resource and file for-
mat conversion might not be a task journalists are
well trained in. To offer access to as many file
formats as possible in New/s/leak, we opted for
a close integration with Hoover,10 a set of open-
source tools for text extraction and search in large
text collections. Hoover is developed by the Eu-
ropean Investigative Collaborations (EIC) network
with a special focus on large data leaks and hetero-
geneous datasets. It can extract data from various
text file formats such as txt, html, docx, pdf, zip,
tar, pst, mbox, eml, etc. The text is extracted along
with metadata from files (e.g. file name, creation
date, file hash) and header information (e.g. sub-
ject, sender, and receiver). In the case of emails,
attachments are processed automatically, too.

9https://uhh-lt.github.io/
newsleak-frontend

10https://hoover.github.io

New/s/leak connects directly to Hoover’s index
to read full-texts and metadata for its own infor-
mation extraction pipeline. Through this close in-
tegration with Hoover, New/s/leak can offer infor-
mation extraction to a wide variety of data formats.
In many cases, this drastically limits or even com-
pletely eliminates the amount of work needed to
clean and preprocess large datasets beforehand.

5 Multilingual Information Extraction

The core functionality of New/s/leak is the auto-
matic extraction of various kinds of entities from
text to facilitate the exploration and sense-making
process from large collections. Since a lot of
steps in this process involve language-dependent
resources, we put an emphasis on the work to sup-
port as many languages as possible.

5.1 Preprocessing

Information extraction in New/s/leak is imple-
mented as a configurable UIMA pipeline (Ferrucci
and Lally, 2004). Text documents and metadata
from a Hoover collection (see Section 4) are read
in parallelized manner and put through a chain of
annotators. In a final step of the chain, results
from annotation processes are indexed in an Elas-
ticSearch index for later retrieval and visualiza-
tion.

First, we identify the language of each doc-
ument. Alternatively, language can also be de-
termined on a paragraph level to support multi-
language documents, which can occur quite of-
ten, for instance in email leaks or bilingual con-

80



tracts. Second, we separate sentences and tokens
in each text. To guarantee compatibility with var-
ious Unicode scripts in different languages, we
rely on the ICU4J library11 for this task. ICU4J
provides locale-specific sentence and word bound-
ary detection relying on a simple rule-based ap-
proach. While the quality of the segmentation and
tokenization results might be better when using
specifically trained segmentation models, the ad-
vantage of the rule-based approach in ICU4J is
that it works robustly not only for many languages
but also for noisy data, which we expect to be
abundant in real-life datasets.

5.2 Dictionaries and RE-patterns

In many cases, journalists follow some hypothesis
to test for their investigative work. Such a pro-
ceeding can involve looking for mentions of al-
ready known terms or specific entities in the data.
This can be realized by lists of dictionaries pro-
vided to the initial information extraction process.
New/s/leak annotates every mention of a dictio-
nary term with the respective list type. Dictionar-
ies can be defined in a language-specific fashion,
but also applied across documents of all languages
in the corpus. Extracted dictionary entities are dis-
played along with extracted named entities in the
visualization.

In addition to self-defined dictionaries, we an-
notate email addresses, telephone numbers, and
URLs with regular expression patterns. This is
useful, especially for email leaks to reveal commu-
nication networks of persons and filter for specific
email account related content.

5.3 Temporal Expressions

Tracking documents across the time of their cre-
ation or by temporal events they mention can pro-
vide valuable information during investigative re-
search. Unfortunately, many document sets (e.g.
collections of scanned pages) do not come with
a specific document creation date as structured
metadata. To offer a temporal selection of contents
to the user, we extract mentions of temporal ex-
pressions. This is done by integrating the Heidel-
Time temporal tagger (Strötgen and Gertz, 2015)
in our UIMA workflow. HeidelTime provides au-
tomatically learned rules for temporal tagging in
more than 200 languages. Extracted timestamps
can be used to select and filter documents.

11http://icu-project.org/apiref/icu4j

5.4 Named Entity Recognition

We automatically extract person, organization and
location names from all documents to allow for
an entity-centric exploration of the data collec-
tion. Named entity recognition is done using
the polyglot-NER library (Al-Rfou et al., 2015).
Polyglot-NER contains sequence classification for
named entities based on weakly annotated training
data automatically composed from Wikipedia12

and Freebase13. Relying on the automatic com-
position of training data allows polyglot-NER to
provide pre-trained models for 40 languages.14

5.5 Keyterm Extraction

To further summarize document contents in addi-
tion to named entities, we automatically extract
keyterms and phrases from documents. For this,
we implemented a keyterm extraction library for
the 40 languages also supported in the previous
step.15 Our approach is based on a statistical com-
parison of document contents with generic ref-
erence data. Reference data for each language
is retrieved from the Leipzig Corpora Collection
(Goldhahn et al., 2012), which provides large rep-
resentative corpora for language statistics. We em-
ploy log-likelihood significance as described in
(Rayson et al., 2004) to measure the overuse of
terms (i.e. keyterms) in our target documents com-
pared to the generic reference data. Ongoing se-
quences of keyterms in target documents are con-
catenated to key phrases if they occur regularly in
that exact same order. Regularity is determined
with the Dice coefficient. This simple method al-
lows to reliably extract multiword units such as
“stock market” or “machine learning” in the docu-
ments. Since this method also extracts named en-
tities if they occur significantly often in a docu-
ment, there can be a substantial overlap between
both types. To allow for a separate display of
named entities and keywords, we filter keyterms if
they already have been annotated as a named en-
tity. The remaining top keyterms are used to cre-
ate a brief summary of each document for the user
and to generate keyterm networks for document
browsing.

12https://wikipedia.org
13https://developers.google.com/

freebase
14A list of the 40 languages covered by Polyglot-NER can

be found at https://tinyurl.com/yaju7bf7
15https://github.com/uhh-lt/lt-keyterms
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Figure 2: The entity and keyword graphs of New/s/leak
based on the WW2 collection (see Section 7). Net-
works are visualized based on the current document
selection, which can be filtered by full-text search, en-
tities or metadata. Visualization parameters such as the
number of nodes per type or minimum edge strength
can be set by the user. Hovering over nodes and edges
in one graph highlights information present in the re-
spective another graph to show which entities and key-
words frequently co-occur with each other in docu-
ments.

6 User Interface

Browsing entity networks: Access to unstruc-
tured text collections via named entities is essen-
tial for journalistic investigations. To support this,
we included two types of graph visualization, as it
is shown in Figure 2. The first graph, called entity
network, displays entities in a current document
selection as nodes and their joint occurrence as
edges between nodes. Different node colors rep-
resent different types such as person, organization
or location names. Furthermore, mentions of enti-
ties that are annotated based on dictionary lists are
included in the entity network graph. The second
graph, called keyword network, is build based on
the set of keywords representing the current doc-
ument selection. The keyword network also in-
cludes tags that can be attached to documents by
journalists during work with the collection.

Journalist in the loop: In addition to the auto-
matic annotation of entities and keyterms, we fur-
ther enable journalists to: 1) annotate new entity
types that are not in the system at all, 2) correct au-
tomatic annotations provided by the pipeline, e.g.
to remove false positives or false entity type labels
annotated by the NER process, 3) merge identi-
cal entities which have different forms (e.g. last
names to full names, or spelling variants in differ-
ent languages), and 4) label documents with user-
defined terms called tags. The tags are mainly
used to annotate the document either for later read-
ing or to share with collaborators.

7 Case Study

To illustrate analysis capabilities of the new ver-
sion of New/s/leak, we present an exemplary case
study at https://ltdemos.informatik.
uni-hamburg.de/newsleak/ (login with
”user” and ”password”). Since we refrain from
publishing any confidential leak data, we created
an artificial dataset from publicly available doc-
uments that share certain characteristics with the
data from intended use cases in investigative jour-
nalism. It contains documents written in multiple
languages, roughly centered on one topic and is
full of references to entities.

Ca. 27.000 documents in our sample set are
Wikipedia articles related to the topic of World
War II. Articles were crawled from the encyclo-
pedia in four languages (English:en, Spanish:es,
Hungarian:hu, German:de) as a link network start-
ing from the article ”Second World War” in each
respective language. Preprocessing and data ex-
traction took around 75 minutes on a moderately
fast server with 12 parallel CPU threads.

Analysis: From a perspective of national his-
tory discourses and education, a certain common
knowledge about WW2 can be expected. But, the
topic becomes quickly a novel unexplored terrain
for most people when it comes to aspects outside
of the own region, e.g. the involvement of Asian
powers. In our test case, we strive to fill gaps
in our knowledge by identifying interesting de-
tails regarding this question. First, we start with
a visualization of entities from the entire collec-
tion which highlights central actors of WW2 in
general. In the list of extracted location entities,
we can filter for ca. 2,000 articles referencing to
Asia (en, es), Ázsia (hu) or Asien (de). In this
subselection, we find most references to China as
a political power of the region followed by India
and Japan. Further refinement of the collection
by references to China highlights a central per-
son name in the network, Chiang Kai-shek, who
raises our interest. To find out more, we start
the filter process all over again, subselecting all
articles referencing this name. The resulting en-
tity network reveals a close connection to the or-
ganization Kuomintang (KMT). Filtering for this
organization, too, we can quickly identify arti-
cles centrally referencing to both entities by look-
ing at their titles and extracted keywords. From
the corresponding keyterm network and a KWIC
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view into the article full-texts, we learn that KMT
is the national party of China and Kai-Shek as
their leader ruled the country during the period of
WW2. A second central actor, Mao Zedong, is
strongly connected with both, KMT and Chiang
Kai-shek in our entity network. From articles also
prominently referencing Zedong, we learn from
sections highlighting both person names that Kai-
shek and Zedong, also a member of KMT and later
leader of the Chinese Communists, shared a com-
plicated relationship. By filtering for both names,
we can now explore the nature of this relationship
in more detail and compare its display across the
four languages in our dataset.16

8 Discussion and Future Work

In this paper, we introduced the completely
renewed information extraction pipeline of
New/s/leak 2.0, an open-source software to
support investigative journalism. As major
requirements based on prior experiences, we
identified the automatic annotation of various
entity types in very large, multi-lingual document
sets contained in heterogeneous file formats. Our
solution involves a combination of powerful NLP
libraries for temporal and named entities, own
developments for keyterm and pattern extraction,
and a powerful data wrangling suite for text and
metadata extraction. The pipeline is capable to
process information extraction in 40 languages.

New/s/leak has been in use successfully at the
German news organization Der Spiegel. It recently
has also been introduced as an open-source tool to
the community of investigative journalists at re-
spective conferences. We expect to collect more
user feedback and experiences from case studies
in the near future to further improve the software.

As a new main feature, we plan to extend the in-
formation extraction pipeline for user-defined cat-
egories into the direction of adaptive and active
machine learning approaches. Currently, while
reading the full-texts, users can manually annotate
new entity types in the text or tag the entire docu-
ments. In combination with an adaptive and active
learning approach, users will be able to train auto-
matic tagging of documents and extraction of in-
formation while working with the data in the user
interface.

16A video of the proceeding can be found at: http://
youtu.be/96f_4Wm5BoU
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Abstract

Training and testing many possible parameters
or model architectures of state-of-the-art ma-
chine translation or automatic speech recog-
nition system is a cumbersome task. They
usually require a long pipeline of commands
reaching from pre-processing the training data
to post-processing and evaluating the output.

This paper introduces Sisyphus, a tool that
aims at managing scientific experiments in an
efficient way. After defining the workflow for
a given task, Sisyphus runs all required steps
and ensures that all commands finish success-
fully. It avoids unnecessary computations by
reusing tasks that are needed for multiple parts
of the workflow and saves the user time by de-
termining the order in which the tasks are to
be performed. Since the program and work-
flow are written in Python they can be easily
extended to contain arbitrary code. This makes
it possible to use the rich collection of Python
tools for editing, debugging, and documenta-
tion. It only has few requirements on the un-
derlying server or cluster, and has been suc-
cessfully tested in many large scale setups and
can handle thousands of tasks inside the work-
flow.

1 Introduction

Building competitive machine learning systems
requires the correct execution of many different
commands and components.

For example, a machine translation system
needs to pre-process the data, train a neural net-
work, and its performance evaluated. Each of
these steps can contain a large number of separate
steps. Running and later replicating all steps by
hand is cumbersome and error-prone.

A common approach to reduce these problems
is to create ad-hoc scripts for each given task. Al-
though this can be a solution for some parts of the
process, it is inflexible when changing workflows
as often as required in research. Additionally, er-

rors are easily overlooked when running a large
number of scripts in parallel.

Sisyphus is written to ensure that tasks can be
easily repeated and offers an overview of large ex-
periment setups with a vast number of steps. Or-
ganizing the work this way also allows the user
to easily reconfigure experiment and reuse tested
sub-tasks in other workflows. It is designed to han-
dle large and complicated workflows, containing
ten thousands of tasks in practice.

Finding a good naming scheme for multiple
related experiments is also hard, since initially
good choices often turn out to grow into strange
constructs as new experiments are added over
time resulting in names like “ExperimentA-withB-
withoutC-D=6-version3”. Sisyphus maps all jobs
to a unique path and can create links bearing de-
scriptive names. This allows the user to rename
everything without violating any dependencies.

1.1 Basic Assumption

In Sisyphus, workflows are broken down into sub-
tasks called “Jobs”. A job performs a specific
function, e.g. evaluating a translation, it often re-
quires an external script or program. Sisyphus is
built on one main assumption: Any job only re-
lies on a given list of parameters. e.g. evaluating
a translation depends on the hypothesis, the refer-
ence, and optionally a script.

This property is used to avoid multiple compu-
tations of the same job. Randomness is best mod-
eled using seeds that are given via the job param-
eters to allow for reliable reproducible results. If
this is not possible, e.g. for asynchronous neural
network training, Sisyphus still works, but cannot
be guaranteed to to reproduce the exact same re-
sult.

This means that the automatic handling of
changing input files is beyond the scope of Sisy-
phus. If an input file changes, it is necessary to
manually tell Sisyphus to invalidate all jobs that
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depend on it. Since a reliable test, e.g. hashing,
would be too costly to run for each startup, since it
can take a long time on large files like the training
data.

1.2 Design Goals
The design of Sisyphus is mainly guided by the
problems that we encounter while building sta-
tistical machine translation and automatic speech
recognition systems. Sisyphus aims to address the
following problems:

• Separation of the workflow description of an
experiment and the place where the experi-
ment is run: This allows the user to store the
small description on an expensive but safe file
server with backups, while the outputs of an
experiment are stored on a larger, but less re-
liable file system (Section 4.1 and 4.3).

• Reusability of jobs: Once a job is defined, it
should be easy to use at a different position
within the workflow.

• Minimal requirements on the underlying
server structure: Sisyphus only requires
Python 31 with a few basic packages and a
Unix-type operating system.

• Work definition independent of underlying
queuing engine: Moving it to a different en-
gine should be easy, e.g. testing the workflow
on a local computer before moving it to a grid
engine.

• Avoid redundant computations to save time
and disk space by grouping jobs with the
same input arguments.

• Start all needed jobs automatically in the cor-
rect order and, if no blocking dependencies
are found, in parallel.

• Automatically check for errors and, if possi-
ble, recover. Errors that occur silently some-
where in the pipeline can cause strange re-
sults and are hard to find. (Section 3.3)

• Be as general as possible and easy to extend:
The whole workflow definition is written in
standard conforming Python. This allows for
a lot of flexibility in defining a workflow and
to use external tools written for Python e.g.
to check and edit the workflow.

• The ability to integrate any external tool that
has a command line interface into a job.

1https://www.python.org/

2 Related Work

A large variety of heavyweight workflow manage-
ment systems exist, e.g. Pegasus (Deelman et al.,
2015), Taverna (Wolstencroft et al., 2013), and
Kepler (Ludäscher et al., 2006). They can cover
a large variety of use-cases (Liew et al., 2016), but
their use is hindered by strict requirements on the
users computing nodes.

The toolkit that seems to be most similar to our
approach is Ducttape2, the successor of LonnyBin
(Clark and Lavie, 2010). It is well designed and
covers many useful points. However, we miss a
more flexible configuration of the workflow e.g.
workflows that adjust to the outputs of finished
jobs are not supported. This does not allow to trig-
ger parts of the workflow only if current computa-
tions show that they are required.

Ducttape uses branch points to distinguish be-
tween different experiment settings. This creates
a fairly intuitive directory structure, but does not
depend on the true value given to each parameter.
If a parameter of a step is changed, it still maps
to the same directory. Additionally, long names
collapse to a hash value, losing the benefit of in-
tuitively named directories. Interruptions of Duct-
tape automatically stop all current computations,
which makes it problematic to add additional ex-
periments to a running workflow.

Sisyphus contains an experimental script to
convert Ducttape workflows into Sisyphus recipes.

3 Basic Elements

Every workflow can be modeled as a series of jobs.
The output of a job can be either files or param-
eters (parameters can be seen as special case of
files). This can be mapped to a directed acyclic
graph where each node is a job and each edge is a
file or parameter. The latter are either passed on to
another job or returned as result of the workflow.

The user can request the necessary files and
Sisyphus executes all jobs that are needed to com-
pute them. All jobs that are part of the graph but
are not required for the desired output are ignored.
This graph structure, as shown in Figure 1, is sim-
ilar to the approach followed by (Clark and Lavie,
2010).

3.1 Jobs

Jobs are the core element of Sisyphus, and are rep-
resented by the nodes in the dependency graph.
Every Job has specified inputs and outputs. When

2https://github.com/jhclark/ducttape
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Figure 1: Example of a workflow as it is drawn by the
web interface. Jobs can be grouped to blocks for a bet-
ter visualization as it is done here with the stage data
block and the pre-processing blocks. If a Job finishes
successfully it is marked dark-green, running Jobs are
marked in green-yellow, Jobs that are runnable but not
running yet are marked blue, Jobs that have to wait for
other Jobs to finish are marked yellow, and Jobs that
failed are marked red. A block takes always the status
of the most problematic Job, e.g. if one Job failed it
is red, if all Jobs are finished it is green. Files that are
shared between Jobs are colored aquamarine.

an instance of a Job is created all inputs need to
be specified. However, they can be the output of
another Job. Once a Job is completed, all of its
outputs are guaranteed to be available for future
computations.

After a Job is created, a hash value is computed
based on the given input parameters. This hash is
used to ensure that only one node is used to repre-
sent the same computation. Additionally, it is used
as part of the path inside the work directory (Sec-
tion 4.3) associated with the Job. This directory
contains log files, status files, the work directory
and the output directory. All commands will be
run in the work directory, which is initially empty.

A Job is executed as soon as all inputs are ready,
meaning all Jobs that compute inputs are finished.
Before its execution, a Job has the opportunity to
request additional inputs. This can happen as a re-
sponse to the content of the previously specified
inputs, e.g. to implement an automatic parame-
ter optimization. If the Job does not specify addi-
tional inputs, it is scheduled for execution in the
configured queueing system.

An example Job definition is shown in Figure 2.

3.2 Tasks
Each Job must have one or more Tasks in which
the actual command is specified. All Tasks that
belong to the same Job share the same work direc-
tory, and are executed in a fixed linear order.

A Task object is the combination of a method
of the Job class, a set of requirements, and option-
ally a set of parameters that will be passed to the
method when executed. It is submitted to the grid
engine and once it is scheduled Sisyphus executes
the given method. It is also possible to create ar-
rays of Jobs by providing a list of parameter-sets.
These are executed in parallel (to the extent sup-
ported by the queue). A common approach is to
have a setup Task using one worker, a Task with
multiple parallel running instances, and finally a
Task to collect the outputs of all parallel Tasks and
to write them into the Jobs output file.

3.3 Error Handling
Sisyphus uses strict error checking to avoid errors
in which a step causes problems down the line.
This makes it easier to track down the problem
that caused the error. By default, a Job switches
into an error state if:

• a shell command returns a non-zero value,
which is also true for any command inside a
pipeline,

• an uninitialized variable is called, or

• the Python code throws an exception, which
can be used in combination with assertions.

This means the execution of this Job is stopped
to give the user a chance to fix the problem. After-
wards, the user can either delete or move the Job
directory by himself, or let Sisyphus do it for him.
If a Task is known to fail spontaneously, it can be
set to retry multiple times.

If a Task is interrupted before it is finished ex-
ecuting all commands, it switches into the inter-
rupted state. The Task can be marked as resume-
able, if executing the same code multiple times
results in the same outputs. In this case, Sisy-
phus automatically tries to determine if the Task
got interrupted due to a time or memory limit.
It increases the requested requirements automat-
ically and resubmits the Task. Resuming is not
performed automatically by default, since some
programs behave differently if they find files from
previous runs in their work directory. If a Job can
be resumed, meaning restarting the script will al-
ways result in the same output, the user can mark

86



1 from sisyphus import * # import all Sisyphus related classes, mainly job and task
2
3 class ParallelPipeline(Job):
4 #Example how to distibute a slow pipeline command to multiple machines
5 def __init__(self, text, command, parallel_processe=8):
6 self.text = text # Text that will be split and piped though command
7 self.command = command # The actuall command
8 self.parallel_processe = parallel_processe # Split into that many parallel processes
9 self.out = self.output_path(’out.gz’) # Name of the output path

10
11 def split(self):
12 #Count lines, capture_output gives stdout of command back as string
13 lines = int(self.sh(’zcat -f {text} | wc -l’, capture_output=True))
14 self.batch_size = (lines // self.parallel_processe) + 1 # compute batch size
15 self.sh(’zcat -f {text} | split -d -l {batch_size}’) # Split file
16
17 def run(self, pos): # pos will be given by task
18 self.sh(’cat x%02i | {command} > tmp.%02i’ % (pos, pos)) # Run the command for each batch
19
20 def collect(self):
21 self.sh(’cat tmp.* | gzip > {out}’) # collect all outputs
22 # Additional manual sanity check
23 output_lines = int(self.sh(’zcat {out} | wc -l’, capture_output=True))
24 print("Number of output lines: %i" % output_lines)
25 assert output_lines > 0, "No output created"
26
27 def tasks(self):
28 yield Task(’split’, rqmt={’cpu’: 1, ’mem’: 1}) # Run split task first
29 # Continue with the main task and starting a worker for each element in args list
30 yield Task(’run’, rqmt={’cpu’: 2, ’mem’: 4}, args=list(range(self.parallel_processe)))
31 yield Task(’collect’, rqmt={’cpu’: 1, ’mem’: 1}) # Finish with the collect task

Figure 2: Example of a job containing multiple task and running the one task on multiple computers

it as such. If not it stops executing further steps
and waits for a manual fix by the user.

3.4 Paths and Variables
Jobs are connected by Path and Variable objects,
representing the edges in the dependency graph.
A Variable is a subclass of the Path object which
can store arbitrary pickleable Python objects to be
passed between Jobs.

A Job checks all Path objects that are given as
inputs and start a Job only once all inputs are avail-
able. There are multiple ways for a Path to become
available. If it is created as an output of a Job, it
is available either once the Job is finished or it is
marked as available by the Job earlier. This can be
used for example if a neural network training cre-
ates save points of the current training state which
can be evaluated before the whole training is fin-
ished. If a Path object is used to add an input file
to the graph, Sisyphus marks it as available if the
file exists and alerts the user otherwise.

3.5 Engine
An engine defines how to execute and schedule
the given tasks. Currently supported engines are
the Son Grid Engine (SGE) with its closely related
forks, Platform Load Sharing Facility (LSF), and
a local engine running on the same node as Sisy-
phus. It is also possible to combine different en-
gines. A common setup is to have a local engine
for small Jobs, e.g. counting the number of lines
in a file, and a cluster-based engine for everything

else. The choice which engine to use can be given
via the requirement argument of a Task. Currently
all engine implementations require that all nodes
have access to a shared file system.

4 Directory Structure

A Sisyphus experiment directory usually consists
of:

• a recipe directory, containing the source code
for the Jobs (Section 4.1),

• a config directory, which defines the Jobs to
run and the order of their execution (Section
4.2),

• a work directory, each Job will create a direc-
tory here to run its code, store its output, and
save log files (Section 4.3),

• a output directory containing links the fin-
ished outputs (Section 4.4),

• an aliases directory, containing links to run-
ning Jobs with given aliases (Section 4.4),
and

• a settings files, that holds global settings, e.g.
which engines are available (Section 4.5).

4.1 Recipe Directory
The recipes are a collection of files that contain the
code describing the Jobs that can be executed to
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run an experiment. Recipe files are valid Python
files and can be imported similarly to any other
Python modules. This allows the users to manage
their experiments like a regular Python project,
creating dependencies between different Jobs sim-
ilar to Python module imports. The only thing that
separates the recipe directory from a regular mod-
ule directory is that it can contain Jobs descrip-
tions.

Beside placing Jobs in the recipe directory, it is
also common to place functions encapsulating re-
occurring workflows here. Any valid Python code
can be placed here.

4.2 Config Directory
The configuration directory is used to actually cre-
ate the graph and select which outputs has to be
computed. Similar to the recipe directory, it con-
tains regular Python files that can be imported
like any other Python module. It has to import
the needed modules from the recipe directory and
create the appropriate Jobs. When starting Sisy-
phus the user selects which configuration should
be loaded to construct the graph.

4.3 Work Directory
The work directory stores the realization of the
graph. Each Job gets its own directory. Its
path is constructed from the recipe module, the
Job name and the hash value of the given in-
puts. This yields a compromise between struc-
tured file names, brevity and the individuality of
these names. The work directory can be linked to
a different file system with sufficient disk space.

4.4 Output and Aliases Directory
Outputs that are computed by Sisyphus are linked
to the output directory. Similarly, it is possible
to give important Jobs one or more meaningful
aliases to make it trivial to find them.

4.5 Settings File
The settings file is used for global parameters.
This is the place to define which engine should be
used, if and how the requirements of interrupted
Jobs are changed, if the Job directory is cleaned
automatically after it finishes, what the default en-
vironment of an executed shell command should
looks like, and various delays to allow networked
file systems to synchronize.

5 Helpers

Sisyphus provides a few tools to help with reoc-
curring tasks.

5.1 Web Server

The web server provides a list with all Jobs and
their current states. Alternatively, it is also possi-
ble to show all Jobs in a graph structure, as shown
in Figure 1. Each Job can be selected to show more
detailed information about its status, dependencies
and possible error messages.

5.2 Console

It is possible to start an interactive Python shell
to analyze the graph or test different functions di-
rectly. It also serves to call the team import (Sec-
tion 5.3) and clean up helper (Section 5.5).

5.3 Team Import

If multiple people work on the same task, it is
helpful to avoid rerunning computations that have
been already carried out by others. Sisyphus can
automatically check other work directories and
import finished Jobs. This saves one from manu-
ally linking finished computations, as it is usually
the case when using scripts.

5.4 Virtual File System

An alternative way to have a structured access to
all Job work directories and attributes is the virtual
file system using fuse. This allows one to use any
console or script to navigate the graph.

5.5 Clean Up

After the experiments are finished it is time to
clean up. Sisyphus supports a few options to
do this depending how harsh the clean up has to
be. This is mainly a trade-off between how much
space is used on disk vs. how many steps are
needed to re-run the experiments.

The least invasive method is to delete the work
directory of each Job to remove temporary data
created during the execution of the Job and to pack
all log files into a tar archive. This can be set to
run automatically in the background after a Job
has finished successfully.

The second method is to remove lost Job direc-
tories from Jobs that are not in the final graph.
This usually happens if the workflow changed
over time and some steps had to be re-run due to
changed inputs. The now obsolete directories re-
main on disk until they are removed. A alterna-
tive source for lost data in the work directories are
Jobs that have been restarted after an error which
causes Sisyphus to move the old directory aside in
case later debugging is necessary. This step keeps
all the data used in the current workflow.
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A more invasive option to free space is the
clean-up of the current graph by removing Jobs
that are not needed for further computations of the
workflow anymore. This only keeps Jobs which
produce outputs that are marked as targets or Jobs
that are still needed to reach unfinished targets.
In addition Jobs can be saved from deletion by
defining a score, Jobs with a score higher than
the chosen threshold will be kept. These are typi-
cally Jobs that are expensive to recompute, e.g. the
training of a neural networks.

6 Real-World Usage

Sisyphus is extensively used by the machine trans-
lation and the automatic speech recognition teams
at the RWTH Aachen University. All WMT and
IWSLT submissions by the RWTH Aachen Uni-
versity since 2015 until now have been created
using Sisyphus (Peter et al., 2015b,a). It was
used for speech recognition in Zeyer et al. (2017).
AppTek3 also uses Sisyphus internally.

7 Conclusion

We presented overview of our novel workflow
manager Sisyphus. Features like automatic er-
ror detection, efficient usage of computational re-
sources, scalability, easy of reproducibility, abil-
ity to share work with others have been proven to
be extremely helpful for our research. The large
collection of tools for Python can be used with-
out modification for editing, debugging, and docu-
menting the workflow, since it is written in Python.
It is freely available online4 under the Mozilla
License v2.0 to encourage the adoption by other
groups.
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Abstract

In this paper, we describe KT-Speech-Crawler:
an approach for automatic dataset construction
for speech recognition by crawling YouTube
videos. We outline several filtering and post-
processing steps, which extract samples that
can be used for training end-to-end neural
speech recognition systems. In our experi-
ments, we demonstrate that a single-core ver-
sion of the crawler can obtain around 150
hours of transcribed speech within a day, con-
taining an estimated 3.5% word error rate
in the transcriptions. Automatically col-
lected samples contain reading and sponta-
neous speech recorded in various conditions
including background noise and music, distant
microphone recordings, and a variety of ac-
cents and reverberation. When training a deep
neural network on speech recognition, we ob-
served around 40% word error rate reduction
on the Wall Street Journal dataset by integrat-
ing 200 hours of the collected samples into the
training set. The demo1 and the crawler code2

are publicly available.

1 Introduction

End-to-end neural networks significantly simpli-
fied the development of automatic speech recog-
nition (ASR) systems (Graves and Jaitly, 2014).
Traditionally, ASR systems are based on Gaus-
sian Mixture Models (GMM) or Deep Neural Net-
works (DNN) for acoustic state representations
followed by the Hidden Markov Model (HMM)
for sequence-level learning. Though such systems
are successful and achieve high performance (Hin-
ton et al., 2012), they require word- or phoneme-
level alignments between the acoustic signal and
the transcription. As a result, dataset prepara-
tion for such hybrid systems is a labor-intensive

1http://emnlp-demo.lakomkin.me/
2https://github.com/EgorLakomkin/

KTSpeechCrawler

Figure 1: Architecture of the proposed system crawl-
ing YouTube to find videos with closed captions. Sev-
eral filtering and post-processing steps are applied to
select high-quality speech candidates. As a result, pairs
of speech and corresponding transcriptions are col-
lected.

and error-prone process as the performance of the
whole system is sensitive to the quality of the
alignment. Also, each component is trained indi-
vidually, which makes the whole process complex
and difficult to maintain. Recently, Connectionist
Temporal Classification (CTC) loss (Graves et al.,
2006) has been introduced, which allows relax-
ing the constraint of having alignment between the
spoken text and audio by introducing a sequence-
level criterion. Also, recurrent neural network-
based architectures that are state-of-the-art mod-
els in machine translation have been applied to
speech recognition (Chan et al., 2016). Conse-
quently, neural networks can be trained end-to-end
via backpropagation (Graves and Jaitly, 2014).
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CTC maximizes the log-likelihood of the ground
truth transcription and thus only the spoken text
is required without an explicit alignment, which is
easier and cheaper to obtain.

Previous work outlined the importance of hav-
ing large amounts of annotated data to train deep
neural networks. For example, a ten times in-
crease of the training data size from 1,200 hours
to 12,000 hours resulted in improving the word
error rate from 13.9% to 8.46% for clean and
from 22.99% to 13.59% for noisy speech (Amodei
et al., 2016). Collecting such large datasets is an
expensive and labor-intensive process, which re-
quires a significant amount of resources, usually
not available for the research community com-
pared to large industrial companies. For exam-
ple, Baidu’s internal speech dataset (Amodei et al.,
2016) contains around 10,000 hours of speech,
while the largest dataset available for the re-
search community does not exceed 2,000 hours
(David et al., 2004). We propose to utilize a vast
amount of videos available on YouTube with user-
provided closed captions as a source to extract
speech datasets comparable in size to the ones
available in the industry.

Our contribution in this paper is two-fold:
1) we provide a crawler that automatically ex-
tracts speech samples with transcriptions from
YouTube and filters high-quality samples with
several heuristic measures, and 2) we extend the
training data of two benchmark datasets with the
extracted samples and validate the benefit of the
collected data by training a deep neural network
on the original and the combined data to mea-
sure test performance difference. We also evalu-
ate the amount of noise in transcriptions by manu-
ally checking the word error rate of a random sub-
set of the dataset. We hope that our developed
tool will foster research of large-scale automatic
speech recognition systems3.

2 Related work

Crowdsourcing has been successfully used to con-
struct speech datasets like VoxForge4 or Mozilla’s
Common Voice5, where users recorded them-
selves through the provided web-interface, and up-
loaded samples can be checked by other partic-

3The code and the Dockerfile are available by this
link https://github.com/EgorLakomkin/
KTSpeechCrawler

4http://www.voxforge.org
5https://voice.mozilla.org/

ipants. While such an approach, in theory, can
be a viable strategy to acquire a large number
of diverse speech samples, it has several draw-
backs. The main limitation of this approach is
the difficulty of engaging and acquiring users
to donate samples to achieve a large and di-
verse dataset in terms of the number of differ-
ent speakers, accents, environments and recording
conditions. Another approach, which is widely
adopted by the research community, is to make
use of a vast amount of available multi-modal data
which contains transcribed speech. For exam-
ple, TED talks (Rousseau et al., 2014) are care-
fully transcribed and contain around 200 hours of
speech from around 1,500 speakers (TED-LIUM
v2 dataset). LibriSpeech (Panayotov et al., 2015)
is composed of a large number of audiobooks
and is the largest freely available dataset: around
960 hours of English read speech. Google re-
leased their Speech Commands dataset6 contain-
ing around 65,000 one-second-long utterances.

It has already been demonstrated that YouTube
captions can be successfully used as a ground
truth spoken text transcription to train large-scale
ASR systems (Liao et al., 2013; Lecouteux et al.,
2012). Users upload closed captions for vari-
ous reasons: to make video accessible for peo-
ple having some degree of hear loss, or to help
non-native speakers, or to increase the number
of views (YouTube search ranking algorithm in-
dexes closed captions content7). Nevertheless,
some videos contain inaccurate or even unrelated
to speech captions, for example, advertisements.
Several heuristics were proposed to remove low-
quality samples: removing captions containing
advertisements, language mismatch detection and
using forced alignment to detect confident align-
ment regions between the caption and the audio.
In addition, YouTube has been used previously
in multiple ways to automatically collect multi-
modal datasets, e.g. emotion recognition datasets
by Barros et al. (2018) and Zadeh et al. (2016), or
opinion mining (Marrese-Taylor et al., 2017), or
video classification (YouTube-8M8, or human ac-
tion recognition (Kay et al., 2017)).

In this work, we combine several known heuris-

6https://ai.googleblog.com/2017/08/
launching-speech-commands-dataset.html

7https://www.3playmedia.com/customers/
case-studies/discovery-digital-networks/

8https://research.google.com/
youtube8m/
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tics and propose some additional ones to select
high quality samples in an automatic way. We
integrate it into an easy to use tool KT-Speech-
Crawler, which can continuously scan new videos
uploaded to YouTube and update the speech
database. To our knowledge, this is the first open-
source tool available for automatic speech dataset
construction.

3 Crawler

In this section, we describe the sample selection
strategy, followed by several filtering and post-
processing heuristics to locate high-quality sam-
ples and discard noisy ones from YouTube.

3.1 Candidate selection

Firstly, we download candidate videos with En-
glish closed captions, which are usually uploaded
by the channel owner. To reach as many videos as
possible we use the YouTube Search API, where
one of the top 100 most common English words
is used as a search keyword to match the video
title (for example, the, but, have, not, and, ...).
Such frequent keywords allow us to match many
videos, even though, as a side effect, non-English
videos with closed captions in English might be
captured. The YouTube Search API allows to
download the 600 most recent videos for each key-
word, and since many videos are constantly be-
ing uploaded to YouTube it is possible to continu-
ously collect speech samples. Also, we memorize
YouTube channels containing samples that passed
all the filtering steps (see section 3.2) and use other
videos from this channel. This leads to many di-
verse candidates coming from TV shows and TV
series, video blogs, news, and live recordings.

3.2 Filtering steps

We perform several filtering steps to select suitable
candidates:

• we discard a caption if it overlaps with an-
other caption, which sometimes happens due
to incorrectly closed caption auto syncing,

• we filter out captions that indicate that there
is music content in this sample and captions
containing non-ASCII characters or URLs,

• we remove text chunks which do not corre-
spond to the actual spoken text, like the infor-
mation of the speaker name (Speaker 1: ...),

annotations ([laughs], *laughs*, (laughs)),
and punctuation,

• we spell out numbers which are within the
range from 1 to 100 as they have non-
ambiguous pronunciation (in contrast, for ex-
ample, 1,500 can be uttered as fifteen hundred
or one thousand and five hundred),

• we discard captions if they contain any char-
acter that is not an English letter, apostrophe
or a white space,

• we filter segments which have less than one
second duration or more than ten seconds,

• in addition, we select randomly three phrases
from the video and measure the Levenshtein
similarity between the provided closed cap-
tion and the transcription generated by the
Google ASR API. If the similarity is below
a 70% threshold, we discard all the samples
in this video. This step allows filtering videos
which have English subtitles for non-English
spoken text or videos with a bad alignment.
Also, this filter removes videos with com-
pletely misaligned captions.

3.3 Post-processing steps
During our experiments on evaluating the quality
of the extracted samples, we spotted that one of
the major problems is imprecise alignments be-
tween caption and audio. For example, the first
or the last word can be omitted on the recording
due to incorrect caption timings. One possible
way to reduce the number of samples with mis-
aligned borders is to group together nearby cap-
tions if they are at a distance of less than one sec-
ond. We stop grouping adjacent utterances if the
overall length exceeds ten seconds. In addition, we
perform a forced alignment9 between the caption
and the corresponding audio using Kaldi (Povey
et al., 2011) and if the first or the last word is not
successfully mapped, we try to extend the caption
boundaries (up to 500 milliseconds) until the bor-
der word becomes mapped. If we cannot align the
border word, we keep the caption boundaries un-
changed.

4 Experiments and analysis

To evaluate the usefulness of the collected sam-
ples we conducted three types of experiments. We

9https://github.com/lowerquality/
gentle
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Figure 2: Architecture of the ASR model used in this
work, following the DeepSpeech 2 architecture.

trained the deep neural network-based model on
different training datasets:

• on the original training data,

• on the mix of the original and with the
crawled samples,

• only on the crawled samples.

For benchmarking, we selected two well-known
datasets for training ASR systems: The Wall Street
Journal and TED-LIUM v2. In all experiments,
we kept the same size and architecture of the neu-
ral model and its hyperparameters. In this section,
we outline the details of benchmark data used in
our experiments, neural model architecture and the
evaluation protocol and metrics, followed by the
evaluation results and comparisons.

4.1 ASR model

Our ASR model (see Figure 2) is a combination of
convolutional and recurrent layers inspired by the
DeepSpeech 2 (Amodei et al., 2016) architecture.
Our model contains two 2D convolutional layers
for feature extraction from power FFT spectro-
grams. Power spectrograms are extracted using a
Hamming window of 20ms width and 10ms stride,
resulting in 161 features for each speech frame.
Convolutional layers are followed by five recur-
rent bi-directional Gated Recurrent Units (Chung
et al., 2014) layers with a size of 1,024 followed
by a softmax layer on top, predicting the char-
acter distribution for each speech frame. Over-
all, our model has around 61 million parameters.
Connectionist Temporal Classification (CTC) loss
(Graves et al., 2006) is used as a loss criterion to
measure how good the alignment produced by the
network is compared to the ground truth transcrip-
tion.

The Stochastic Gradient Descent optimizer is
used in all experiments with a learning rate of
0.0003, clipping the norm of the gradient at the

Table 1: Evaluation results. We evaluated the effect
of adding samples extracted from YouTube by our tool
on two benchmarking datasets: WSJ and TED-LIUM
v2. We trained the deep neural network on the origi-
nal training data, then combined the data with YouTube
samples (WSJ+YouTube, for example), and, finally,
only on the YouTube samples. We report word and
character error rate.

Train Test WER CER
WSJ WSJ 27.4% 7.2%
WSJ + YouTube (200h) WSJ 15,8% 4.2%
YouTube (200h) WSJ 31.5% 8.3%
TED TED 32.6% 10.4%
TED + YouTube (300h) TED 28.1% 8.2%
YouTube (300h) TED 36.6% 10.6%

level of 400 with a batch size of 32. During the
training, we apply learning rate annealing with a
factor of 1.1. We apply the SortaGrad algorithm
(Amodei et al., 2016) during the first epoch by
sorting utterances by their duration (Hannun et al.,
2014a). We select the model with the best word er-
ror rate measured on the validation set to prevent
model overfitting.

4.2 Data and evaluation measure

4.2.1 WSJ

The Wall Street Journal (WSJ) dataset is a well-
known dataset for evaluating ASR systems, con-
taining utterances of read speech coming from the
news domain. The WSJ training set (train-si284)
consists of 81 hours containing 37,318 sentences
from 284 speakers (142 male and 142 female). We
used the dev93 development set for validation and
report the word error rate on the eval92 test set.

4.2.2 TED talks

We also evaluated our approach on the TED-
LIUM v2 dataset, which contains around 200
hours of transcribed TED10 talks of 1,495 speak-
ers. In contrast to the WSJ dataset, it contains
spontaneous speech rather than read speech.

4.3 Results

We summarize our results in Table 1. Note that
we did not use a language model for decoding in
our experiments but used greedy decoding, where
the most probable character at each timestep was
emitted. It is well known that decoding with the

10https://www.ted.com/
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Figure 3: A screenshot of the web-based demo to
browse the collected samples, presenting the extracted
utterance and the corresponding transcription.

language model and beam search significantly im-
proves the performance on the test set of character-
based end-to-end models (Hannun et al., 2014b),
but as our goal was to demonstrate the impact of
adding extracted samples within the same neural
model and test set, we left it out. We observed
that adding samples from YouTube positively con-
tributed to the overall performance in both met-
rics: word (WER) and character error rates (CER).
For example, the word error rate improved from
34.2% to 15.8% on the WSJ test set by adding 200
hours of samples (108,617 utterances) to the WSJ
training set. Similar results can be observed on the
TED talks dataset: WER and CER improved from
32.6% to 28.1% and 10.4% to 8.2% by adding 300
hours of YouTube samples. To be sure that none
of the TED videos appeared in the YouTube set,
which could lead to overestimation of the perfor-
mance, we excluded videos that contain a TED to-
ken in the title or in the description. Interestingly,
if only YouTube samples were used as the training
set, we observed CER values of 8.3% and 10.6%
for the WSJ and the TED datasets, respectively
(compared to 7.2% and 10.4% using original train-
ing data), indicating that having a domain-specific
training set plays an important role and there is a
room for improvement in designing better filtering
and post-processing steps.

4.4 Transcriptions quality

We manually investigated samples by using devel-
oped a web-based demo, see Fig. 3 and analyzed
the quality of the collected samples and their tran-
scriptions. Our developed web-service presents
random eight utterances and their corresponding
transcriptions to the user and allows to load more

samples if necessary. We also integrated a simple
functionality to validate the extracted samples: a
user can confirm that the caption is correct or if
not enter the right transcription.

WER =
S +D + I

S +D + C
(1)

We computed the word error rate using equation
1, where S, I, D, C is number of substitutions,
insertions, deletions and correct words, respec-
tively. We estimated 3.5% word error rate on the
small randomly selected subset of 600 samples.
The most common type of error was missing or
wrongly added one or two words at the beginning
or at the end of the utterance.

5 Conclusions and future work

In this work, we presented an open-source system
that automatically constructs datasets for training
end-to-end neural speech recognition systems. We
demonstrated the usefulness of the collected sam-
ples on the WSJ and TED datasets. We provide
the code for the crawler and metadata and a script
to easily construct a dataset of 500 hours.

Future work includes extending the script to
support other languages. A more sophisticated
approach to identify wrongly added or missing
words in transcriptions could also be used by using
attention-based neural networks like pointer net-
works. We are also aware that some collected sam-
ples may contain automatically generated utter-
ances with Text-To-Speech software, which may
require performing speaker recognition to balance
the dataset. Furthermore, domain-specific speech
datasets can be collected by selecting samples af-
ter analyzing captions and video metadata (for ex-
ample, in the financial domain). In addition, sam-
ples with several people talking at the same time
and noisy samples with low signal-to-noise ratio
need to be filtered, which could be implemented
as neural network-based modules.

We believe that having large, free and high-
quality speech datasets available to the research
community will foster the development of new
architectures and applications for speech under-
standing, and we hope that our presented tool will
contribute to that.
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Abstract

Group discussions are usually aimed at shar-
ing opinions, reaching consensus and mak-
ing good decisions based on group knowledge.
During a discussion, participants might ad-
just their own opinions as well as tune their
attitudes towards others’ opinions, based on
the unfolding interactions. In this paper, we
demonstrate a framework to visualize such dy-
namics; at each instant of a conversation, the
participants’ opinions and potential influence
on their counterparts is easily visualized. We
use multi-party meeting opinion mining based
on bipartite graphs to extract opinions and cal-
culate mutual influential factors, using the Lu-
nar Survival Task as a study case.

1 Introduction

Group meetings are pervasive in modern work-
places, consuming workers’ time and energy.
Reaching consensus and making decisions more
efficiently are major challenges. For example, dur-
ing a meeting, some of the participants might in-
sist on their own opinions towards the discussed
items or topics, while others might rapidly change
opinions and attitudes. As a meeting unfolds, we
can observe developing leadership characteristics
among the participants; for example, some partic-
ipants may speak more assertively to drive deci-
sive conclusions and steer the meeting, while oth-
ers may follow the crowd and merely deliver tiny
ideas.

In order to track the dynamics that reflect the
change of opinions and the procedure of decision
making, we require a meeting assistant that works
in real time. That is, the assistant should keep
track of the agenda and discussion process as a
minute or note-taker, as well as record and assess
the influence and contribution of each participant.

In this paper, using the NASA Lunar Survival

Task 1 as a study case, we present an automatic
meeting assistant with the following functionali-
ties:

• The assistant detects and extracts participants’
opinions from their speech and visualizes the
groups’ instantaneous state (ranking of items)
based on current and previous utterances.
• The assistant visualizes an influence factor for

each participant using current and previous ut-
terances in real time. Using this information,
emerging leadership in the group can be visual-
ized.

The proposed assistant begins with speech
recognition output, and detects the opinions from
the speakers with Natural Language Processing
(NLP) tools. We propose a bipartite graph formal-
ism to assess participants’ influence.

2 System Overview

2.1 Study Case Introduction

The NASA Lunar Survival Task is a widely used
group consensus exercise that helps encourage the
development of communication, cooperation, and
decision making skills (Hall and Watson, 1970).
In small groups of 3–4, participants discuss a hy-
pothetical survival scenario and rank the value of
supplies that may aid in their survival and safe
rendezvous with their mothership. Before the dis-
cussion, each participant is asked to independently
rank the items. Next, the participants are asked to
reach consensus on the ranking with active verbal
interaction. Each member of the group must agree
upon the final ranking, which acts as the group de-
cision.

1https://t.co/5e56cHayji
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Video

Participant
Indicator & 
Aggregated
Influence

Current Speaker & Speech Proposed Ranking

Current Ranking of
all Discussed Items

Influence Curves over Time

Figure 1: Main interface of our proposed meeting assistant.

2.2 Interface Details
Figure 1 illustrates the interface of the meeting as-
sistant2.

A video window shows the meeting scene. In
this window, we use red circles to denote the par-
ticipants. The sizes of the circles denote the aggre-
gated influence factors of participants; the larger
the circle is, the more influence (i.e., contribution
to the conversation) the participant possesses.

Beneath the video window we provide the cur-
rent speaker and speech. The raw speech is pro-
cessed by IBM Watson’s Speech to Text System
3, and we use the text output to detect discus-
sion/focus items and extract speakers’ opinions as
detailed further below.

On the right side, we place a real-time rank-
ing list for items that have been discussed. As
the discussion proceeds, the ranking list expands
with newly involved items. We also illustrate the
current focus item of each participant and her/his
proposed rank of the focused item with a col-
ored edge. The colors of item circles and opin-

2A short video clip illustrating the meeting assistant can
be viewed at https://youtu.be/3_YS0ZGQNQo.

3https://www.ibm.com/watson/services/
speech-to-text/

ion edges denote different rankings; greener items
have higher rankings and redder items have lower
rankings.

At the bottom, we illustrate curves indicating
instantaneous influence factors from each partic-
ipant in real time based on the current speech.

Figure 2 illustrates a series of screenshots from
our proposed meeting assistant. Three participants
attend the meeting and start the discussion about
several items. In Figure 2a and 2b, the meet-
ing was in an early stage, and there is no differ-
ence among the participants in terms of influence.
As the discussion continues in Figure 2c and 2d,
where more items have been discussed, the curves
of influence fluctuate and imply differences in ac-
tivity among participants. Moreover, the rank-
ings of discussed items are adjusted according to
the speech and extracted opinions as mentioned
above.

Finally, as shown in Figure 2f, from the size
of the red circles representing aggregated influ-
ences and the historical record of the curves, we
can conclude that Person 1 and Person 2
are contributing more in the discussion, while
Person 3 is less active.
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(a) Beginning of the conversation. (b) Different ideas about which items to rank first.

(c) Adjusting the ranking of water; adding life raft. (d) Fine-tuning water and life raft.

(e) Proceeding with other items. (f) A substantially complete list at the end of discussion.

Figure 2: Screenshots of the meeting assistant at different points in time.

3 Opinion Detection and Extraction

Our system takes as input transcribed meeting
speech, sentence by sentence, and outputs real-
time rankings (opinion words) of the items after
each participant expresses her/his thoughts.

3.1 Opinion Word Identification

In the context of the Lunar Survival Task discus-
sion, we observed that participants express their
opinions of item rankings in multiple ways, in-
cluding
1. Explicitly mentioning an item with its rank-

ing(e.g., “In my opinion, we should put water
as the second most important.”)

2. Agreement or disagreement (e.g., “Yeah, I
agree.”)

3. Comparison of the items by relative ranking
(e.g., “Matches are less important than signal
flares because they don’t work on the moon.”)

In the first scenario of a participant proposing
an item ranking, we use the Stanford CoreNLP
(Manning et al., 2014) name tagger to extract the
NUMBERs and ORDINALs mentioned in the dis-
cussion (Finkel et al., 2005). We also eliminated
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numbers beyond 15 and numbers that are parts of
pronouns such “this one”. Additionally, in this
specific discussion, people use “last” or “least” to
imply they are ranking the item at 15 and we also
implemented this rule.

As for the second scenario, people typically
express agreement/disagreement with the person
who talked immediately before them (Abu-Jbara
et al., 2012). For agreement, we assume the cur-
rent speaker accepts the previous speaker’s stated
opinion, which means we pass the weights cap-
tured for the previous person to the current speaker
if we find the expression of agreement in the cur-
rent sentence. We found that expressions of dis-
agreement are not useful since people typically ex-
press their own opinion following their disagree-
ment.

We currently do not deal with the third scenario
of relative rankings, because no definitive ranking
can be extracted from such statements.

3.2 Target Identification and Ranking

In this step, we identify discussed items in the dis-
cussion. As participants must have a very con-
densed discussion of these 15 items in a relatively
short time, they usually mention the items with the
exact words from the list they are given. Thus, we
take the nouns and noun phrases as chunks and if
any word matches with the nouns in the given list,
it is recognized as the item in the given list.

So far, we have the opinion words and potential
targets annotated in the conversation, and we want
to pair them up and find the target of the ranking.
It has been shown in previous work on relation ex-
traction that the shortest dependency path between
any two entities captures the information required
to assert a relationship between them (Bunescu
and Mooney, 2005). Based on the observation
that people tend to mention items and their related
ranks close to each other, we pair the item with the
rank found in its shortest dependency path.

4 Bipartite Graph Construction

We propose an assessment method of the influ-
ence factors among participants based on bipartite
graphs.

4.1 Dynamic Update of Weights and Vertices

We construct a directed bipartite graph G = (U ∪
V,E), where the vertices U represent the partic-
ipants in the discussion, the vertices V represent

the items, and E denotes the edges between these
vertices. ui denotes the ith vertex or participants’
cumulative informative score in U . vj is the jth
vertex or item ranking in V .

In the Lunar Survival scenario, we observed that
the information given in the conversation is very
helpful in getting the right result and reaching con-
sensus. To reflect this observation, we have total
number of sentences so far for each speaker in the
conversation as an informativeness indicator. The
edges of the bipartite graph carry weightswij , rep-
resenting the relationship between vertices ui and
vj , i.e., ui’s current ranking of vj . Thus, we can
represent all the edge weights of the graph as a
|U | × |V | matrix W = [wij ]. With the item-rank
pair extracted, we dynamically updateW , and cal-
culate vj as

∑
i wij

i .

4.2 Influence Model
We implemented an influence model (IM) (Basu
et al., 2001) to track and understand the partici-
pants’ opinion behaviors. We model the partici-
pants’ opinion shifts as a Markov chain with each
state representing a user’s opinion on the item. We
use the coupled HMM to correlate the influence
of the opinions among multiple participants. Each
participant i has a chain of rankings on the items
at time t denoted Si

t . We assume that

P (Si
t |S1

t−1, ..., S
N
t−1) =

∑

j

αijP (Si
t |Sj

t−1), (1)

where αij (calculated from the model) can tell us
how much the state transition of person i is influ-
enced by the given neighbor j.

This observed IM is characterized by (Φ, A),
where Φ is the state transition probability matrix,
and A is the influence strength vector. At any time
t, we calculate the pairwise transition probabil-
ity matrix P (Si

t |Sj
t−1) by counting, and determine

αij using the constrained gradient ascent method
to maximize per-chain likelihood.

5 Experiments

5.1 Dataset Construction
We curated 5 meetings and transferred the
recorded voice to the texts using IBM Watson’s
Speech-to-Text API (Saon et al., 2017). The con-
versations are 10–15 minutes long and have an av-
erage of 412 sentences. we collected the initial
and final rankings of the items from each person
using pre- and post-discussion questionnaires. We
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Team ID Precision Recall F1 score

Team 1 0.53 0.21 0.31
Team 2 0.65 0.55 0.6
Team 3 0.71 0.62 0.66
Team 4 0.65 0.33 0.44
Team 5 0.59 0.70 0.64

Table 1: Information extraction measures

performed the opinion extraction and target pair-
ing as described in Section 3 for the 5 meetings.
The extraction precision and accuracy compared
to human annotated ground truth is summarized in
Table 1. The precision is defined as the fraction of
correct ranks among all ranks retrieved from the
conversation, and recall is the fraction of correct
ranks that have been retrieved over all the ranks
supposed to be retrieved as in ground truth.

5.2 Meeting Dynamics Analysis

We see that groups have very distinct opinions on
the 15 items before each meeting, and that they all
achieved consensus at the final stage of the meet-
ing. From the playback of the meeting assistant
videos, we have a very clear view of the unfold-
ing speech content that influences the participants’
state of mind.

We observed the following patterns that corre-
late with a participant’s influence:
1. Approval of other people first, followed by stat-

ing clearly the opinion on an item (e.g., Figure
3)

2. Detailed explanation of the reason to choose a
specific rank (e.g., “It’s a two hundred mile trek
so you need some sort of sustenance for the hu-
man body.”)

3. Drawing attention before a statement (e.g.,
“OK so proposition hear me out. We’re at nine
now right? If we’re going forward so what if
we put milk powder as ten?”)

6 Related Work

Opinion target extraction and pairing: In our
context, the targets are constrained to 15 items
given beforehand, but they appear in different
forms in the conversation. In the context of prod-
uct review mining, (Hu and Liu, 2004) extracted
frequent nouns and noun phrases as product fea-
ture candidates. Following that method, (Abu-
Jbara et al., 2012) extracted frequent noun phrases

Figure 3: Example of arguments with stronger in-
fluence.

and named entities mentioned by different discus-
sants.

As for opinion extraction, various methods were
used in different contexts. (Kim and Hovy, 2006)
collected opinion-bearing words and classified
them into 3 classes. (Ortigosa et al., 2014) also
studied opinion from 3 classes. Since in our case,
the opinion on an item is restricted to a ranking of
1–15, we used name tagging results to identify the
ordinals and numbers mentioned in the conversa-
tion.

Group dynamics studies: Most group dynam-
ics studies to date of role recognition or influ-
ence studies are based on non-linguistic features.
(Rienks and Heylen, 2005) used audio-only fea-
tures including a collection of nonverbal and ver-
bal cues to perform three-way classification of the
participants dominance level. (Beyan et al., 2018)
acquired audio and visual features and predicted
emergent leadership with multiple kernel learn-
ing. Our group has extended the system proposed
here to include non-verbal and visual cues to ac-
curately predict emergent leadership and contribu-
tion (Bhattacharya et al., 2018).

When modeling opinion shifts, we referred to
(Chen et al., 2017) but noticed that these are less
complicated in face-to-face conversation than in a
social network. (Asavathiratham, 2001) first pro-
posed a simplified coupled-HMM influence model
to understand the behaviors of a large number of
interacting components. (Basu et al., 2001) ex-
panded the theory and proposed a gradient ascent
method to learn the influence model.
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7 Conclusion and future work

In this paper we demonstrate a system for meeting
assistance, visualizing real-time opinion extrac-
tion and group dynamics. We use the Lunar Sur-
vival Task to observe how people gradually change
their opinions and make decisions. With the cur-
rent meeting assistant tool, we have a closed set
of 15 items given in advance and a fixed set of
ranks. In future work, we plan to develop infor-
mation extraction systems that handle open sets
and detect multiple topics in a meeting. The opin-
ions extracted could be used to study group dy-
namics and recognize roles in meetings, extending
the scope of the meeting assistant to more general
scenarios.
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Abstract

Recent work introduces the AI2 Reasoning
Challenge (ARC) and the associated ARC
dataset that partitions open domain, complex
science questions into an Easy Set and a Chal-
lenge Set. That work includes an analysis of
100 questions with respect to the types of
knowledge and reasoning required to answer
them. However, it does not include clear def-
initions of these types, nor does it offer infor-
mation about the quality of the labels or the
annotation process used. In this paper, we in-
troduce a novel interface for human annotation
of science question-answer pairs with their re-
spective knowledge and reasoning types, in
order that the classification of new questions
may be improved. We build on the classifi-
cation schema proposed by prior work on the
ARC dataset, and evaluate the effectiveness of
our interface with a preliminary study involv-
ing 10 participants.

1 Introduction

Recent work by Clark et al. (2018) introduces the
AI2 Reasoning Challenge (ARC)1 and the asso-
ciated ARC dataset. This dataset contains science
questions from standardized tests that are sepa-
rated into an Easy Set and a Challenge Set. The
Challenge Set comprises questions that are an-
swered incorrectly by two solvers based on Point-
wise Mutual Information (PMI) Information Re-
trieval (IR). In addition to this division, a survey
of the various types of knowledge as well as the
types of reasoning that are required to answer var-
ious questions in the ARC dataset was presented.
This survey was based on an analysis of 100 ques-
tions chosen at random from the Challenge Set.
However, very little detail is provided about the
questions chosen, the annotations provided, or the
methodology used. These questions surround the

1http://data.allenai.org/arc/

very core of the paper, since the main contribution
is a dataset that contains complex questions.

In this work, in order to overcome some of
the limitations of Clark et al. (2018) described
above, we present a detailed annotation interface
for the ARC dataset that allows a distributed set
of annotators to label the knowledge and rea-
soning types (Boratko et al., 2018). Following
an annotation round involving over ten people at
two institutions, we measure and report statistics
such as inter-rater agreement, and the distribu-
tion of knowledge and reasoning type labels in the
dataset.

2 Annotation Interface

The annotation interface introduced in this paper is
shown in Figure 1. The text of the science question
is displayed at the top of the left side, followed by
the answer options. Each of the answer options is
preceded by a radio button: each button is initially
transparent, but the annotator can click on a but-
ton to check whether the corresponding option is
the answer to the question. This facility is to help
annotators with extra information if it is needed in
labeling the question; however, we leave it blank
initially to avoid biasing the annotations.

Clicking on a specific answer option executes a
search on the ARC corpus, with the query text of
that search set to be the last sentence of the ques-
tion appended with the entire text of the clicked
answer option. The retrieved search results are
shown in the bottom left half of the interface.
Annotators have the option of labeling retrieved
search results as irrelevant or relevant to answer-
ing the question at hand. The query box also ac-
cepts free text, and annotators who wish to craft
more specific queries are free to do so. We collect
all the queries executed, as well as the annotations
pertaining to the relevance of the returned results.
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Figure 1: A screenshot of the interface to our annotation system, described in Section 2.

2.1 Question Annotation
The right hand side of the interface deals with
the annotation of a given question. There are two
boxes for annotating knowledge and reasoning
types respectively. The labels are populated from
the knowledge and reasoning type tables in Bo-
ratko et al. (2018) (more on these types in Sec-
tion 3). The annotator can also provide optional
information on the quality of the retrieved search

results if they choose to run a query. Finally, the
annotator can use the optional field below quality
to enter additional notes about the question; these
notes are stored and can be retrieved for subse-
quent discussion and refinement of the labels.

2.2 Search Result Retrieval & Annotation
In addition to labeling the knowledge and reason-
ing types systematically, we demonstrate yet an-
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other capability of our interface: given a corpus
of knowledge, we are able to retrieve and display
search results that may be relevant to the ques-
tion (and its corresponding options) at hand. This
is useful because it gives a solution technique an
additional signal as it tries to identify the cor-
rect answer to a given question. In open-domain
question answering, the retriever plays as impor-
tant a role as the machine reader (Chen et al.,
2017). In the past few years, there has been a lot
of effort in designing sophisticated neural archi-
tectures for reading a small piece of text (e.g. para-
graph) (Wang and Jiang, 2016; Xiong et al., 2016;
Seo et al., 2016; Lee et al., 2016, inter alia). How-
ever, most work in open domain settings (Chen
et al., 2017; Clark and Gardner, 2017; Wang et al.,
2018) only uses simple retrievers (such as TF-IDF
based ones). As a result, there is a notable decrease
in the performance of the QA system. One road-
block for training a sophisticated retriever is the
lack of available training data which annotates the
relevance of a retrieved context with respect to the
question. We believe our annotated retrieval data
can be used to train a better ranker/retriever with-
out obliging annotators to explicitly connect the
supporting passages (Jansen et al., 2018).

The underlying retriever in our interface is a
simple Elasticsearch, similar to the one used by
Clark et al. (2018). The interface is populated by
default with the top ranked sentences that are re-
trieved with the given question as the input query.
However, we noticed that results thus retrieved
were often irrelevant to answering the question.
To address this, our labeling interface also al-
lows annotators to input their own custom queries.
We found that reformulating the initial query sig-
nificantly improved the quality of the retrieved
context (results). We encouraged the annotators
to mark the contexts (results) that they thought
were relevant to answering the question at hand.
For example, in Figure 1, the annotator came up
with a novel query – ‘metals are solid
at room temperatures’ – and also marked
the relevant sentences which are needed to answer
this question. Note that sometimes we need to rea-
son over multiple sentences to arrive at the answer.
For example, the question in Figure 1 can be an-
swered by combining the first and third sentences
in the ‘Relevant Results’ tab.

3 Knowledge & Reasoning Types

In previous work (Clark et al., 2018), the stan-
dardized test questions under consideration were
split into various categories based on the kinds
of knowledge and reasoning that are needed to
answer those questions. The idea of classifying
questions by these two types is central to the no-
tion of standardized testing, which endeavors to
test students on various kinds of knowledge, as
well as various problem types and solution tech-
niques. These categories allow for the classifica-
tion of questions, which makes it easier to partition
them into subsets to measure performance and im-
prove solution strategies.

3.1 Knowledge Types
In most question-answering (QA) scenarios, the
knowledge that is present with the system (or the
agent) determines whether a given question can be
answered. The full list of the revised knowledge
labels (types) – along with the instructions given
to annotators and respective exemplars from the
ARC question set – can be found in our comple-
mentary work (Boratko et al., 2018). For the an-
notation of knowledge types using our interface,
annotators were given the following instructions:

You are to answer the question, “In a perfect
world given an ideal knowledge source, what
types of knowledge would you as a human need
to answer this question?” You are allowed to se-
lect multiple labels for this type which will be
recorded as an ordered list. You are to assign la-
bels in the order of importance to answering the
questions at hand.

In order to level the field among annotators, we in-
cluded phrasing about an ideal knowledge source.
Additionally, displaying the retrieved search re-
sults in the interface provides another way for the
annotators to share some common ground with re-
spect to the typical kind of knowledge that is likely
to be available. We also provide instruction-based
definitions for each class, as opposed to the sin-
gle exemplars provided previously. We believe this
greatly simplifies the annotation task for new an-
notators, since they no longer need to perform a
preliminary manual analysis of the QA set in order
to understand the distinctions between the classes.

3.2 Reasoning Types
The annotation instructions for reasoning types
follow a similar pattern to the knowledge types
described in the previous section. The annotators
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were given the following instructions when anno-
tating the reasoning types:

You are to answer the question, “What types
of reasoning or problem solving would a
competent student with access to Wikipedia need
to answer this question?” You are allowed to
select multiple labels for this type which will be
recorded as an ordered list. You are to assign
labels in the order of importance to answering
the questions at hand.

You may use the search results to help dif-
ferentiate between the linguistic and multi-hop
reasoning types. Any label other than these
should take precedence if they apply. For
example, a question that requires using a mathe-
matical formula along with linguistic matching
should be labeled algebraic, linguistic.

Notice that the instructions in this case refer to be-
ing able to access a specific knowledge corpus,
and allow for the selection of multiple labels in
decreasing order of applicability. We also provide
specific instructions on the order of precedence
as relates to linguistic and multi-hop reasoning
types: this is based on our empirical observation
that many questions can be classified trivially into
these reasoning categories, and we would prefer
(for downstream application use) a clean split into
as many distinct categories as possible.

4 Results

Members of the annotation group were given ac-
cess to the annotation interface (which includes
the question, answers, query search results and
more information as described above). Each anno-
tator was shown the questions in a random order,
and was allowed to skip or pass any question.

Statistics. We collected labels from at least 3
unique annotators (out of the possible 10) for 192
distinct questions. This annotation process pro-
duced 1.42 knowledge type labels and 1.7 reason-
ing type labels per question. Figure 2 and Figure 3
shows the distribution of annotation labels by all
raters at any position. While Basic Facts domi-
nates the knowledge type labels, there is no clear
cut consensus for the reasoning type. Indeed, qn
logic, linguistic, and explanation occur most fre-
quently.

4.1 Inter-Rater Agreement
A comprehensive look at the labels and inter-rater
agreement can be found in Table 1 and Table 2.
Fleiss’ κ is often used to measure inter-rater agree-
ment (Cohen, 1995). Informally, this measures the
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amount of agreement, beyond chance, based on
the number of raters, objects and classes. κ > 0.2
is typically taken to denote good agreement be-
tween raters, while a negative value means that
there was little to no agreement. Since Fleiss’ κ
is only defined for a single set of labels, we con-
sider only the first (most important) label for each
question in the statistic we report.

In addition to Fleiss’ κ we also use the Kemeny
voting rule (Kemeny, 1959) to measure the con-
sensus by the annotators. The Kemeny voting rule
minimizes the Kendall Tau (Kendall, 1938) (flip)
distance between the output ordering and the or-
dering of all annotators. One theory of voting (ag-
gregation) is that there is a true or correct ordering
and all voters provide a noisy observation of the
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ground truth. This method of thinking is largely
credited to Condorcet (de Caritat, 1785; Young,
1988) and there is recent work in characterizing
other voting rules as maximum likelihood estima-
tors (MLEs) (Conitzer et al., 2009). The Kemeny
voting rule is the MLE of the Condorcet Noise
Model, in which pairwise inversions of the pref-
erence order happen uniformly at random (Young,
1988, 1995). Hence, if we assume all annotators
make pairwise errors uniformly at random then
Kemeny is the MLE of label orders they report.

Label Appears Majority Consensus

basic facts 125 69 28
algebraic 13 5 2
definition 52 16 5

causes 78 33 15
experiments 35 19 13

purpose 30 13 0
physical 21 3 1

Fleiss’ κ = 0.342

Table 1: Pairwise inter-rater agreement for Knowledge La-
bels, along with the mean and Fleiss’ κ for survey responses.

Label Appears Majority Consensus

linguistic 66 31 8
algebraic 15 8 3

explanation 80 22 4
hypothetical 62 21 6

multihop 45 6 0
comparison 46 13 3

qn logic 78 33 2
physical 18 3 0
analogy 4 1 1

Fleiss’ κ =−0.683

Table 2: Pairwise inter-rater agreement for Reasoning La-
bels, along with the mean and Fleiss’ κ for survey responses.

4.1.1 Knowledge Labels
We achieve κ = 0.342, which means that our raters
did a reasonable job of independently agreeing
on the types of knowledge required to answer the
questions. The mean Kemeny score of the con-
sensus ranking for each question is 2.57, meaning
that on average there are less than three flips re-
quired to get from the consensus ranking to each of
the annotators’ rankings. The most frequent label
in the first position was basic facts, followed by
causes. Overall, there was a reasonable amount of
consensus between the raters for knowledge type:
64/192 questions had a consensus amongst all the
raters. Taken together, our results on knowledge
type indicate that most questions deal with basic
facts, causes, and definitions; and that labeling can
be done reliably.

4.1.2 Reasoning Labels
The inter-rater agreement score for the reasoning
labels tells a very different story from the knowl-

edge labels. The agreement was κ = −0.683,
which indicates that raters did not agree above
chance on their labels. Strong evidence for this
comes from the fact that only 27/192 questions had
a consensus label. This may be due to the fact that
we allow multiple labels, and the annotators sim-
ply disagree on the order of the labels. However,
the score of the consensus ranking for each ques-
tion is 6.57, which indicates that on average the
ordering of the labels is quite far apart.

Considering the histogram in Figure 3, we see
that qn logic, linguistic, and explanation are the
most frequent label types; this may indicate that
getting better at understanding the questions them-
selves could lead to a big boost for reasoners. For
Figure 4, we have merged the first and second la-
bel (if present) for all annotators. Now, the set of
all possible labels is all singletons as well as all
pairs of labels. Comparing this histogram to the
one in Figure 3, we see that while linguistic and
explanation remain somewhat unchanged, the qn
logic label becomes very spread out across the
types. This is more support for our hypothesis that
annotators may be disagreeing on the ordering of
the labels, rather than the content itself.
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Figure 4: Histogram of the reasoning labels when we com-
bine the first and (if present) second label of every annotator.
The count refers to annotations.

4.2 Search Results
To quantitatively measure the efficacy of the an-
notated context (search results) from the inter-
face, we evaluated 47 questions and their respec-
tive human-annotated relevant sentences with a
pretrained DrQA model (Chen et al., 2017). We
compared this to a baseline which only returned
the sentences retrieved by using the text of the
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question plus given options as input queries. Since
DrQA returns a span from the input sentences,
we picked the multiple choice option that maxi-
mally overlapped with the returned answer span.
Our baseline results are 7 correct out of 47 ques-
tions. With the annotated context, the performance
increased to 27 correctly answered questions - a
42% increase in accuracy. Encouraged by these re-
sults, we posit that the community should focus a
lot of attention on improving the retrieval portions
of the various QA systems available; we think that
annotated context will certainly help in training
a better ranker. We conclude that the community
should focus on improving the retrieval portion of
their QA system and we think that the annotated
context would help in training a better ranker.

5 Conclusion & Future Work

In this paper, we introduce a novel annotation in-
terface and define annotation instructions for the
knowledge and reasoning type labels that are used
for question analysis for standardized tests. We an-
notate approximately 200 questions from the ARC
Challenge Set shared by AI2 with the types of
knowledge and reasoning required to answer the
respective questions. Each question has at least 3
annotators, with high agreement on the require-
ments for knowledge type. We will leverage the
knowledge and reasoning type annotations, as well
as the search annotations, to improve the perfor-
mance of QA systems. We will also release these
annotations to the community to complement the
ARC Dataset, and make our annotation interface
available to interested researchers for use with
other question-answering (QA) tasks.
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Abstract
In this paper, we present APLenty, an anno-
tation tool for creating high-quality sequence
labeling datasets using active and proactive
learning. A major innovation of our tool is the
integration of automatic annotation with active
learning and proactive learning. This makes
the task of creating labeled datasets easier, less
time-consuming and requiring less human ef-
fort. APLenty is highly flexible and can be
adapted to various other tasks.

1 Introduction

Labeled data play a critical role in many machine
learning problems. Obtaining such data is dif-
ficult, time-consuming, and require a lot of hu-
man effort. Many researchers have utilized active
learning or proactive learning, in which a learn-
ing algorithm is allowed to choose the data from
which it learns (Settles, 2009). The annotators, in
this scenario, only have to annotate a reasonable-
size set of representative and informative data. It
helps reduce the human labeling effort and at the
same time reduces the cost of training the machine
learning models.

In recent years, there has been an increas-
ing amount of libraries and systems that focus
on active learning, such as the JCLAL (Reyes
et al., 2016), the Active-Learning-Scala (Santos
and Carvalho, 2014), or the LibAct (Yang et al.,
2017) libraries. They implement several state-
of-the-art active learning strategies in single-label
and multi-label learning paradigms. These li-
braries, however, have not treated sequence label-
ing tasks (part-of-speech tagging, information ex-
traction, . . . ) in much detail. Due to the nature
of sequence labeling tasks, the learning algorithm
usually gets not a single label but a sequence of
labels from the annotators. Besides, to the best
of our knowledge, no system offers support for
proactive learning.

Up to now, far too little attention has been paid
to the interaction between the annotators and the
active learning algorithm. The main point of ac-
tive learning is that a learning algorithm must be
able to interactively query the annotators to obtain
the desired outputs at new data points. The avail-
able systems fail to deliver this by providing over-
simplified user-interfaces for the annotators (i.e.,
showing the feature vector of an instance and ask-
ing for the label). Such user-interfaces are not suit-
able for the task since the annotators need to know
the context of every instance to provide accurate
annotations. Some tools provide excellent visu-
alization front end, such as brat (Stenetorp et al.,
2012), PubAnnotation (Kim and Wang, 2012) or
WebAnno (Yimam et al., 2013), but unfortunately
these tools provide no support for active learning.

To compensate for the lack of learning en-
vironment in the well-known annotation tool,
we develop APLenty (Active Proactive Learning
System), a web-based system for creating anno-
tated data using active/proactive learning. The
main innovation of APLenty is the combination
of a well-known annotation tool (brat) with ac-
tive/proactive learning. Specifically:

1. Proactive learning integration: APLenty
makes annotation easy, time-efficient, and re-
quire less human effort by offering automatic
and proactive learning.

2. An easy-to-use interface for annotators:
APLenty adapts the interface of the brat rapid
annotation tool, making annotation intuitive
and easy to use.

3. Suitable for sequence labeling: APLenty is
best used for sequence labeling tasks, al-
though it can be used for other classification
problems.
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The remainder of this paper is organized as
follows. Section 2 provides a brief overview of
the related work. Section 3 presents details of
APLenty. Section 4 describes a case study of using
APLenty for named-entity recognition task. Sec-
tion 5 concludes the paper and points to avenues
for future work.

2 Related work

There are many tools available for active learn-
ing, such as the JCLAL (Reyes et al., 2016),
the Active-Learning-Scala (Santos and Carvalho,
2014), or the LibAct (Yang et al., 2017) libraries.
Among those, JCLAL includes the most state-of-
the-art strategies for active learning. Other tools
such as Vowpal Wabbit1 or TexNLP (Baldridge
and Palmer, 2009) also include some active learn-
ing methods. These tools, however, do not focus
on the interaction with the annotators (the user-
interface).

BRAT (Stenetorp et al., 2012) is one of the
most well-known annotation tools that offer easy-
to-use user-interfaces. BRAT has been developed
for rich structured annotation and uses a vector
graphics-based visualization component for ren-
dering. BRAT can, at the same time, display
many annotation layers. WebAnno (Yimam et al.,
2013) improves the annotation interface of BRAT
by letting the annotators choose the annotation
layer(s) for rendering. WebAnno offers a purely
web-based generic annotation tool and supports
distributed annotation. PubAnnotation (Kim and
Wang, 2012) also offers a web-based annotation
interface but its main focus is to improve the
reusability of corpora and annotations. These tools
do not support active/proactive learning.

DUALIST (Settles, 2011; Settles and Zhu,
2012) and Prodigy2 are most closely related to
APLenty. DUALIST is an active learning anno-
tation paradigm that offers annotation interface for
semi-supervised active learning. Prodigy is a com-
mercial product which provides an annotation tool
powered by active learning. Unfortunately, both
DUALIST and Prodigy do not support proactive
learning.

3 APLenty

APLenty is a web-based tool implemented in
Java using Apache Wicket web framework and

1http://hunch.net/˜vw/
2https://prodi.gy/
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Figure 1: System architecture

JavaScript. The overall architecture of APLenty
is depicted in Figure 1. The user interface consists
of a project management page and an annotation
page. Below, this section describes APLenty in
detail.

3.1 Project management

In APLenty system, we have two main types of
user: annotator and project manager. The annota-
tors can only annotate text assigned to them while
a project manager can create and customize anno-
tation projects. The interface lets the project man-
ager to:

1. create a project

2. upload the training, test, and unlabelled data
to the web server

3. define the tagset

4. assign annotators to a project

5. choose the active/proactive learning strategy.

The system predefines some common tags, but the
manager can override these by uploading a tagset
file.

There are three types of data that the project
manager can upload. The first one is the train-
ing data, which will be used to train the machine
learning model. The second one is the testing data,
which will be used to test the performance of the
system after each annotation step. The last one is
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the unlabelled data, on which the annotators will
work. Training and testing data is not required,
but unlabelled data is mandatory. When there is
no training data, the active learning algorithm will
choose the longest sentences for annotation.

APLenty currently supports data using CoNLL-
2003 format and XML Metadata Interchange
(XMI) format. Since APLenty is based on the
Apache Unstructured Information Management
Architecture (UIMA) framework3, new formats
can be supported easily. UIMA enables the appli-
cation to be decomposed into components. Out of
which, a collection reader component is respon-
sible for reading documents in a specific format.
By swapping the collection reader component, one
can allow APLenty to support data in different for-
mat.

The test set is optionally used to evaluate the
annotation process. By providing the test set, the
project manager can see the learning curve of the
active learning method. This evaluation step is
skipped if there is no test set.

3.2 Annotation interface

For annotation and visualization of annotated doc-
uments, we adapted the WebAnno annotation in-
terface, which in turn, adapted the brat rapid anno-
tation tool. Since the initial purpose of APLenty is
sequence labeling, the smallest unit we consider is
a sentence. The annotation interface only displays
one sentence to the annotator at a time. It helps the
annotator to focus on the current sentence. Fig-
ure 2 shows the annotation interface.

When working on APLenty, the annotator se-
lects a span of text on the displayed sentence and
chooses a tag for that span. The annotator does
not need to save the annotation since every an-
notation is automatically sent to the web server
(via Ajax using JSON format). The annotator has
the possibility to skip annotating a sentence. By
choosing skip, the algorithm marks the sentence as
“skipped” and does not consider that sentence in
the next annotation round for this specific annota-
tor. When the annotator completed an active learn-
ing iteration step, APLenty will trigger the training
process with newly annotated data and update the
sentences for the next annotation batch.

The annotation ends when stopping criteria are
met. A project manager can have several ways to
define the stopping criteria: the algorithm reaches

3https://uima.apache.org/

a predefined number of iteration, or the dataset
reaches a predefined number of instances, or the
result on the test set reaches a predefined amount.
The learning process has been completed when the
stopping criteria are met. The annotators, how-
ever, can stop anytime they want and resume the
process later.

The project manager can increase the annota-
tion speed by turning on automation. APLenty, in
this case, automatically annotates certain spans of
text (based on the model available from the pre-
vious active learning iteration round). The anno-
tators are then required to label only uncertain se-
quences. This approach was proved to reduce the
number of tokens to be manually annotated about
60% compared to its fully supervised counterpart,
and over 80% compared to a totally passive learn-
ing (Tomanek and Hahn, 2009). The project man-
ager can set a threshold θ for automatic annotation.
If the probability of an output sequence from the
machine learning model is larger than θ, the out-
put sequence is accepted as valid annotation and is
used as a training instance for later active learning
iterations.

3.3 Active learning

Depending on the project manager’s settings, the
system will choose a query strategy for active
learning. Generally, a machine learning algorithm
uses the instances in the labeled set (training set) to
train a model. The system then uses the model to
label the instances in the unlabeled set. Every in-
stance now has a score indicating how informative
or representative it is. Finally, the system aggre-
gates these scores to get the score of the whole sen-
tence. The system sends the most informative sen-
tences to the annotators, based on the sentences’
scores. When the system receives the annotations,
a new iteration round starts.

Active learning for sequence labeling can use
different query strategies. Most common query
strategies are Least Confidence (Culotta and Mc-
Callum, 2005), Margin Sampling (Scheffer et al.,
2001), Entropy Sampling (Mann and McCal-
lum, 2007), Vote Entropy (Dagan and Engelson,
1995), Kullback Leibler Divergence (Settles and
Craven, 2008), Expected Gradient Length (Set-
tles et al., 2008), Information Density (Settles and
Craven, 2008) strategies. Among which, no query
strategy is completely outperformed other strate-
gies (Settles and Craven, 2008). APLenty cur-
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Figure 2: Annotation interface

rently employs the least confidence uncertainty-
based strategy for sequence models based on the
sequence outputs from a Conditional Random
Fields model (Okazaki, 2007).

3.4 Proactive learning

Active learning assumes that annotators have sim-
ilar level of expertise and nobody is fallible. But
in reality, different annotators have different levels
of expertize in a specific domain. Proactive learn-
ing has been proposed to model many types of an-
notators (Donmez and Carbonell, 2010; Li et al.,
2017). Proactive learning assumes that there is at
least one expert and one inexperienced annotator
(fallible). The expert always provides correct an-
notations while the fallible annotator might pro-
vide incorrect annotations in certain cases.

At each iteration step, the proactive learning al-
gorithm selects the sentences for the annotators
based on the probabilities that the annotator will
provide correct labels for a sequence in a sen-
tence. A recent study by Li et al. (2017) esti-
mated the performance of each annotator based on
a benchmark dataset. The system calculates the
probability that an annotator provides a correct la-
bel when annotating a sentence by combining the
class probability and the likelihood that the anno-
tator provides a correct label for the tokens in the
sentence.

In the real-time annotation scenario where
speed is one of the most important factors,
APLenty uses a simple threshold % to distribute
sentences to annotators. If the probability of an
output sequence from the machine learning model
is smaller than %, APLenty considers the sentence
a hard case and sends it to the expert annotator.
Otherwise, the sentence is sent to the fallible an-
notator. This reduces the cost of annotation since
the time of the expert is more expensive than the
time of the fallible annotator.

4 Case study

One use case that describes the best use of
APLenty is the named entities annotation. This
is a multiple span annotation task.

We used the English CoNLL-2003 named entity
dataset (Tjong Kim Sang and De Meulder, 2003)
for the case study. The dataset contains newswire
articles annotated with four entities: LOC (loca-
tions), MISC (miscellaneous names), ORG (or-
ganizations), and PER (persons). In the experi-
ment, we used 1,200 sentences as the initial train-
ing data, 3,622 sentences as test data, and the rest
for unlabelled data. θ is set to 0.8, % is set to 0.2,
batch size is set to 100.

We compare four settings in this case study. The
first one is Random Sampling: the system ran-
domly chooses the next sentences for annotation.
The second one is Active Learning: the system
uses the output of CRF model to assign sentences
to an expert. The third one is Proactive Learning:
same as Active Learning, but we have two anno-
tators, one expert, and one fallible annotator. The
last one is Active Learning with Automation: the
system automatically assigns labels for sequences
based on the threshold θ.

Figure 3 shows the learning curves of the four
settings. In all cases, active/proactive learning set-
ting outperformed Random Sampling setting. It
can be seen that the last three settings achieved
peak performance when we reached 50th iteration.
Combining active learning and automation lead to
best performance. This result may be explained by
the fact that the system got more reliable data for
training after every iteration.

5 Conclusion and future work

We introduced APLenty, a web-based open en-
vironment for constructing annotated datasets us-
ing active and proactive learning while leveraging
the functionalities of the popular annotation edi-
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tor brat. APLenty can support the quick develop-
ment of high-quality labeled data needed to train
and evaluate text mining tools for different appli-
cations. Existing annotation editors do not provide
such an integrated environment which can quickly
produce labeled data while at the same time taking
into account different levels of expertise of anno-
tators.

A key feature of APLenty is how it supports the
automation for sequences with high confidence to
be included (certain sequences), thus allowing the
annotators to focus only on the uncertain ones. We
have demonstrated that this feature enables anno-
tators to create high-quality labeled datasets in less
time than other settings.

Considerably more work will need to be
done to: 1. extend our work for link annota-
tion; 2. further enhance APLenty to work with
other active/proactive learning criteria; 3. evaluate
APLenty in a complete data creation; 4. enhance
centralize repository of annotation such as PubAn-
notation.
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Abstract

Most approaches to Knowledge Base Ques-
tion Answering are based on semantic pars-
ing. In this paper, we present a tool that aids
in debugging of question answering systems
that construct a structured semantic represen-
tation for the input question. Previous work
has largely focused on building question an-
swering interfaces or evaluation frameworks
that unify multiple data sets. The primary ob-
jective of our system is to enable interactive
debugging of model predictions on individual
instances (questions) and to simplify manual
error analysis. Our interactive interface helps
researchers to understand the shortcomings of
a particular model, qualitatively analyze the
complete pipeline and compare different mod-
els. A set of sit-by sessions was used to vali-
date our interface design.

1 Introduction

Knowledge base question answering (QA) is an
important natural language processing problem.
Given a natural language question, the task is to
find a set of entities in a knowledge base (KB) that
constitutes the answer. For example, for a question
“Who played Princess Leia?” the answer, “Carrie
Fisher”, could be retrieved from a general-purpose
KB, such as Wikidata1. A successful KB QA sys-
tem would ultimately provide a universally acces-
sible natural language interface to factual knowl-
edge (Liang, 2016).

KB QA requires a precise modeling of the ques-
tion semantics through the entities and relations
available in the KB in order to retrieve the correct
answer. It is common to break down the task into
three main steps: entity linking, semantic parsing
or relation disambiguation and answer retrieval.
We show in Figure 1 how the outlined steps lead
to an answer on an example question and how the

1https://www.wikidata.org/

what are taylor swift’s albums?

Input question:

1. Entity linking:

Taylor Swift Q462 album Q24951125

2. Semantic parsing:

what are taylor swift’s albums?

Q462 Q24951125q
PERFORMER

INSTANCE OF

3. Answer retrieval:

q Red, 1989, . . .WIKIDATA

Figure 1: Typical steps undertaken by a QA system.
Gray dashed arrows show how the output of the previ-
ous step is passed into the next one. Qxxx stands for a
KB identifier

output of each step is re-used in the next one. This
approach has been exhibited by the most of the
recent works on the KB QA (Berant and Liang,
2014; Reddy et al., 2016; Yih et al., 2015; Peng
et al., 2017; Sorokin and Gurevych, 2018b). The
multi-step pipeline poses particular challenges for
error analysis, since many unique errors can arise
at different processing stages. With our tool, we
aim at supporting the evaluation of QA systems and
helping to identify problems that do not necessarily
form generalisable error patterns, but hinder the
overall system performance nonetheless.

Some frameworks have been introduced recently
to streamline the evaluation of KB QA systems.
The ParlAI framework focuses on building a uni-
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fied interface for multiple QA data sets (Miller
et al., 2017), while GerbilQA2 introduces evalua-
tion of individual steps of a QA pipeline. However,
none of them addresses an interactive debugging
scenario, that can be used by the researchers to do
instance-base error analysis. This is especially rel-
evant in the context of such benchmarks as QALD,
where each individual question is meant to test a
particular aspect of the system and debugging indi-
vidual instances is crucial for understanding of the
system performance (Unger et al., 2016).

Another set of tools have focused on building
an infrastructure to support the development for
KB QA. Ask Wikidata3 offers an easy way to
post queries to Wikidata via a web-based interface,
though the tool relies on manual disambiguation to
understand a question. The WDAqua project4 has
produced a speech-based plug-in interface (Kumar
et al., 2017) and the Qanary specification for QA
systems (Singh et al., 2016). These tools follow
the described steps of the QA pipeline, but do not
facilitate the interactive instance-based evaluation
that is the main aspect of this work.

Main contribution In this paper, we present a
modular debugging application for KB QA that
can be used to manually evaluate the main steps of
a QA pipeline. Our system focuses on the analy-
sis of individual examples and a detailed view of
possible causes of errors, so that individual error
propagation cases can be identified.

Demo system and the code A demo instance
with the default QA model is running at the
following url: http://semanticparsing.

ukp.informatik.tu-darmstadt.de:5000/

question-answering/. Our system is freely
available: https://github.com/UKPLab/

emnlp2018-question-answering-interface.

2 A prototypical QA pipeline and the
requirements

The first stage of every QA approach is entity link-
ing (EL), that is the identification of entity mentions
in the question and linking them to entities in KB.
In Figure 1, two entity mentions are detected and
linked to the KB referents. According to multiple
error analyses, entity linking is a common source
of errors in a QA system (Berant and Liang, 2014;
Reddy et al., 2016).

2http://aksw.org/Projects/GERBIL.html
3https://tools.wmflabs.org/bene/ask/
4http://wdaqua.eu

Debugging UI

Question
Answers, entities,
graphs, weights

Preprocessing Entity linking QA model

WIKIDATACORE NLP

HTTP
REST

HTTP
REST

Figure 2: Overview of the system architecture

The entity linking stage is followed by semantic
parsing that consists of combining the extracted
entities into a single structured meaning represen-
tation. The entities are connected with semantic
relations to a special question variable that denotes
the answer to the question (Yih et al., 2015).

Given the ambiguity of the natural language, a
semantic parsing model constructs multiple repre-
sentations that can match the question and assigns
probabilities to them (Liang, 2016). It is common
to learn a vector encoding for the question and the
structured representations and then use a similarity
function to compute the probabilities (Yih et al.,
2015; Reddy et al., 2016). The most probable struc-
tured representation is then translated into a query
and used to extract the answer from the KB.

Some approaches circumvent building a struc-
tured representation and instead directly compose
vector encodings of the potential answers (Dong
et al., 2015). Since this is a less common archi-
tecture type for KB QA, we focused on semantic
parsing approaches while developing our interface.

The described pipeline lets us outline the main
requirements for an interactive debugging tool:

1. It needs to represent all stages of the QA
pipeline in a sequential manner to let the user
identify where the error occurs and how it
propagates.

2. It needs to account for the specific properties
of semantic parsing approaches to KB QA,
such as structured semantic representations.

3. It needs to include an analysis block that
shows if the model has learned meaningful
vector representations.
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1 e n t i t y . l i n k i n g :
2 model : models / e lmode l . p k l
3 max . e n t i t y . o p t i o n s : 5
4 max . ngram . l e n : 4
5
6 model :
7 model . f i l e : models / qamodel . p k l
8
9 e v a l u a t i o n :

10 max . num . e n t i t i e s : 3
11 beam . s i z e : 10
12 . . .
13
14 w i k i d a t a :
15 backend : l o c a l h o s t : 8 8 9 0 / s p a r q l
16 t i m e o u t : 10
17 . . .

Listing 1: A snippet of the YAML configuration
file with the main modules and settings

3 System overview

Our system consists of a web-based front-end and a
set of back-end services that communicate through
HTTP REST API (see Figure 2). The front-end
contains the interactive debugging user interface
(Section 4). A separate request is sent to the back-
end service for each processing step of the QA
pipeline. Thus, we are able to show the results to
the user as they are being delivered by the back-end
services. The front-end is responsible for aggregat-
ing and visualizing the information after each step.
In case any service fails, a partial result from the
previous steps would be available to the user.

The back-end services include the pre-
processing, the entity linking and the semantic
parsing modules. The pre-processing module
performs tokenization and part-of speech tagging
using the Stanford CoreNLP toolkit (Manning
et al., 2014). The entity linking module recognizes
mentions of the KB entities in the input question.
We provide a default model for entity linking on
Wikidata that is freely available feature-based
implementation of Sorokin and Gurevych (2018a).

The semantic parsing module includes the con-
struction of structured semantic representations and
a learned model that selects the correct represen-
tation. The integrated model uses a convolutional
neural network architecture to learn vector encod-
ings for questions and semantic representations
(Sorokin and Gurevych, 2017). We provide an in-
tegrated model for demonstartion purposes, while
the main purpose of the tool is to enable manual
evaluation and comparison of new models. We de-
fine an interface that a user needs to implement in

Figure 3: The main input field and the answer block

order to integrate their own model into the tool.
Finally, using the KB query provided by the se-

mantic parsing module, the front-end retrieves the
answers from the KB. The back-end modules can
be configured using a YAML properties file (see
Listing 1 for an example configuration).

3.1 Implementation details

We implement the user interface and the back-end
services with modern web technologies, such as
JQuery, D3.js and Bootstrap. The back-end ser-
vices are implemented in Python with Flask. It
is configurable and can be further easily extended
with other models for entity linking and QA.

A new QA model can be integrated either as a
Python module or as a separate REST service. To
communicate the results to the front-end, the ser-
vice has to send the response in the defined JSON
format. We refer to the published code repository
for additional details on the implementation.

4 User interface

The interactive web-based user interface (UI) is the
central element of our system. We have designed
the interface for an expert user and have considered
the following user traits (Raskin, 2000): a back-
ground in KB QA, a knowledge of programming
languages, an interest in manual error analysis.

The UI is modeled after the prototypical QA
pipeline as described in Section 2. Each step of the
pipeline is represented as a separate block in the
interface (see the complete UI depicted in Figure 5).
That is, the represented model of the UI directly
corresponds to the implementation model of the
prototypical QA system. Such design choice is
appropriate for tools aimed at domain experts who
already have a clear mental model of the underlying
processes and it makes the UI understandable for
the first time (expert) users (Cooper et al., 2007).

Consequently, the interface is divided into blocks
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that correspond to the steps of the QA pipeline.
There are several base blocks that are fixed and can
not be removed, such as the input question block,
while the other ones can be hidden if needed.

Input question and answer block The first
block consists of the input question field and the
answer area (Figure 3). When the user first loads
the interface, only the input question field is pre-
sented. This avoids the confusion as to what is the
starting point of the interactions with the system.
Further elements appear only when the correspond-
ing results are returned. For example, the answers
area is only shown when the processing is finished.

Although the answer retrieval from the KB is
the last step of the pipeline, we put the answer area
right below the input question field. This design
choice makes it easy to see right away if the system
has processed the question correctly.

Entity linking block In this block, we list all
identified entity mentions in the input question and
the top 5 entity disambiguation candidates. The
entity candidate with the highest score is automati-
cally selected and forwared to the QA model.

The list of entity disambiguation candidates is
interactive and the user can select all or none can-
didates for each entity mention. In case multiple
candidates are selected, all of them are sent to the
QA system as separate entities. This lets the user
correct potential entity linker mistakes by selecting
some other than the top disambiguation candidate
and continue to debug the rest of the pipeline.

Semantic graphs We visualize the structured se-
mantic representations that the QA model generates
as graphs. That is the most common way to visually
depict structured representations (Yih et al., 2015;
Reddy et al., 2016; Sorokin and Gurevych, 2018b).
A semantic graph consists of a question variable
node that denotes the answer to the question, KB
entities and KB relation types.

We use circles to depict entities and solid lines
between them to show relations. In each graph
the question variable node is represented with a
high-contrast blue circle. Since most relations are
attached to the question node, this makes it easier
to parse the structure of the graph. Additionally,
since each graph has only one high contrast node,
the user can identify at the first sight how many
graphs have been composed for the input question.
For example, Figure 4 shows four semantic graphs
for a question “Who played Princess Leia in Star

Figure 4: The semantic graphs block for the question
“Who played Princess Leia in Star Wars?”

Wars?”, that are clearly visible. In this instance,
the model selects an incorrect graph (highlighted
in green) and retrieves all cast members of the Star
Wars movie. The correct graph would be the second
one, that also uses the entity Princess Leia.

Representation analysis The visual inspection
of the learned vector representation in the two final
blocks makes it possible to identify implementation
or training errors in the QA model. Once the error
is attributed to the learned model, a researcher can
continue to inspect the model in the tool that would
be the most appropriate to inspect the weights of a
particular model architecture (e.g. TensorBoard5).

The token-level representations block visualizes
the weights computed by the model for each input
token of the question. This kind of visual analy-
sis is helpful to identify if the model is learning
meaningful word representations. We rely on the
shade and saturation visual variables to encode the
computed vectors. Each vertical line corresponds
to a vector dimension and the darker saturated col-
ors denote a higher numerical value. In Figure 5,
one can see that the model is assigning the highest
weights to the main entity in the question.

The second representation analysis block places
the vector representation of the question and
of the semantic relations on a 2D-plane using

5https://www.tensorflow.org/programmers_
guide/summaries_and_tensorboard
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t-SNE (van der Maaten and Hinton, 2008). The
vectors of the relations that appear in the generated
semantic graphs are rendered as red circles. The
user can zoom in and out to compare the position
of the question vector to the surrounding relations.

5 User study

The interface was designed with the requirements
that were outlined in Section 2. As domain ex-
perts, we were personally interested in applying
the developed tool to QA systems. To verify that
the interface and the designed interactions are in
line with expectations of the first-time users, we
have conducted a set of brief sit-by testing sessions.
Sit-by sessions are usually used for exploratory sit-
uations and gathering first impressions about the
design of a product (Rubin and Chisnell, 2008).

In the user study, we aimed to evaluate: can a
person familiar with KB QA use the tool indepen-
dently? Does the developed tool make it possible
to manually identify errors in a QA pipeline? Two
participants with background in natural language
processing and linguistics were asked to perform a
simple analysis task while a moderator was sitting
near them and monitoring the progress. The partic-
ipants were asked to input a list of three questions
into the tool and tell if the model succeeded in an-
swering them. In case of an incorrect answer, we
have expected participants to be able to identify the
stage of the pipeline that caused the error. During
the sit-by sessions, we were able to confirm that
the interface is intuitive and easy to use. All the
participants were able to complete the task in under
10 minutes and could point out at what stage an
error has occurred for all input questions. The rep-
resentation analysis instruments, on the contrary,
have proven to be the least intuitive element of the
interface. Although the participants could attribute
the error to the model, they were unable to say if
the learned vector representations were meaningful
based on the provided visualization.

6 Conclusions

In this work, we have presented an interactive de-
bugging tool for semantic parsing approaches to
KB QA. We have started by defining the main re-
quirements for an instance-based evaluation tool
and then demonstarted how the different aspects of
the designed interface fulfill them. Our tool enables
researchers to explore and qualitatively analyse a
developed QA pipeline. We used sit-by sessions to

verify the design choices and to assess the usabil-
ity of the tool. Our architecture includes default
models for entity linking and question answering,
which makes it easy to replace only one of the
components with a new module.
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Abstract

Vector space embedding models like
word2vec, GloVe, fastText, and ELMo are
extremely popular representations in natural
language processing (NLP) applications. We
present Magnitude, a fast, lightweight tool
for utilizing and processing embeddings.
Magnitude is an open source Python package
with a compact vector storage file format
that allows for efficient manipulation of huge
numbers of embeddings. Magnitude performs
common operations up to 60 to 6,000 times
faster than Gensim. Magnitude introduces
several novel features for improved robustness
like out-of-vocabulary lookups.

1 Introduction

Magnitude is an open source Python package de-
veloped by Ajay Patel and Alexander Sands (Patel
and Sands, 2018). It provides a full set of features
and a new vector storage file format that make it
possible to use vector embeddings in a fast, ef-
ficient, and simple manner. It is intended to be
a simpler and faster alternative to current utilities
for word vectors like Gensim (Řehůřek and Sojka,
2010).

Magnitude’s file format (“.magnitude”) is an ef-
ficient universal vector embedding format. The
Magnitude library implements on-demand lazy
loading for faster file loading, caching for bet-
ter performance of repeated queries, and fast pro-
cessing of bulk key queries. Table 1 gives speed
benchmark comparisons between Magnitude and
Gensim for various operations on the Google
News pre-trained word2vec model (Mikolov et al.,
2013). Loading the binary files containing the
word vectors takes Gensim 70 seconds, versus
0.72 seconds to load the corresponding Magnitude

Metric Cold Warm
Initial load time 97x –
Single key query 1x 110x
Multiple key query (n=25) 68x 3x
k-NN search query (k=10) 1x 5,935x

Table 1: Speed comparison of Magnitude versus Gen-
sim for common operations. The ‘cold’ column repre-
sents the first time the operation is called. The ‘warm’
column indicates a subsequent call with the same keys.

file, a 97x speed-up. Gensim uses 5GB of RAM
versus 18KB for Magnitude.

Magnitude implements functions for looking up
vector representations for misspelled or out-of-
vocabulary words, quantization of vector models,
exact and approximate similarity search, concate-
nating multiple vector models together, and ma-
nipulating models that are larger than a computer’s
main memory. Magnitude’s ease of use and simple
interface combined with its speed, efficiency, and
novel features make it an excellent tool for cases
ranging from applications used in production envi-
ronments to academic research to students in nat-
ural language processing courses.

2 Motivation

Magnitude offers solutions to a number of prob-
lems with current utilities.

Speed: Existing utilities are prohibitively slow
for iterative development. Many projects use Gen-
sim to load the Google News word2vec model di-
rectly from a “.bin” or “.txt” file multiple times. It
can take between a minute to a minute and a half
to load the file.

120



Memory: A production web server will run
multiple processes for serving requests. Running
Gensim, in the same configuration, will consume
>4GB of RAM usage per process.

Code duplication: Many developers duplicate
effort by writing commonly used routines that are
not provided in current utilities. Namely, routines
for concatenating embeddings, bulk key lookup,
out-of-vocabulary search, and building indexes for
approximate k-nearest neighbors.

The Magnitude library uses several well-
engineered libraries to achieve its performance im-
provements. It uses SQLite1 as its underlying
data store, and takes advantage of database in-
dexes for fast key lookups and memory mapping.
It uses NumPy2 to achieve significant performance
speedups over native Python code using compu-
tations that follow the Single Instruction, Multi-
ple Data (SIMD) paradigm. It uses spatial in-
dexes to perform fast exact similarity search and
Annoy3 to perform approximate k-nearest neigh-
bors in the vector space. To perform feature
hashing, it uses xxHash4, an extremely fast non-
cryptographic hash algorithm, working at speeds
close to RAM limits. Magnitude’s file format uses
LZ4 compression5 for compact storage.

3 Design Principles

Several design principles guided the development
of the Magnitude library:

• The API should be intuitive and beginner
friendly. It should have sensible defaults in-
stead of requiring configuration choices by
the user. The option to configure every set-
ting should still be provided to power users.

• The out of the box configuration should be
fast and memory efficient for iterative devel-
opment. It should be suitable for deployment
in a production environment. Using the same
configuration in development and production
reduces bugs and makes deployment easier.

• The library should use lazy loading whenever
possible to remain fast, responsive, and mem-
ory efficient during development.

1https://www.sqlite.org/
2http://www.numpy.org/
3https://github.com/spotify/annoy
4https://xxhash.org/
5http://www.lz4.org/

• The library should aggressively index, cache,
and use memory maps to be fast, responsive,
and memory efficient for production.

• The library should be able to process data
that is too large to fit into a computer’s main
memory.

• The library should be thread-safe and employ
memory mapping to reduce duplicated mem-
ory resources when multiprocessing.

• The interface should act as a generic key-
vector store and remain agnostic to underly-
ing models (like word2vec, GloVe, fastText,
and ELMo) and remain useable for other do-
mains that use vector embeddings like com-
puter vision (Babenko and Lempitsky, 2016).

Gensim offers several speed ups of its opera-
tions, but these are largely only accessible through
advanced configuration. For example, by re-
exporting a “.bin”, “.txt”, or “.vec” file into its
own native format that can be memory-mapped.
Magnitude makes this easier by providing a de-
fault configuration and file format that requires no
extra configuration to make development and pro-
duction workloads run efficiently out of the box.

4 Getting Started with Magnitude

The system consists of a Python 2.7 and Python
3.x compatible package (accessible through the
PyPI index6 or GitHub7) with utilities for using
the “.magnitude” format and converting to it from
other popular embedding formats.

4.1 Installation

Installation for Python 2.7 can be performed using
the pip command:

pip install pymagnitude

Installation for Python 3.x can be performed using
the pip3 command:

pip3 install pymagnitude

4.2 Basic Usage

Here is how to construct the Magnitude object,
query for vectors, and compare them:

6https://pypi.org/project/pymagnitude/
7https://github.com/plasticityai/

magnitude

121



from pymagnitude import ∗
vectors = Magnitude("w2v.magnitude")
k = vectors.query("king")
q = vectors.query("queen")
vectors.similarity(k,q) # 0.6510958

Magnitude queries return almost instantly and
are memory efficient. It uses lazy loading di-
rectly from disk, instead of having to load the en-
tire model into memory. Additionally, Magnitude
supports nearest neighbors operations, finding all
words that are closer to a key than another key, and
analogy solving (optionally with Levy and Gold-
berg (2014)’s 3CosMul function):

vectors.most similar(k, topn=5)
#[(‘king’, 1.0), (‘kings’, 0.71),
# (‘queen’, 0.65), (‘monarch’, 0.64),
# (‘crown prince’, 0.62)]

vectors.most similar(q, topn=5)
#[(‘queen’, 1.0), (‘queens’, 0.74),
#(‘princess’, 0.71), (‘king’, 0.65),
# (’monarch’, 0.64)]

vectors.closer than("queen", "king")
#[‘queens’, ‘princess’]

vectors.most similar(
positive = ["woman", "king"],
negative = ["man"]

) # queen
vectors.most similar cosmul(

positive = ["woman", "king"],
negative = ["man"]

) # queen

In addition to querying single words, Magnitude
also makes it easy to query for multiple words in a
single sentence and multiple sentences:

vectors.query("play")
# Returns: a vector for the word
vectors.query(["play", "music"])
# Returns: an array with two vectors
vectors.query([
["play", "music"],
["turn", "on", "the", "lights"],
]) # Returns: 2D array with vectors

4.3 Advanced Features
OOVs: Magnitude implements a novel method
for handling out-of-vocabulary (OOV) words.
OOVs frequently occur in real world data since
pre-trained models are often missing slang, col-
loquialisms, new product names, or misspellings.
For example, while uber exists in Google News
word2vec, uberx and uberxl do not. These prod-
ucts were not available when Google News cor-
pus was built. Strategies for representing these
words include generating random unit-length vec-
tors for each unknown word or mapping all un-
known words to a token like “UNK” and repre-
senting them with the same vector. These solu-

tions are not ideal as the embeddings will not cap-
ture semantic information about the actual word.
Using Magnitude, these OOV words can be simply
queried and will be positioned in the vector space
close to other OOV words based on their string
similarity:
"uber" in vectors # True
"uberx" in vectors # False
"uberxl" in vectors # False
vectors.query("uberx")
# Returns: [ 0.0507, −0.0708, ...]

vectors.query("uberxl")
# Returns: [ 0.0473, −0.08237, ...]

vectors.similarity("uberx", "uberxl")
# Returns: 0.955

A consequence of generating OOV vectors is that
misspellings and typos are also sensibly handled:
"missispi" in vectors # False
"discrimnatory" in vectors # False
"hiiiiiiiiii" in vectors # False
vectors.similarity(
"missispi",
"mississippi"

) # Returns: 0.359
vectors.similarity(
"discrimnatory",
"discriminatory"

) # Returns: 0.830
vectors.similarity(
"hiiiiiiiiii",
"hi"

) # Returns: 0.706

The OOV handling is detailed in Section 5.

Concatenation of Multiple Models: Magni-
tude makes it easy to concatenate multiple types
of vector embeddings to create combined models.
w2v = Magnitude("w2v.300d.magnitude")
gv = Magnitude("glove.50d.magnitude")
vectors = Magnitude(w2v, gv) # concat
vectors.query("cat")
# Returns: 350d NumPy array
# ’cat’ from w2v and ’cat’ from gv
vectors.query(("cat", "cats"))
# Returns: 350d NumPy array
# ’cat’ from w2v and ’cats’ from gv

Adding Features for Part-of-Speech Tags and
Syntax Dependencies to Vectors: Magnitude
can directly turn a set of keys (like a POS tag set)
into vectors. Given an approximate upper bound
on the number of keys and a namespace, it uses
the hashing trick (Weinberger et al., 2009) to cre-
ate an appropriate length dimension for the keys.
pos vecs = FeaturizerMagnitude(
100, namespace = "POS")

pos vecs.dim # 4
# number of dims automatically
# determined by Magnitude from 100
pos vecs.query("NN")
dep vecs = FeaturizerMagnitude(
100, namespace = "Dep")

dep vecs.dim # 4
dep vecs.query("nsubj")
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Metric Speed
Exact k-NN 0.9155s
Approx. k-NN (k=10, effort = 1.0) 0.1873s
Approx. k-NN (k=10, effort = 0.1) 0.0199s

Table 2: Approximate nearest neighbors significantly
speeds up similarity searches compared to exact search.
Reducing the amount of allowed effort further speeds
the approximate k-NN search.

This can be used with Magnitude’s concatena-
tion feature to combine the vectors for words
with the vectors for POS tags or dependency tags.
Homonyms show why this may be useful:

vectors = Magnitude(vecs, pos vecs ,
dep vecs)

vectors.query([
("Buffalo", "JJ", "amod"),
("buffalo", "NNS", "nsubj"),
("Buffalo", "JJ", "amod"),
("buffalo", "NNS", "nsubj"),
("buffalo", "VBP", "rcmod"),
("buffalo", "VB", "ROOT"),
("Buffalo", "JJ", "amod"),
("buffalo", "NNS", "dobj")

]) # array of 8 x (300 + 4 + 4)

Approximate k-NN We support approximate
similarity search with the most similar approx

function. This finds the approximate nearest
neighbors more quickly than the exact nearest
neighbors search performed by the most similar

function. The method accepts an effort argu-
ment which accepts the range [0.0, 1.0]. A lower
effort will reduce accuracy, but increase speed.
A higher effort does the reverse. This trade-off
works by searching more- or less-indexed trees.
Our approximate k-NN is powered by Annoy, an
open source library released by Spotify. Table 2
compares the speed of various configurations for
similarity search.

5 Details of OOV Handling

Facebook’s fastText (Bojanowski et al., 2016)
provides similar OOV functionality to Magni-
tude’s. Magnitude allows for OOV lookups for
any embedding model, including older models like
word2vec and GloVe (Mikolov et al., 2013; Pen-
nington et al., 2014), which did not provide OOV
support. Magnitude’s OOV method can be used
with existing embeddings because it does not re-
quire any changes to be made at training time like
fastText’s method does. For ELMo vectors, Mag-
nitude will use ELMo’s OOV method.

Constructing vectors from character n-grams:
We generate a vector for an OOV word w based on
the character n-gram sequences in the word. First,
we pad the word with a character at the beginning
of the word and at the end of the word. Next, we
generate the set of all character-ngrams in w (de-
noted with the fuction CGRAMw) between length
3 and 6, following Bojanowski et al. (2016), al-
though these parameters are tunable arguments in
the Magnitude converter. We use the set of char-
acter n-grams C to construct a vector OOVd(w)
with d dimensions to represent the word w. Each
unique character n-gram c from the word con-
tributes to the vector through a pseudorandom
vector generator function PRVG. Finally, the vec-
tor is normalized.

C = CGRAMw(3, 6)

oovd(w) =
∑

c ∈ C

PRVGH(c)(−1.0, 1.0, d)

OOVd(w) =
oovd(w)
|oovd(w)|

PRVG’s random number generator is seeded by
the value “seed”, which generates uniformly ran-
dom vectors of dimension size d, with values in
the range of -1 to 1. The hashing function H pro-
duces a 32 bit hash of its input using xxHash.
H : {0, 1}∗ → {0, 1}32. Since the PRVG’s seed
is only conditioned upon the word w, the output is
deterministic across different machines.

This character n-gram-based method will gener-
ate highly similar vectors for a pair of OOVs with
similar spellings, like uberx and uberxl. How-
ever, they will not be embedded close to similar
in-vocabulary words like uber.

Interpolation with in-vocabulary words To
handle matching OOVs to in-vocabulary words,
we first define a function MATCHk(a, b, w).
MATCHk(a, b, w) returns the normalized mean of
the vectors of the top k most string-similar in-
vocabulary words using the full-text SQLite in-
dex. In practice, we use the top 3 most string-
similar words. These are then used to interpo-
late the values for the vector representing the OOV
word. 30% of the weight for each value comes
from the pseudorandom vector generator based on
the OOV’s n-grams, and the remaining 70% comes
from the values of the 3 most string similar in-
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vocabulary words:

oovd(w) = [0.3 ∗ OOVd(w)

+ 0.7 ∗MATCH3(3, 6, w)]

Morphology-aware matching For English, we
have implemented a nuanced string similarity met-
ric that is prefix- and suffix-aware. While uberifi-
cation has a high string similarity to verification
and has a lower string similarity to uber, good
OOV vectors should weight stems more heavily
than suffixes. Details of our morphology-aware
matching are omitted for space.

Other matching nuances We employ other
techniques when computing the string similarity
metric, such as shrinking repeated character se-
quences of three or more to two (hiiiiiiii → hii),
ranking strings of a similar length higher, and
ranking strings that share the same first or last
character higher for shorter words.

6 File Format

To provide efficiency at runtime, Magnitude uses a
custom “.magnitude” file format instead of “.bin”,
“.txt”, “.vec”, or “.hdf5” that word2vec, GloVe,
fastText, and ELMo use (Mikolov et al., 2013;
Pennington et al., 2014; Joulin et al., 2016; Peters
et al., 2018). The “.magnitude” file is a SQLite
database file. There are 3 variants of the file for-
mat: Light, Medium, Heavy. Heavy models have
the largest file size but support all of the Magni-
tude library’s features. Medium models support
all features except approximate similarity search.
Light models do not support approximate similar-
ity searches or interpolated OOV lookups, but they
still support basic OOV lookups. See Figure 1 for
more information about the structure and layout of
the “.magnitude” format.

Keys and Unit-Length Normalized Vectors

SQLite Index over Keys

Character N-Grams Enumerated for all Keys

SQLite Full-Text Search Index over all N-Grams

LZ4 Compressed Annoy mmap Index for all Vectors

SQLite Database

L
ight M

edium

H
eavy

Format Settings and Metadata

Figure 1: Structure of the “.magnitude” file format and
its Light, Medium, and Heavy variants.

Converter The software includes a command-
line converter utility for converting word2vec
(“.bin”, “.txt”), GloVe (“.txt”), fastText (“.vec”),
or ELMo (“.hdf5”) files to Magnitude files. They
can be converted with the command:

python −m pymagnitude.converter
−i "./vecs.(bin | txt | vec | hdf5)"
−o "./vecs.magnitude"

The input format will automatically be determined
by the extension and the contents of the input file.
When the vectors are converted, they will also be
unit-length normalized. This conversion process
only needs to be completed once per model. Af-
ter converting, the Magnitude file format is static
and it will not be modified or written to in order to
make concurrent read access safe.

By default, the converter builds a Medium
“.magnitude” file. Passing the -s flag will turn off
encoding of subword information, and result in a
Light flavored file. Passing the -a flag will turn on
building the Annoy approximate similarity index,
and result in a Heavy flavored file. Refer to the
documentation8 for more information about con-
version configuration options.

Quantization The converter utility accepts a -p

<PRECISION> flag to specify the decimal precision
to retain. Since underlying values are stored as
integers instead of floats, this is essentially quan-
tization9 for smaller model footprints. Lower dec-
imal precision will create smaller files, because
SQLite can store integers with either 1, 2, 3,
4, 6, or 8 bytes.10 Regardless of the precision
selected, the library will create numpy.float32

vectors. The datatype can be changed by pass-
ing dtype=numpy.float16 to the Magnitude con-
structor.

7 Conclusion

Magnitude is a new open source Python library
and file format for vector embeddings. It makes
it easy to integrate embeddings into applications
and provides a single interface and configuration
that is suitable for both development and produc-
tion workloads. The library and file format also

8https://github.com/plasticityai/
magnitude#file-format-and-converter

9https://www.tensorflow.org/
performance/quantization

10https://www.sqlite.org/datatype3.html
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enable novel features like OOV handling that al-
low models to be more robust to noisy data. The
simple interface, ease of use, and speed of the li-
brary, compared to other utilities like Gensim, will
enable use by beginners to NLP and individuals in
educational environments, such as university NLP
and AI courses.

Pre-trained word embeddings have been widely
adopted in NLP. Researchers in computer vision
have started using pre-trained vector embedding
models like Deep1B (Babenko and Lempitsky,
2016) for images. The Magnitude library intends
to stay agnostic to various domains, instead pro-
viding a generic key-vector store and interface
that is useful for all domains and for research
that crosses the boundaries between NLP and vi-
sion (Hewitt et al., 2018).

8 Software and Data

We release the Magnitude package under the
permissive MIT open source license. The full
source code and pre-converted “.magnitude” mod-
els are on GitHub. The full documentation for
all classes, methods, and configurations of the li-
brary can be found at https://github.com/
plasticityai/magnitude, along with ex-
ample usage and tutorials.

We have pre-converted several popular em-
bedding models (Google News word2vec,
Stanford GloVe, Facebook fastText, AI2
ELMo) to “.magnitude” in all its variants
(Light, Medium, and Heavy). You can
download them from https://github.
com/plasticityai/magnitude#pre-
converted-magnitude-formats-of-
popular-embeddings-models.
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A Benchmark Comparisons

All benchmarks11 were performed on the Google News pre-trained word vectors, “GoogleNews-
vectors-negative300.bin” (Mikolov et al., 2013) for Gensim and on the “GoogleNews-vectors-
negative300.magnitude”12 for Magnitude, with a MacBook Pro (Retina, 15-inch, Mid 2014) 2.2GHz
quad-core Intel Core i7 @ 16GB RAM on a SSD over an average of trials where feasible. We are ex-
plicitly not using Gensim’s memory-mapped native format as it requires extra configuration from the
developer and is not provided out of the box from Gensim’s data repository 13.

Metric
Gensim

(Řehůřek and
Sojka, 2010)

Magnitude
Light

Magnitude
Medium

Magnitude
Heavy

Initial load time 70.26s 0.7210s — a — a

Cold single key query 0.0001s 0.0001s — a — a

Warm single key query
(same key as cold query) 0.0044s 0.00004s — a — a

Cold multiple key query
(n=25) 3.0050s 0.0442s — a — a

Warm multiple key query
(n=25) (same keys as cold query) 0.0001s 0.00004s — a — a

First most similar search query
(n=10) (worst case) 18.493s 247.05s — a — a

First most similar search query
(n=10) (average case) (w/ disk persistent cache) 18.917s 1.8217s — a — a

Subsequent most similar search
(n=10) (different key than first query) 0.2546s 0.2434s — a — a

Warm subsequent most similar search
(n=10) (same key as first query) 0.2374s 0.00004s 0.00004s 0.00004s
First most similar approx search query
(n=10, effort=1.0) (worst case) N/A b N/A N/A 29.610s
First most similar approx search query
(n=10, effort=1.0) (average case) (w/ disk persistent
cache)

N/A N/A N/A 0.9155s

Subsequent most similar approx search
(n=10, effort=1.0) (different key than first query) N/A N/A N/A 0.1873s
Subsequent most similar approx search
(n=10, effort=0.1) (different key than first query) N/A N/A N/A 0.0199s
Warm subsequent most similar approx search
(n=10, effort=1.0) (same key as first query) N/A N/A N/A 0.00004s
File size 3.64GB 4.21GB 5.29GB 10.74GB
Process memory (RAM) utilization 4.875GB 18KB — a — a

Process memory (RAM) utilization after 100 key
queries

4.875GB 168KB — a — a

Process memory (RAM) utilization after 100 key
queries + similarity search

8.228GB c 342KB d — a — a

a Denotes the same value as the previous column.
b Gensim does support approximate similarity search, but not out of the box as the index must be built manually with

gensim.similarities.index first which is a slow operation.
c Gensim has an option to not duplicate unit-normalized vectors in memory, but still requires up to 8GB of memory alloca-

tion while processing, before dropping down to half the memory. Moreover, this option is not on by default.
d Magnitude uses mmap to read from the disk, so the OS will still allocate pages of memory, when memory is available, in

its file cache, but it can be shared between processes and is not managed within each process for extremely large files which is
a performance win.

Table 3: Benchmark comparisons between Gensim, Magnitude Light, Magnitude Medium, and Magnitude Heavy.

11https://github.com/plasticityai/magnitude/blob/master/tests/benchmark.py
12http://magnitude.plasticity.ai/word2vec+approx/GoogleNews-vectors-negative300.

magnitude
13https://github.com/RaRe-Technologies/gensim-data
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Abstract
Annotating entity mentions and linking them
to a knowledge resource are essential tasks
in many domains. It disambiguates mentions,
introduces cross-document coreferences, and
the resources contribute extra information, e.g.
taxonomic relations. Such tasks benefit from
text annotation tools that integrate a search
which covers the text, the annotations, as well
as the knowledge resource. However, to the
best of our knowledge, no current tools inte-
grate knowledge-supported search as well as
entity linking support. We address this gap by
introducing knowledge-supported search func-
tionality into the INCEpTION text annotation
platform. In our approach, cross-document ref-
erences are created by linking entity mentions
to a knowledge base in the form of a structured
hierarchical vocabulary. The resulting annota-
tions are then indexed to enable fast and yet
complex queries taking into account the text,
the annotations, and the vocabulary structure.

1 Introduction

In many domains, annotating documents is a key re-
quirement to solve complex problems like identify-
ing sentiment targets in customer reviews, or identi-
fying disease symptoms in medical texts. Tradition-
ally, annotation tasks involved creating dense layers
of annotation, e.g. part-of-speech or dependency
annotations made on every single word, single or
multi-token named entity mentions. Nowadays, the
information to be annotated is often sparsely dis-
tributed, e.g. the mentions of particular types of
entities. Finding spans of text which are candidates
for a particular annotation type has thus become an
important and challenging aspect of the annotation
process. Therefore, it is essential that annotators
can search the corpus, making queries over the full
text as well as over the annotations. Linking en-
tity mentions to a structured knowledge resource
(e.g. a taxonomy) allows them to be disambiguated,

which facilitates interpreting, processing, and nav-
igating the annotated texts by effectively creating
cross-document coreferences.

Consider a wine market specialist analysing a
corpus of wine reviews. She wants to annotate men-
tions of different types of wines and link them to
a knowledge resource, more specifically to a wine
taxonomy. However, since annotating the entire
corpus would take too much time, she wants to
focus on statements made about certain properties
of specific wines. Thus, she needs to search for
keywords (“price”, “quality”, etc.), mentions of
wines of certain types (“Bordeaux”, “Burgundy”),
or already annotated statements (e.g. to find com-
parative reviews). Thus, the specialist might pose
queries such as “sentences containing statements
about the price of all kinds of Bordeaux wines”
in order to completely perform her corpus analy-
sis. Note that the analyst cannot prepare a task-
specific corpus in advance, because she only dis-
covers which properties of the wines are addressed
by the reviews as she goes along with the analysis.

We are not aware of any web-based text anno-
tation tool that supports this kind of explorative
annotation tasks requiring full-text search, cross-
document entity linking, and annotation search,
and, at the same time, takes into account the hi-
erarchical relations of a taxonomy in a tightly in-
tegrated way. To address this gap, we integrate
knowledge-supported search capabilities into the
INCEpTION annotation platform (Klie et al., 2018)
to provide a flexible way of searching the corpus
during the annotation process. The corpus and
annotations are indexed at token level. Primitive
attributes (string, numeric, boolean) and attributes
linking annotations to a knowledge base are in-
dexed and can be queried. For linked annotations,
it also considers the super-type/hypernym relations
in the respective knowledge resource.

Section 2 highlights use cases in which those
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functionalities are beneficial. Section 3 briefly
introduces the INCEpTION annotation platform.
Section 4 describes the knowledge-supported
search functionality. Section 5 describes which
types of knowledge resources the platform supports.
Finally, Section 6 describes the related work.

2 Use cases

This section examines three exemplary scenarios
of increasing complexity that highlight the benefits
of knowledge-supported search in an annotation
tool. We consider a wine market specialist who is
investigating a corpus of wine reviews to identify
the qualities most valued by the consumers and for
which they may be willing to pay more. Her goal is
to gain insights on consumer preferences, and the
annotations she performs are a means to achieve
this goal. The examples use the wine ontology from
the W3C’s OWL Web Ontology Language Guide,1

a popular example of an OWL-based ontology.
Scenario I: Mention identification. The user

wants to annotate mentions of a certain concept,
e.g. types of wines. She starts with an initial list
of wine types and uses the full text search to locate
potential mentions, e.g. Bordeaux. Since the query
is ambiguous (e.g. it could refer to the city or to the
region instead of the wine type), she reviews each
match and annotates it only when appropriate. If
she discovers a wine type during this process that
is not yet on her list, she adds it and again uses the
full text search to locate and annotate its mentions.

Scenario II: Concept linking. The user now
links the previously identified mentions to a taxon-
omy where the types of wines are organized into a
tree or directed acyclic graph. For example, the vo-
cabulary encodes that Château d’Yquem is a wine
belonging to the Sauternes type, which in turn is
a subtype of Bordeaux. These links effectively in-
troduce cross-document coreferences within the
corpus. Using the annotation search capabilities,
the user wants to locate mentions of a wine type.
This should consider the vocabulary structure, such
that a search for a general wine type (e.g. Bordeaux)
also finds mentions of all its subtypes.

Scenario III: Concepts in context. In addition
to the linked concept mentions from the previous
scenario, we assume that the corpus also carries
other types of annotation, e.g. a custom claim anno-
tation which identifies text spans containing state-
ments made about properties of the wine. The user

1https://www.w3.org/TR/owl-guide/wine.rdf

now wants to query the linked concept mentions in
conjunction with these claims, e.g. to locate claims
about particular types of wines. She may search
for “claims about wines either from the Bordeaux or
from the Burgundy types, containing words matching
the pattern ’expensive.*’” (Figure 1).

These scenarios underline the benefit of integrat-
ing full text and knowledge-supported annotation
search into an annotation tool. The next sections
shows how INCEpTION addresses these needs.

3 The INCEpTION platform

INCEpTION2 is a generic multi-user annotation
platform aiming to cover three essential aspects of
text annotation in a single tool: 1) corpus building,
2) knowledge modelling, and 3) annotation, and
to combine them with machine-learning-based as-
sistive mechanisms (so-called recommenders) to
improve the annotation efficiency and quality.

INCEpTION is implemented as a Java-
based web application using Tomcat, Spring
Boot and Wicket. It is partially based on
WebAnno (Eckart de Castilho et al., 2016), which
we have modularized step-by-step to accommodate
the needs of INCEpTION. This has allowed us to
exclude certain WebAnno modules, e.g. the origi-
nal automation module, which we replace with our
own recommender framework, as well as to add
new modules such as the search capabilities and
knowledge base integration discussed here. We
retain the WebAnno modules for project manage-
ment, inter-annotator agreement calculation, adju-
dication, etc. as they are compatible with our new
modules. The platform is open source software
licensed under the Apache License 2.0.

This paper focusses on the annotation search ca-
pabilities of INCEpTION together with its knowl-
edge base support. For the recommender mecha-
nism, please refer to Klie et al. (2018).

4 Search

The search functionality of INCEpTION is acces-
sible through a sidebar 1 in the annotation editor
(Figure 1). It allows searching within the docu-
ments of the project the user is currently work-
ing on. After executing a query, the correspond-
ing results are displayed grouped by document 2 .
Clicking on a result causes the annotation area to
switch to the corresponding document/text span 3 .
Attributes that link an annotation to a knowledge

2https://inception-project.github.io
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Figure 1: 1 Search sidebar with the query “all mentions of wines belonging either to the Bordeaux or to the
Burgundy type, located inside a claim which contains the pattern expensive.* ”; 2 search results grouped by
document; 3 annotation area with a highlighted result; 4 auto-complete field allowing to select an entity from
the knowledge base; 5 description of the entity the mouse cursor hovers over.

base item are conveniently editable through an auto-
complete field 4 .

4.1 Choosing a search framework
The knowledge-supported search functionality
called for a search framework that met three re-
quirements: 1) supporting text and annotation
search; 2) supporting frequent updates, since the
index needs to be updated whenever the user cre-
ates, changes or deletes an annotation; 3) it can
be embedded directly in the annotation tool (i.e.
no separate installation required). We considered
three frameworks: the IMS Open Corpus Work-
bench, Mı́mir and MTAS.

The IMS Open Corpus Workbench (Christ,
1994) (IMS CWB) is an old but powerful tool to
index and search annotated corpora. It introduced
the popular Corpus Query Language (CQL).

Using Mı́mir (Tablan et al., 2015), queries over
the annotated text can be combined with informa-
tion from an knowledge base through SPARQL.
This permits queries such as find all mentions X
of persons that were born in London, where X is
annotated as a person in the text, and X was born
in London is contained in the knowledge base.

MTAS (Brouwer et al., 2017) is a recent frame-
work which implements a large part of CQL on top
of Apache Lucene.3

3http://lucene.apache.org/

All frameworks support searching the full text
as well as span annotations and their attributes.

Mı́mir and IMS CWB both assume that corpora
are indexed once and queried often. Indexed docu-
ments can neither be updated nor easily be deleted
and replaced. MTAS does not support updates
to documents, but it allows deleting and then re-
indexing individual documents.

IMS CWB is implemented in C and can be run
either as a server or in an interactive mode. It
cannot be easily embedded into a Java application
such as INCEpTION. Mı́mir is implemented in
Java, but its architectural design assumes that it
is being used as a server. MTAS can be run as
a server, but it can also be embedded into a Java-
based application.

In conclusion, this made MTAS the best choice
to be integrated with INCEpTION.

4.2 Integrating the search framework

To manage the annotations, INCEpTION uses
UIMA (Ferrucci and Lally, 2004). For the knowl-
edge base (KB), it uses RDF4J4. Thus, it was nec-
essary to first implement a bridge from the UIMA
data model to the MTAS data model while support-
ing the customizable layer configuration provided
by INCEpTION. The ability to index annotation

4http://rdf4j.org
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attributes that link to KB items, i.e. classes and in-
stances, was then added as a plugin to this bridge.

The bridge equally supports the built-in anno-
tation layers (e.g. NAMED ENTITY) as well as
user-defined layers (e.g. CLAIM). It indexes all the
spans associated with all types of annotation layers
(spans, relations, and chains). However, queries
over relations and chains are limited since MTAS
does not offer specific query operators for them.
Indexed annotations must start and end at a token
boundary. Subtoken annotations are not supported.

Each layer defines a set of attributes. E.g. the
NAMED ENTITY layer defines a string attribute
VALUE, which usually takes values such as LOC,
PER, ORG and OTH for standard named entity anno-
tation tasks. For our examples, we have also added
WINE and GRAPE to that list. It also provides the
attribute IDENTIFIER which can be used to link an
annotation to a KB item (class or instance).

4.3 Full-text, annotation and attribute search
The token layer is built into INCEpTION and can
be used to perform full-text queries. E.g., this query
locates all occurrences of the token Bordeaux:

”Bordeaux”

Layers are referenced by their name. Attributes
can be addressed using the syntax [layer].[attribute].
Assuming that wine mentions are annotated as
named entities of type WINE, the following query
finds all mentions of wines. This addresses the
needs of Scenario I (Section 2).

<Named entity.value=”WINE”/>

4.4 Knowledge-supported search
Consider that the named entity annotation layer car-
ries an IDENTIFIER attribute that holds the IRI (In-
ternationalized Resource Identifier) of a KB item
(Figure 2). These IRIs are included in the index,
together with the IRIs of any items located higher
in the ontology hierarchy. As IRIs are hard to read,
the index also includes the human-readable labels
associated with the entries, so that the user can
query using these labels instead.

A KB item can either be a class in the ontology
hierarchy (e.g. a wine type or subtype) or an in-
stance (e.g. a specific wine). The following types
of queries can be performed to search for annota-
tions linked to the KB: 1) mentions of a specific

KB item; 2) mentions of a KB item, including the
mentions of its descendants.

The syntax for addressing the attributes linked
to the knowledge base is the same as for normal
attributes. The user can either match against the
IRI of the linked KB item or against its label. This
will retrieve all mentions of the given item, plus all
mentions of its descendants in the ontology. Thus,
the query effectively traverses the ontology hierar-
chy, starting in the given item and going down its
corresponding subtree. This addresses queries like
the one highlighted in Scenario II (Section 2).

<[layer].[attribute]=”[label | IRI]” />

The following example matches all mentions of
wines under the Bordeaux branch of the ontology:

<Named entity.identifier=”Bordeaux”/>

By appending -exact to the attribute name, it is
possible to limit the query to mentions of exactly
one particular item:

<[layer].[attribute]-exact=”[label | IRI]” />

Note that multiple KB items may in principle
carry the same label. To avoid this ambiguity, it
may be necessary to query using the IRI.

Considering again that annotations are linked to
the wine ontology, the following query locates all
exact mentions of the Clos de Vougeot wine:

<Named entity.identifier-exact =
”http://www.w3.org/TR/2003/PR-owl-guide-
20031209/wine#ClosDeVougeotCotesDOr”/>

The rich query language provided by MTAS
allows to combine different query types like the
ones previously introduced, using operators such
as within or containing. Considering that our exam-
ple dataset includes the custom CLAIM annotation
type, we can address Scenario III (Section 2) by
writing the following query, which retrieves all
mentions of wines belonging to the Burgundy or
Bordeaux types (and their subtypes), located inside
a claim that matches the regular expression pattern
expensive.* (Figure 1).

(<Named entity.identifier=”Burgundy”/> |
<Named entity.identifier=”Bordeaux”/>)
within (<Claim/> containing ”expensive.*”)
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Figure 2: Knowledge base page (left): 8 concept explorer; 9 property explorer; 6 annotated mentions of the
seleted KB item. Right: 7 mapping configuration editor.

5 Knowledge-base integration

The knowledge-oriented search capabilities of
INCEpTION are enabled by its KB module. This
module allows the user to create a KB from scratch
or to import one from an RDF file. Remote KBs can
be accessed in a read-only mode via the SPARQL.

The KB management page (Figure 2) allows
editing classes, properties, instances and the cor-
responding statements they are defined by. Using
the search module, it also displays any annotated
mentions 6 of the currently selected KB item.

As the KB module is RDF-based, every piece of
information is stored as a triple <subj, pred, obj>.
Since this model is very abstract, there are a number
of different schemas defining common identifiers
(IRIs) that provide additional semantics, e.g. RDF
Schema5 uses the IRI rdfs:subClassOf to encode a
subclass relation between the items identified by
the subject and the object of a triple.

To support a broad range of different knowledge
resources, INCEpTION offers a configurable map-
ping 7 (Figure 2). The user can choose from
several predefined mappings (e.g. RDF, OWL, or
SKOS) or define a custom mapping. The mapping
mechanism relies on a minimal set of IRIs that
must be defined for any KB used with the plat-
form: the INSTANCE-OF relation is required to be
able to identify instances, classes and properties
within the ontology (<X, instance-of, Y>). Com-
monly rdf:type is used here, but e.g. the RDF ver-
sion of Wikidata uses a different IRI. Addition-

5https://www.w3.org/TR/rdf-schema/

ally IRIs identifying CLASS and PROPERTY defini-
tions are required in order to populate the concept
explorer 8 and the property explorer 9 (Fig-
ure 2) - e.g. <X, instance-of, class>. The class
hierarchy is defined via the SUBCLASS-OF IRI.
Thus, hierarchies defined e.g. via rdfs:subClassOf or
skos:broader are supported, but not hierarchies de-
fined via skos:narrower.6 While INCEpTION tries
to detect root classes automatically, the correspond-
ing query is resource intensive and may eventually
time out on some large knowledge resources. Thus,
it is also possible to bypass the automatic detection
by manually specifying the IRIs of root classes. Fi-
nally, IRIs for LABELs and DESCRIPTIONs can be
defined. If present, labels are used instead of the
IRI when referring to a class, property or instance.
Descriptions are shown as a tooltip (Figure 1) when
linking an annotation to a KB item.

6 Related work

Several annotation tools support structured vocab-
ularies or KBs and some can be used for cross-
document annotation tasks. As INCEpTION is a
generic annotation tool, we compare our work to
the other generic tools.

WebAnno (Eckart de Castilho et al., 2016), while
not offering explicit support for structured vocab-
ularies, can approximate them by combining two
of its features: tagsets and constraints. Constraints
allow to show a certain attribute of an annotation
only when another attribute has a specific value,
e.g. to show a COUNTRY attribute only if the TYPE

6https://www.w3.org/2004/02/skos/
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property of the entity has the value location. Tagsets
can then be used to control which values are ac-
ceptable for the entity type or country properties.
However, WebAnno has no support for search.

AlvisAE (Papazian et al., 2012) supports linguis-
tic and semantic annotations and can connect them
to a structured vocabulary. However, it does not
offer the ability to search over annotations and con-
sequently also has no ability to make use of the
vocabulary structure in such queries.

CROMER (Girardi et al., 2014) is a tool for en-
tity and event coreference annotation. It allows
to annotate and link entity mentions to entities de-
fined in a knowledge base and in this way to create
implicit cross-document coreference links. It also
offers a simple string-based search to locate poten-
tial entity mentions. However, it does not allow
to perform further searches involving the created
annotations or the structure of the vocabulary.

NeuroCurator (O’Reilly et al., 2017) is a collabo-
rative framework for annotating experiment param-
eters in scientific papers using an ontology-driven
approach. It is rather an interactive knowledge
base population tool than a tool for cross-document
coreference. Queries over the texts that make use
of the information of the KB are not possible.

7 Conclusion and Future Work

We have introduced a knowledge-supported search
mechanism into a generic text annotation tool,
INCEpTION, to support entity linking and cross-
document coreference annotation tasks. The need
for such a functionality was motivated using three
scenarios, all of which are facilitated using the
knowledge-supported search mechanism. In future
work, we plan to further extend the search mecha-
nism, e.g. allowing to search over annotation sug-
gestions provided by the recommender framework
of INCEpTION and by further enhancing the abil-
ity to match against information contained in the
knowledge bases.
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2012. AlvisAE: a collaborative Web text annotation
editor for knowledge acquisition. In Proceedings
of the Sixth Linguistic Annotation Workshop, pages
149–152, Jeju, Republic of Korea. Association for
Computational Linguistics.

Valentin Tablan, Kalina Bontcheva, Ian Roberts, and
Hamish Cunningham. 2015. Mı́mir: An open-
source semantic search framework for interactive in-
formation seeking and discovery. Web Semantics:
Science, Services and Agents on the World Wide Web,
30(0):52–68.

132



Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (System Demonstrations), pages 133–138
Brussels, Belgium, October 31–November 4, 2018. c©2018 Association for Computational Linguistics

CytonMT: an Efficient Neural Machine Translation
Open-source Toolkit Implemented in C++

Xiaolin Wang Masao Utiyama Eiichiro Sumita
Advanced Translation Research and Development Promotion Center

National Institute of Information and Communications Technology, Japan
{xiaolin.wang,mutiyama,eiichiro.sumita}@nict.go.jp

Abstract

This paper presents an open-source neural ma-
chine translation toolkit named CytonMT1.
The toolkit is built from scratch only using
C++ and NVIDIA’s GPU-accelerated libraries.
The toolkit features training efficiency, code
simplicity and translation quality. Benchmarks
show that CytonMT accelerates the training
speed by 64.5% to 110.8% on neural net-
works of various sizes, and achieves compet-
itive translation quality.

1 Introduction

Neural Machine Translation (NMT)
has made remarkable progress over the
past few years (Sutskever et al., 2014;
Bahdanau et al., 2014; Wu et al., 2016). Just
like Moses (Koehn et al., 2007) does for statistic
machine translation (SMT), open-source NMT
toolkits contribute greatly to this progress,
including but not limited to,

• RNNsearch-LV (Jean et al., 2015)2

• Luong-NMT (Luong et al., 2015a)3

• DL4MT by Kyunghyun Cho et al.4

• BPE-char (Chung et al., 2016)5

• Nematus (Sennrich et al., 2017)6

• OpenNMT (Klein et al., 2017)7

• Seq2seq (Britz et al., 2017)8

1https://github.com/arthurxlw/cytonMt
2https://github.com/sebastien-j/LVgroundhog
3https://github.com/lmthang/nmt.hybrid
4https://github.com/nyu-dl/dl4mt-tutorial
5https://github.com/nyu-dl/dl4mt-cdec
6https://github.com/EdinburghNLP/nematus
7https://github.com/OpenNMT/OpenNMT-py
8https://github.com/google/seq2seq

• ByteNet (Kalchbrenner et al., 2016)9

• ConvS2S (Gehring et al., 2017)10

• Tensor2Tensor (Vaswani et al., 2017)11

• Marian (Junczys-Dowmunt et al., 2018)12

These open-source NMT toolkits are undoubt-
edly excellent software. However, there is a com-
mon issue – they are all written in script languages
with dependencies on third-party GPU platforms
(see Table1) except Marian, which is developed
simultaneously with our toolkit.

Using script languages and third-party GPU
platforms is a two-edged sword. On one hand,
it greatly reduces the workload of coding neural
networks. On the other hand, it also causes two
problems as follows,

• The running efficiency drops, and profiling
and optimization also become difficult, as the
direct access to GPUs is blocked by the lan-
guage interpreters or the platforms. NMT
systems typically require days or weeks to
train, so training efficiency is a paramount
concern. Slightly faster training can make the
difference between plausible and impossible
experiments (Klein et al., 2017).

• The researchers using these toolkits may
be constrained by the platforms. Unex-
plored computations or operations may be-
come disallowed or unnecessarily inefficient
on a third-party platform, which lowers the
chances of developing novel neural network
techniques.

9https://github.com/paarthneekhara/byteNet-tensorflow
(unofficial) and others.

10https://github.com/facebookresearch/fairseq
11https://github.com/tensorflow/tensor2tensor
12https://github.com/marian-nmt/marian
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Toolkit Language Platform
RNNsearch-LV Python Theano,GroundHog
Luong-NMT Matlab Matlab
DL4MT Python Theano
BPE-char Python Theano
Nematus Python Theano
OpenNMT Lua Torch
Seq2seq Python Tensorflow
ByteNet Python Tensorflow
ConvS2S Lua Torch
Tensor2Tensor Python Tensorflow
Marian C++ –
CytonMT C++ –

Table 1: Languages and Platforms of Open-source
NMT toolkits.

CytonMT is developed to address this issue, in
hopes of providing the community an attractive
alternative. The toolkit is written in C++ which
is the genuine official language of NVIDIA – the
manufacturer of the most widely-used GPU hard-
ware. This gives the toolkit an advantage on effi-
ciency when compared with other toolkits.

Implementing in C++ also gives CytonMT great
flexibility and freedom on coding. The researchers
who are interested in the real calculations inside
neural networks can trace source codes down to
kernel functions, matrix operations or NVIDIA’s
APIs, and then modify them freely to test their
novel ideas.

The code simplicity of CytonMT is compara-
ble to those NMT toolkits implemented in script
languages. This owes to an open-source general-
purpose neural network library in C++, named Cy-
tonLib, which is shipped as part of the source
code. The library defines a simple and friendly
pattern for users to build arbitrary network archi-
tectures in the cost of two lines of genuine C++
code per layer.

CytonMT achieves competitive translation
quality, which is the main purpose of NMT
toolkits. It implements the popular framework of
attention-based RNN encoder-decoder. Among
the reported systems of the same architecture, it
ranks at top positions on the benchmarks of both
WMT14 and WMT17 English-to-German tasks.

The following of this paper presented the details
of CytonMT from the aspects of method, imple-
mentation, benchmark, and future works.

2 Method
The toolkit approaches to the problem of ma-
chine translation using the attention-based RNN
encoder-decoder proposed byBahdanau et al.
(2014) and Luong et al.(2015a). Figure1 illus-
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Figure 1: Architecture of CytonMT.

trates the architecture. The conditional probability
of a translation given a source sentence is formu-
lated as,

log p(y|x) =
m

X

j=1

log(p(yj |H〈j〉
o )

=

m
X

j=1

log(softmaxyj (tanh(WoH
〈j〉
o +Bo))) (1)

H〈j〉
o = Fatt(Hs, H

〈j〉
t ), (2)

wherex is a source sentence;y=(y1, . . . , ym) is
a translation;Hs is a source-side top-layer hidden
state;H〈j〉

t is a target-side top-layer hidden state;

H
〈j〉
o is a state generated by an attention model

Fatt; Wo andBo are the weight and bias of an
output embedding.

The toolkit adopts the multiplicative attention
model proposed byLuong et al.(2015a), because
it is slightly more efficient than the additive variant
proposed byBahdanau et al.(2014). This issue is
addressed inBritz et al.(2017) andVaswani et al.
(2017). Figure2 illustrates the model, formulated
as ,

a
〈ij〉
st = softmax(Fa(H

〈i〉
s , H

〈j〉
t ))

=
eFa(H

〈i〉
s ,H

〈j〉
t )

Pn
i=1

eFa(H
〈i〉
s ,H

〈j〉
t )

, (3)

Fa(H
〈i〉
s , H

〈j〉
t ) = H〈i〉

s
⊤WaH

〈j〉
t , (4)

C〈j〉
s =

n
X

i=1

a
〈ij〉
st H〈i〉

s , (5)

C
〈j〉
st = [Cs;H

〈j〉
t ], (6)

H〈j〉
o = tanh(WcC

〈j〉
st ), (7)

whereFa is a scoring function for alignment;Wa

is a matrix for linearly mapping target-side hidden
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Figure 2: Architecure of Attention Model.

states into a space comparable to the source-side;
a
〈ij〉
st is an alignment coefficient;C〈j〉

s is a source-

side context;C〈j〉
st is a context derived from both

sides.

3 Implementation

The toolkit consists of a general purpose neural
network library, and a neural machine translation
system built upon the library. The neural network
library defines a class namedNetwork to facili-
tate the construction of arbitrary neural networks.
Users only need to inherit the class, declare com-
ponents as data members, and write down two
lines of codes per component in an initialization
function. For example, the complete code of the
attention network formulated by the equations3
to 7 is presented in Figure3. This piece of code
fulfills the task of building a neural network as fol-
lows,

• The class ofVariable stores numeric values
and gradients. Through passing the pointers
of Variable around, component are connected
together.

• The data member oflayers collects all the
components. The base class ofNetwork will
call the functionsforward, backward andcal-
culateGradient of each component to per-
form the actual computation.

The codes of actual computation are organized
in the functionsforward, backward andcalculate-
Gradient for each type of component. Figure4
presents some examples. Note that these codes
have been slightly simplified for illustration.

class Attention: public Network
{
DuplicateLayer dupHt; // declare components
LinearLayer linearHt;
MultiplyHsHt multiplyHsHt;
SoftmaxLayer softmax;
WeightedHs weightedHs;
Concatenate concateCsHt;
LinearLayer linearCst;
ActivationLayer actCst;

Variable* init(LinearLayer* linHt,
LinearLayer* linCst, Variable* hs,
Variable* ht)

{
Variable* tx;
tx=dupHt.init(ht); // make two copies
layers.push_back(&dupHt);

tx=linearHt.init(linHt, tx); // WaHt
layers.push_back(&linearHt);

tx=multiplyHsHt.init(hs, tx); // Fa
layers.push_back(&multiplyHsHt);

tx=softmax.init(tx); // ast
layers.push_back(&softmax);

tx=weightedHs.init(hs, tx); // Cs
layers.push_back(&weightedHs);

tx=concateCsHt.init(tx, &dupHt.y1); // Cst
layers.push_back(&concateCsHt);

tx=linearCst.init(linCst, tx); // WcCst
layers.push_back(&linearCst);

tx=actCst.init(tx, CUDNN_ACTIVATION_TANH);// Ho
layers.push_back(&actCst);

return tx; //pointer to result
}

};

Figure 3: Complete Code of Attention Model For-
mulated by Equations3 to 7

void LinearLayer::forward()
{
cublasXgemm(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
dimOutput, num, dimInput,
&one, w.data, w.ni, x.data, dimInput,
&zero, y.data, dimOutput)

}

void LinearLayer::backward()
{
cublasXgemm(cublasH, CUBLAS_OP_N, CUBLAS_OP_N,
dimInput, num, dimOutput,
&one, w.data, w.ni, y.grad.data, dimOutput,
&beta, x.grad.data, dimInput));

}

void LinearLayer::calculateGradient()
{
cublasXgemm(cublasH, CUBLAS_OP_N, CUBLAS_OP_T,
dimInput, dimOutput, num,
&one, x.data, dimInput, y.grad.data, dimOutput,
&one, w.grad.data, w.grad.ni));

}

void EmbeddingLayer::forward()
{
...
embedding_kernel<<<grid, blockSize>>>(words,
firstOccurs, len, dim, stride,
wholeData, y.data, true);

}

Figure 4: Codes of Performing Actual Computa-
tion.
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4 Benchmarks

4.1 Settings

CytonMT is tested on the widely-used bench-
marks of the WMT14 and WMT17 English-
to-German tasks (Bojar et al., 2017) (Ta-
ble 2). Both datasets are processed and con-
verted using byte-pair encoding(Gage, 1994;
Schuster and Nakajima, 2012) with a shared
source-target vocabulary of about 37000 to-
kens. The WMT14 corpora are processed by
the scripts fromVaswani et al.(2017)13. The
WMT17 corpora are processed by the scripts
from Junczys-Dowmunt et al.(2018)14, which
includes 10 million back-translated sentence pairs
for training.

The benchmarks were run on an Intel Xeon
CPU E5-2630 @ 2.4Ghz and a GPU Quadro
M4000 (Maxwell) that had 1664 CUDA cores
@ 773 MHz, 2,573 GFLOPS . The software is
CentOS 6.8, CUDA 9.1 (driver 387.26), CUDNN
7.0.5, Theano 1.0.1, Tensorflow 1.5.0. Netmaus,
Torch and OpenNMT are the latest version in De-
cember 2017. Marian is the last version in May
2018.

CytonMT is run with the hyperparameters set-
tings presented by Table3 unless stated otherwise.
The settings provide both fast training and com-
petitive translate quality according to our experi-
ments on a variety of translation tasks. Dropout
is applied to the hidden states between non-top re-
current layersRs, Rt and outputHo according to
(Wang et al., 2017). Label smoothing estimates
the marginalized effect of label-dropout during
training, which makes models learn to be more un-
sure (Szegedy et al., 2016). This improved BLEU
scores (Vaswani et al., 2017). Length penalty is
applied using the formula in (Wu et al., 2016).

4.2 Comparison on Training Speed

Four baseline toolkits and CytonMT train mod-
els using the settings of hyperparameters in Ta-
ble3. The number of layers and the size of embed-
dings and hidden states varies, as large networks
are often used in real-world applications to achieve
higher accuracy at the cost of more running time.

Table 4 presents the training speed of differ-
ent toolkits measured in source tokens per sec-
ond. The results show that the training speed
of CytonMT is much higher than the baselines.

13https://github.com/tensorflow/tensor2tensor
14https://github.com/marian-nmt/marian-

examples/tree/master/wmt2017-uedin

Data Set # Sent. # Words
Source Target

WMT14
Train.(standard) 4,500,966 113,548,249 107,259,529
Dev. (tst2013) 3,000 64,807 63,412
Test (tst2014) 3,003 67,617 63,078

WMT17
Train.(standard) 4,590,101 118,768,285 112,009,072
Train.(back trans.) 10,000,000 190,611,668 149,198,444
Dev. (tst2016) 2,999 64,513 62,362
Test (tst2017) 3,004 64,776 60,963

Table 2: WMT English-to-German corpora.

Hyperparameter Value
Embedding Size 512
Hidden State Size 512
Encoder/Decoder Depth 2
Encoder Bidirectional
RNN Type LSTM
Dropout 0.2
Label Smooth. 0.1
Optimizer SGD
Learning Rate 1.0
Learning Rate Decay 0.7
Beam Search Size 10
Length Penalty 0.6

Table 3: Hyperparameter Settings.

OpenNMT is the fastest baseline, while CytonMT
achieves a speed up versus it by 64.5% to 110.8%.
Moreover, CytonMT shows a consistent tendency
to speed up more on larger networks.

4.3 Comparison on Translation Quality

Table 5 compares the BLEU of CytonMT with
the reported results from the systems of the
same architecture (attention-based RNN encoder-
decoder). BLEU is calculated on cased, to-
kenized text to be comparable to previous
work (Sutskever et al., 2014; Luong et al., 2015b;
Wu et al., 2016; Zhou et al., 2016).

The settings of CytonMT on WMT14 follows
Table 3, while the settings on WMT17 adopt a
depth of 3 and a hidden state size of 1024 as
the training set is three times larger. The cross

Embed./State Size 512 512 1024 1024
Enc./ Dec. Layers 2 4 2 4
Nematus 1875 1190 952 604
OpenNMT 2872 2038 1356 904
Seq2Seq 1618 1227 854 599
Marian 2630 1832 1120 688
CytonMT 4725 3751 2571 1906
speedup> 64.5% 84.1% 89.6% 110.8%

Table 4: Training Speed Measured in Source To-
kens per Second.
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System Open Src. BLEU
WMT14

Nematus(Klein,2017)
√

18.25
OpenNMT(Klein,2017)

√
19.34

RNNsearch-LV(Jean,2015)
√

19.4
Deep-Att(Zhou,2016) 20.6
Luong-NMT(Luong,2015)

√
20.9

BPE-Char(Chung,2016)
√

21.5
Seq2seq(Britz, 2017)

√
22.19

CytonMT
√

22.67
GNMT (Wu, 2015) 24.61

WMT17
Nematus(Sennrich,2017)

√
27.5

CytonMT
√

27.63
Marian(Junczys,2018)

√
27.7

Table 5: Comparing BLEU with Public Records.

entropy of the development set is monitored ev-
ery 1

12 epoch on WMT14 and every136 epoch on
WMT17, approximately 400K sentence pairs. If
the entropy has not decreased bymax(0.01 ×
learning rate, 0.001) in 12 times, learning rate
decays by 0.7 and the training restarts from the
previous best model. The whole training proce-
dure terminates when no improvement is made
during two neighboring decays of learning rate.
The actual training took 28 epochs on WMT14
and 12 epochs on WMT17.

Table5 shows that CytonMT achieves the com-
petitive BLEU points on both benchmarks. On
WMT14, it is only outperformed by Google’s pro-
duction system (Wu et al., 2016), which is very
much larger in scale and much more demanding
on hardware. On WMT17, it achieves the same
level of performance with Marian, which is high
among the entries of WMT17 for a single sys-
tem. Note that the start-of-the-art scores on these
benchmarks have been recently pushed forward by
novel network architectures such asGehring et al.
(2017), Vaswani et al.(2017) and Shazeer et al.
(2017)

5 Conclusion

This paper introduces CytonMT – an open-
source NMT toolkit – built from scratch only
using C++ and NVIDIA’s GPU-accelerated li-
braries. CytonMT speeds up training by more than
64.5%, and achieves competitive BLEU points on
WMT14 and WMT17 corpora. The source code
of CytonMT is simple because of CytonLib – an
open-source general purpose neural network li-
brary – contained in the toolkit. Therefore, Cy-
tonMT is an attractive alternative for the research
community. We open-source this toolkit in hopes

of benefiting the community and promoting the
field. We look forward to hearing feedback from
the community.

The future work of CytonMT will be contin-
ued in two directions. One direction is to fur-
ther optimize the code for GPUs, such support-
ing multi-GPU. The problem we used to have is
that GPUs proceed very fast in the last few years.
For example, the microarchitectures of NVIDIA
GPUs evolve twice during the development of Cy-
tonMT, from Maxwell to Pascale, and then to
Volta. Therefore, we have not explored cutting-
edge GPU techniques as the coding effort may be
outdated quickly. Multi-GPU machines are com-
mon now, so we plan to support them.

The other direction is to support latest NMT ar-
chitectures such ConvS2S (Gehring et al., 2017)
and Transformer (Vaswani et al., 2017). In these
architectures, recurrent structures are replaced by
convolution or attention structures. Their high per-
formance indicates that the new structures suit the
translation task better, so we also plan to support
them in the future.
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Abstract
We release an open toolkit for knowledge em-
bedding (OpenKE), which provides a unified
framework and various fundamental models
to embed knowledge graphs into a continu-
ous low-dimensional space. OpenKE prior-
itizes operational efficiency to support quick
model validation and large-scale knowledge
representation learning. Meanwhile, OpenKE
maintains sufficient modularity and extensibil-
ity to easily incorporate new models into the
framework. Besides the toolkit, the embed-
dings of some existing large-scale knowledge
graphs pre-trained by OpenKE are also avail-
able, which can be directly applied for many
applications including information retrieval,
personalized recommendation and question
answering. The toolkit, documentation, and
pre-trained embeddings are all released on
http://openke.thunlp.org/.

1 Introduction

People construct various large-scale knowledge
graphs (KGs) to organize structured knowledge
about the world, such as WordNet (Miller, 1995),
Freebase (Bollacker et al., 2008) and Wikidata
(Vrandečić and Krötzsch, 2014). Most KGs are
typically organized in the form of triples (h, r,
t), with h and t indicating head and tail entities,
and r indicating the relation between h and t, e.g.,
(Mark Twain, PlaceOfBirth, Florida). Abun-
dant structured information in KGs is widely used
to enhance various knowledge-driven NLP appli-
cations (e.g., information retrieval, question an-
swering and dialogue system) with the ongoing ef-
fective construction of KGs.

Limited by the scale and sparsity of KGs, we
have to represent KGs with corresponding dis-
tributed representations. Therefore, a variety of

∗ indicates equal contribution
† Corresponding author: Z.Liu(liuzy@tsinghua.edu.cn)

knowledge embedding (KE) approaches have been
proposed to embed both entities and relations in
KGs into a continuous low-dimensional space,
such as linear models (Bordes et al., 2011, 2012,
2014), latent factor models (Sutskever et al., 2009;
Jenatton et al., 2012; Yang et al., 2015; Liu et al.,
2017), neural models (Socher et al., 2013; Dong
et al., 2014), matrix factorization models (Nickel
et al., 2011, 2012, 2016; Trouillon et al., 2016),
and translation models (Bordes et al., 2013; Wang
et al., 2014; Lin et al., 2015; Ji et al., 2015).

These models have achieved great performance
on benchmark datasets. However, there exist two
main issues which may lead to difficulty in full
utilization and further development. On the one
hand, the existing implementations are scattered
and unsystematic to some extent. For example,
the interfaces of these model implementations are
inconsistent with each other. On the other hand,
these model implementations mainly focus on
model validation and are often time-consuming,
which makes it difficult to apply them for real-
world applications. Hence, it becomes urgent to
develop an efficient and effective open toolkit for
KE, which will definitely benefit both the commu-
nities in academia and industry. For this purpose,
we develop an open KE toolkit named “OpenKE“.
The toolkit provides a flexible framework and uni-
fied interfaces for developing KE models. While
taking in some training and computing optimiza-
tion methods, OpenKE makes KE models efficient
and capable of embedding large-scale KGs. The
features of OpenKE are threefold:

(1) At the data and memory level, the unified
framework of OpenKE manages data and mem-
ory for KE models. Model developments based on
OpenKE no longer require complicated data pro-
cessing and memory allocation.

(2) At the algorithm level, OpenKE unifies the
mathematical forms of various specific models to
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Model Scoring Function Parameters Loss Function

RESCAL (Nickel et al., 2011) h>Mrt Mr ∈ Rk×k,h ∈ Rk, t ∈ Rk margin-based loss

TransE (Bordes et al., 2013) −‖h+ r− t‖L1/L2
r ∈ Rk,h ∈ Rk, t ∈ Rk margin-based loss

TransH (Wang et al., 2014) −‖(h− w>r hwr) + r− (t− w>r twr)‖L1/L2 wr ∈ Rk, r ∈ Rk,h ∈ Rk, t ∈ Rk margin-based loss

TransR (Lin et al., 2015) −‖Mrh+ r−Mrt‖L1/L2
Mr ∈ Rkr×ke , r ∈ Rkr ,h ∈ Rke , t ∈ Rke margin-based loss

TransD (Ji et al., 2015) −‖(rph>p + I)h+ r− (rpt
>
p + I)t‖L1/L2

rp ∈ Rkr ,hp ∈ Rke , tp ∈ Rke , I ∈ Rkr×ke ,
r ∈ Rkr ,h ∈ Rke , t ∈ Rke margin-based loss

DistMult (Yang et al., 2015) < h, r, t > r ∈ Rk,h ∈ Rk, t ∈ Rk logistic loss

HolE (Nickel et al., 2016) r>
(
F−1

(
F(h)�F(t)

))
r ∈ Rk,h ∈ Rk, t ∈ Rk logistic loss

ComplEx (Trouillon et al., 2016) <(< h, r, t >) r ∈ Ck,h ∈ Ck, t ∈ Ck logistic loss

Table 1: The brief introduction of some typical KE models. For most models, k is the dimension of both
entities and relations. For some other models, Ke is the dimension of entities and kr is the dimension of
relations. F denotes the Fourier transform. � denotes the element-wise product. < a, b, c > denotes the
element-wise multi-linear dot product.

implement them under the unified framework. We
also propose a novel negative sampling strategy
for further acceleration.

(3) At the computation level, OpenKE can sep-
arate a large-scale KG into several parts and adapt
KE models for parallel training. Based on the
underlying management of data and memory, we
also adopt TensorFlow (Abadi et al., 2016) and Py-
Torch (Paszke et al., 2017) to build a convenient
platform to run models on GPUs.

Besides the toolkit, we also provide the pre-
trained embeddings of several well-known large-
scale KGs, which can be used directly for other
relevant works without repeatedly spending much
time for embedding KGs. In this paper, we mainly
present the architecture design and implementa-
tion of OpenKE, as well as the benchmark eval-
uation results of some typical KE models im-
plemented with OpenKE. Other related resources
and details can be found on http://openke.
thunlp.org/.

2 Background

For a typical KG G, it expresses data as a directed
graph G = {E ,R, T }, where E ,R and T indicate
the sets of entities, relations and facts respectively.
Each triple (h, r, t) ∈ T indicates there is a re-
lation r ∈ R between h ∈ E and t ∈ E . For the
entities h, t ∈ E and the relation r ∈ R, we use the
bold face h, t, r to indicate their low-dimensional
vectors respectively.

For any entity pair (h, t) ∈ E × E and any re-
lation r ∈ R, we can determine whether there is
a fact (h, r, t) ∈ T via their low-dimensional em-
beddings learned by KE models. These embed-
dings greatly facilitate understanding and mining
knowledge in KGs. In practice, the KE models

define a scoring function S(h, r, t) for each triple
(h, r, t). In most cases, there are only true triples
in KGs and non-existing triples can be either false
or missing. Local closed world assumption (Dong
et al., 2014) has been proposed to solve this prob-
lem, which requires existing triples to have higher
scores than those non-existing ones. Hence, the
scoring function S(h, r, t) returns a higher score
if (h, r, t) is true, vice versa.

Based on the above-mentioned scoring func-
tions, some KE models formalize a margin-based
loss as the training objective to learn embeddings
of the entities and relations:

L =
∑

t∈T

∑

t′∈T ′

[
γ + S(t′)− S(t)

]
+
. (1)

Here [x]+ indicates keeping the positive part of x
and γ > 0 is a margin. T ′ denotes the set of non-
existing triples, which is constructed by corrupting
entities and relations in existing triples,

T ′ = E ×R× E − T . (2)

Some other KE models cast the training objec-
tive as a classification task. The embeddings of the
entities and relations can be learned by minimizing
the regularized logistic loss,

L =
∑

t∈T
log(1 + exp(−S(t))) +

∑

t′∈T ′
log(1 + exp(S(t′))).

(3)

The main difference among various KE models
is scoring functions. Hence, we briefly introduce
several typical models and their scoring functions
in Table 1. These models are state-of-the-art and
widely introduced in many works. We systemati-
cally incorporate all of them into our OpenKE.
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3 Design Goals

Before introducing the concrete toolkit implemen-
tations, we report the design goals and features of
OpenKE, including system encapsulation, opera-
tional efficiency, and model extensibility.

3.1 Encapsulation

Developers tend to maximize the reuse of code to
avoid unnecessary redundant development in prac-
tice. For KE, its task is fixed, and its experimen-
tal settings and model parameters are also sim-
ilar. However, previous model implementations
are scattered and lack of necessary interface en-
capsulation. Thus, developers have to spend extra
time reading obscure open-source code and writ-
ing glue code for data processing when they con-
struct models. In view of this issue, we build a uni-
fied underlying platform in OpenKE and encap-
sulate various data and memory processing which
is independent of model implementations. As
is shown in Figure 1, the system encapsulation
makes it easy to train and test KE models. Thus,
we just need to set hyperparameters via interfaces
of the platform to construct KE models.

3.2 Efficiency

Previous model implementations focus on model
validation and enhancing experimental results
rather than improving time and space efficiency.
In fact, as real-world KGs can be very large, train-
ing efficiency is an important concern. Hence,
OpenKE integrates efficient computing power,
training methods, and various acceleration strate-
gies to support KE models. We adopt TensorFlow
and PyTorch to implement the model training and
test modules based on the interfaces of underly-
ing platform. These machine learning frameworks
enable models to be run on GPU, with just few
minutes needed for training and testing models
on benchmark datasets. In order to train existing
large-scale KGs, we also implement lightweight
C/C++ versions for quick deployment and multi-
threading acceleration of KE models, in which
some models (e.g. TransE) can embed more than
100M triples in a few hours on ordinary devices.

3.3 Extensibility

Since different KE models have different design
solutions, we make OpenKE fully extensible to
future variants. For the underlying platform, we
encapsulate data processing and memory manage-

 
import config, Models, os
os.environ['CUDA_VISIBLE_DEVICES']='0'
con = config.Config()
con.set_in_path('./FB15K/')

 

 
con.set_work_threads(8)
con.set_train_times(1000)
con.set_alpha(0.001)
con.set_margin(1.0)
con.set_dimension(100)
con.set_opt_method('SGD')

 

 
con.init()
con.set_model(models.TransE)
con.run()

 

 Datasets Memory 

Underlying Management

 
Model 

Parameters

Training 

Strategies

Model Settings

Training Evaluation

Traning and Evaluation

 

Code OpenKE

Figure 1: An example for training a KE model
(TransE) via OpenKE.

import numpy as np
import tensorflow as tf
from Model import *
class TransE(Model):
  def _calc(self, h, t, r):
    return abs(h + r - t)
  def embedding_def(self):
    config = self.get_config()
    self.ent_embeddings = tf.get_variable('ent_embeddings', 
                       [config.entTotal, config.hidden_size])
    self.rel_embeddings = tf.get_variable('rel_embeddings', 
                       [config.relTotal, config.hidden_size])
  ...
  def loss_def(self):
    config = self.get_config()
    pos_h, pos_t, pos_r = self.get_positive_instance(in_batch = True)
    neg_h, neg_t, neg_r = self.get_negative_instance(in_batch = True)
    p_h = tf.nn.embedding_lookup(self.ent_embeddings, pos_h)
    p_t = tf.nn.embedding_lookup(self.ent_embeddings, pos_t)
    p_r = tf.nn.embedding_lookup(self.rel_embeddings, pos_r)
    n_h = tf.nn.embedding_lookup(self.ent_embeddings, neg_h)
    n_t = tf.nn.embedding_lookup(self.ent_embeddings, neg_t)
    n_r = tf.nn.embedding_lookup(self.rel_embeddings, neg_r)
    _p_score = self._calc(p_h, p_t, p_r)
    _n_score = self._calc(n_h, n_t, n_r)
    p_score =  tf.reduce_sum(tf.reduce_mean(_p_score, 1, keep_dims = False),

1, keep_dims = True)
    n_score =  tf.reduce_sum(tf.reduce_mean(_n_score, 1, keep_dims = False), 

1, keep_dims = True)
    self.loss = tf.reduce_sum(tf.maximum(p_score - n_score + config.margin, 0))
  ...

Embeddings

Model

DistMult TransE 

Loss

DistMult

Figure 2: An example for implementing a KE
model (TransE) via OpenKE.

ment, and then provide various data sampling in-
terfaces. For the training modules, we provide
enough interfaces for possible training methods.
For the construction of KE models, we unify their
mathematical forms and encapsulate them into a
base class. These framework designs can greatly
meet the needs of current and future models, and
customized interfaces to meet individual require-
ments are also available in OpenKE. As shown in
Figure 2, all specific models are implemented by
inheriting the base class with designing their own
scoring functions and loss functions. In addition,
models in OpenKE can be placed into the frame-
work of TensorFlow and PyTorch to interact with
other machine learning models.

4 Implementations

In this section, we mainly present the implemen-
tations of acceleration modules and special sam-
pling algorithm in OpenKE. OpenKE has been
available to the public on GitHub 1 and is open-
source under the MIT license.

1http://github.com/thunlp/OpenKE
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Algorithm 1 Parallel Learning
Require: Entity and relation sets E and R, training triples
T = {(h, r, t)}.

1: Initialize all model embeddings and parameters.
2: for i← 1 to epoches do
3: In each thread:
4: for j ← 1 to batches/threads do
5: Sample a positive triple (h, r, t)
6: Sample a corrupted triple (h′, r′, t′)
7: Compute the loss function L
8: Update the gradient∇L
9: end for

10: end for
11: Return all embeddings and parameters

4.1 GPU Learning

GPUs are widely used in machine learning tasks to
speed up model training in recent years. In order
to accelerate KE models, we integrate GPU learn-
ing mechanisms into OpenKE. We build the GPU
learning platform based on TensorFlow (branch
master) and PyTorch (branch OpenKE-PyTorch).
Both TensorFlow and PyTorch are machine learn-
ing libraries, providing effective hardware opti-
mizations and abundant arithmetic operators for
convenient model constructions, especially the
stable environments for GPU learning. The auto-
grad packages also bring additional convenience.
TensorFlow and PyTorch enable us to coustruct
models without manual back propagation imple-
mentations, further reducing the programming
complexity for GPU Learning. We develop nec-
essary encapsulation modules aligning to Tensor-
Flow and PyTorch so that the development and de-
ployment of KE models can be faster and further
convenient. Models can be deployed easily on a
variety of devices without implementing compli-
cated device setting code, even for multiple GPUs.

4.2 Parallel Learning

Abundant computing resources (e.g Servers with
multiple GPUs) do not exist all the time. In fact,
we often rely on simple personal computers for
model validation. Hence, we enable OpenKE to
adapt models for parallel learning on CPU 2 be-
sides employing GPU learning, which allow users
to make full use of all available computing re-
sources. The parallel learning method is shown
in Algorithm 1. The main idea of parallel learning
method is based on data parallelism mechanism,
which divides training triples into several parts and
trains each part of triples with a corresponding

2https://github.com/thunlp/Fast-TransX

(h, r, t1)   (h, r, f -1[rand(0, |E| - 3)])
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t1-1 t1+1
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Figure 3: An example for the offset-based negative
sampling algorithm.

thread. In parallel learning, there are two strate-
gies implemented to update gradients. One of the
methods is the lock-free strategy, which means
all threads share the unified embedding space and
update embeddings directly without synchronized
operations. We also implement a central syn-
chronized method, where each thread calculates
its own gradient and results will be updated after
summing up the gradients from all threads.

4.3 Offset-based Negative Sampling
All KE models learn their parameters by minimiz-
ing the margin-based loss function Eq. (1) or the
regularized logistic loss Eq. (3). Both of these loss
functions need to construct non-existing triples as
negative samples. We have empirically found that
the corrupted triples have great influence on final
performance. Randomly replacing entities or rela-
tions with any other ones may make the negative
triple set T ′ contain some positive triples in T ,
which would weaken the performance of KE mod-
els. The original sampling algorithm will spend
much time checking whether generated triples are
in T and filtering them out. In OpenKE, we pro-
pose an offset-based negative sampling algorithm
to generate negative triples. As shown in Figure 3,
we renumber all entities with new serial numbers.
Each entity’s new number is obtained by adding an
offset to its original ID, and the offset is the total
number of positive entities which have lower IDs.
Our algorithm first randomly sample a new num-
ber and then map the new number back to its corre-
sponding entity. This algorithm can directly gen-
erate negative triples without any checking. Since
the relation set is very small, we still directly re-
place positive relations for relation corruption.

5 Evaluations

Link prediction has been widely used for evalu-
ating KE models, which needs to predict the tail
entity when given a triple (h, r, ?) or predict the
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Dataset Rel Ent Train Valid Test

FB15K 1,345 14,951 483,142 50,000 59,071
WN18 18 40,943 141,442 5,000 5,000

Table 2: Statistics of FB15K and WN18.

Datasets FB15K
Models TF PT MT

TransE 75.6(+28.5) 75.4(+28.3) 74.3(+27.2)
TransH 72.8(+14.3) 72.7(+14.2) 74.8(+16.3)
TransR 74.9(+6.2) 75.7(+7.0) 75.6(+6.9)
TransD 74.3(+0.1) 74.2(+0.0) 75.2(+1.0)
RESCAL 49.1(+5.0) 57.2(+13.1) -
DistMult 73.4(+15.7) 75.4(+17.4) -
HolE 70.4(−3.5) - -
ComplEx 72.3(−11.7) 80.5(−3.5) -

Table 3: Experimental results of link prediction on
FB15K (%).

head entity when given a triple (?, r, t). In order to
evaluate OpenKE, we implement various KE mod-
els with OpenKE, and compare their performance
with previous works on link prediction task.

Some datasets are usually used as benchmarks
for link prediction, such as FB15K and WN18.
FB15K is the relatively dense subgraph of Free-
base; WN18 is the subset of WordNet. These pub-
lic datasets are available online 3. Following pre-
vious works, We adopt them in our experiments.
The statistics of FB15K and WN18 are listed in
Table 2, including the number of entities, rela-
tions, and facts.

As mentioned above, OpenKE supports mod-
els with efficient learning on both CPU and GPU.
For CPU, the benchmarks are run on an Intel(R)
Core(TM) i7-6700K @ 3.70GHz, with 4 cores
and 8 threads. For GPU, the models in both
TensorFlow and PyTorch versions are trained by
GeForce GTX 1070 (Pascal), with CUDA v.8.0
(driver 384.111) and cuDNN v.6.5. To compare
with the previous works, we simply follow the pa-
rameter settings used before and traverse all train-
ing triples for 1000 rounds. Other detailed pa-
rameters and training strategies are shown in our
source code. We show these results in Table 3 and
Table 4. In these tables, the difference between
our implementations and the paper reported results
are listed in the parentheses. To demonstrate the
efficiency of OpenKE, we select TransE as a rep-
resentative and implement it with both OpenKE
and KB2E 4, and then compare their training time.
KB2E is a widely-used toolkit for KE models on
GitHub. These results can be found in Table 5.

3https://everest.hds.utc.fr/doku.php?
id=en:transe

4https://github.com/thunlp/KB2E

Datasets WN18
Models TF PT MT

TransE 90.5(+1.3) 90.0(+0.8) 83.3(−5.9)
TransH 94.6(+7.9) 94.4(+7.7) 92.5(+5.8)
TransR 93.8(+1.8) 94.4(+2.4) 94.6(+2.9)
TransD 94.2(+1.7) 94.3(+1.8) 91.9(−0.3)
RESCAL 80.2(+27.4) 80.2(+27.4) -
DistMult 93.6(−0.6) 93.6(−0.6) -
HolE 94.4(−0.5) - -
ComplEx 94.0(−0.7) 94.0(−0.7) -

Table 4: Experimental results of link prediction on
WN18 (%).

Models Time (s)

TransE (KB2E, CPU) 7124
TransE (OpenKE, CPU, 1-Thread) 386
TransE (OpenKE, CPU, 2-Thread ) 206
TransE (OpenKE, CPU, 4-Thread) 118
TransE (OpenKE, CPU, 8-Thread) 76
TransE (OpenKE, GPU, TensorFlow) 178
TransE (OpenKE, GPU, PyTorch) 266

Table 5: Training time of different implementa-
tions of TransE on FB15K.

From the results in Table 3, Table 4 and Table
5, we observe that: (1) Models implemented with
OpenKE have the comparable accuracies com-
pared to the values reported in the original pa-
pers. These results are compatible with our ex-
pectations. For some models, their accuracies are
slightly higher due to OpenKE. These results in-
dicate our toolkit is effecive. (2) OpenKE signifi-
cantly accelerates the training process of the mod-
els trained both on CPU and GPU. As compared to
the model implemented with KB2E, all models in
OpenKE achieve more than 10× speedup. These
results show that our toolkit is efficient.

The evaluation results indicate that our toolkit
significantly handles the time-consuming problem
and can support existing models to learn large-
scale KGs. In fact, TransE based on OpenKE only
spends about 18 hours training the whole Wiki-
data for 10000 rounds and gets stable embeddings.
There are more than 40M entities and 100M facts
in Wikidata. We also evaluate the embeddings
learned on the whole Wikidata on the link pre-
diction task. Because the whole Wikidata is quite
huge, we emphasize link prediction of Wikidata
more on ranking a set of candidate entities rather
than requiring one best answer. Hence, we re-
port the proportion of correct entities in top-N
ranked entities (Hits@10, Hits@20, Hits@50 and
Hits@100) in Table 6. To our best knowledge, this
is the first time that adopting KE models to embed
an existing large-scale KG. The results shown in
Table 6 indicate that OpenKE enables models to
effectively and efficiently embed large-scale KGs.
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Metric Hits@10 Hits@20 Hits@50 Hits@100

Head 29.6 36.2 46.7 56.3
Tail 66.8 75.2 84.9 90.6

Table 6: Experimental results of link prediction on
the whole Wikidata.

6 Conclusion

We propose an efficient open toolkit OpenKE for
knowledge embedding. OpenKE builds a unified
underlying platform to organize data and memory.
It also applies GPU learning and parallel learning
to speed up training. We also unify mathematical
forms for specific models and encapsulate them to
maintain enough modularity and extensibility. Ex-
perimental results demonstrate that the models im-
plemented by OpenKE are efficient and effective.
In the future, we will incorporate more knowledge
embedding models and maintain the stable embed-
dings of some large-scale knowledge graphs.

Acknowledgments

This work is supported by the 973 Program (No.
2014CB340501) and the National Natural Sci-
ence Foundation of China (NSFC No. 61572273,
61661146007) and Tsinghua University Initiative
Scientific Research Program (20151080406). This
research is part of the NExT++ project, supported
by the National Research Foundation, Prime Min-
isters Office, Singapore under its IRC@Singapore
Funding Initiative.

References
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, et al. 2016. Ten-
sorflow: A system for large-scale machine learning. In
Proceedings of OSDI.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge,
and Jamie Taylor. 2008. Freebase: a collaboratively cre-
ated graph database for structuring human knowledge. In
Proceedings of KDD.

Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua
Bengio. 2012. Joint learning of words and meaning repre-
sentations for open-text semantic parsing. In Proceedings
of AISTATS.

Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua
Bengio. 2014. A semantic matching energy function for
learning with multi-relational data. Proceedings of ML.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Ja-
son Weston, and Oksana Yakhnenko. 2013. Translating
embeddings for modeling multi-relational data. In Pro-
ceedings of NIPS.

Antoine Bordes, Jason Weston, Ronan Collobert, Yoshua
Bengio, et al. 2011. Learning structured embeddings of
knowledge bases. In Proceedings of AAAI.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn,
Ni Lao, Kevin Murphy, Thomas Strohmann, Shaohua Sun,
and Wei Zhang. 2014. Knowledge vault: A web-scale ap-
proach to probabilistic knowledge fusion. In Proceedings
of KDD.

Rodolphe Jenatton, Nicolas L Roux, Antoine Bordes, and
Guillaume R Obozinski. 2012. A latent factor model for
highly multi-relational data. In Proceedings of NIPS.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao.
2015. Knowledge graph embedding via dynamic mapping
matrix. In Proceedings of ACL.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan
Zhu. 2015. Learning entity and relation embeddings for
knowledge graph completion. In Proceedings of AAAI.

Hanxiao Liu, Yuexin Wu, and Yiming Yang. 2017. Analog-
ical inference for multi-relational embeddings. In Pro-
ceedings of ICML.

George A Miller. 1995. Wordnet: a lexical database for en-
glish. Communications of the ACM.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio.
2016. Holographic embeddings of knowledge graphs. In
Proceedings of AAAI.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel.
2011. A three-way model for collective learning on multi-
relational data. In Proceedings of ICML.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel.
2012. Factorizing yago: scalable machine learning for
linked data. In Proceedings of WWW.

Adam Paszke, Soumith Chintala, Ronan Collobert, Ko-
ray Kavukcuoglu, Clement Farabet, Samy Bengio, Iain
Melvin, Jason Weston, and Johnny Mariethoz. 2017. Py-
torch: Tensors and dynamic neural networks in python
with strong gpu acceleration.

Richard Socher, Danqi Chen, Christopher D Manning, and
Andrew Ng. 2013. Reasoning with neural tensor networks
for knowledge base completion. In Proceedings of NIPS.

Ilya Sutskever, Joshua B Tenenbaum, and Ruslan Salakhutdi-
nov. 2009. Modelling relational data using bayesian clus-
tered tensor factorization. In Proceedings of NIPS.
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Abstract
We present LIA, an intelligent personal as-
sistant that can be programmed using natural
language. Our system demonstrates multiple
competencies towards learning from human-
like interactions. These include (i) the ability
to be taught reusable conditional procedures,
(ii) ability to be taught new knowledge about
the world (concepts in an ontology) and (iii)
the ability to be taught how to ground that
knowledge in a set of sensors and effectors.
Building such a system highlights design ques-
tions regarding the overall architecture that
such an agent should have, as well as questions
about parsing and grounding language in situ-
ational contexts. We outline key properties of
this architecture, and demonstrate a prototype
that embodies them in the form of a personal
assistant on an Android device.

1 Introduction

Today’s conversational assistants such as Alexa
have the capacity to act on a small number
of pre-programmed natural language commands
(e.g., “What is the weather going to be like to-
day?”). However, advances in semantic pars-
ing and broader language technologies present the
possibility of designing conversational interfaces
that enable users to instruct (i.e., program) their
assistants using language, similar to how humans
teach new tasks to one another. For example, if a
user wants Alexa to have a new functionality such
as “whenever there is an important email I haven’t
seen within an hour, read it out to me”, she should
be able to instruct it verbally. This instruction may
include explaining what constitutes an “important
email”. This, in turn, may involve a description
such as “important emails are from colleagues”,
which may require further background knowledge
defining “colleagues”, “friends”, etc. When hu-
mans teach other humans, such knowledge is of-
ten imparted naturally through explanations, e.g.,

Figure 1: Architecture overview: LIA interacts with the
environment through a set of sensors and effectors, which
are mapped to API’s of other Android applications. End-
users interact with the agent through a text (or voice) in-
terface. User utterances are mapped through a Semantic
Parser to logical forms. A Dialog Manager module guides
user interactions by grounding logical forms to actions, or
asking questions based on possible control flow branches

“my colleagues would have a CMU affiliation” or
“Tom is a colleague”. If AI assistants could be
taught in a similar fashion, this could effectively
make every computer user a programmer.

Towards this end, we present a prototype for a
personal assistant, LIA (for Learning from In-
struction Agent), which demonstrates some of
these capabilities. LIA resides on a typical mo-
bile Android device. It can perceive the external
environment through a set of sensors (e.g., sen-
sors for detecting new emails, reading the calen-
dar, reading current time, etc.) and perform ac-
tions to change the environment through its effec-
tors (e.g., send a message, set an alarm, change the
calendar, etc.). The set of sensors and effectors are
mapped to functions calls of API’s for correspond-
ing Android applications (see Figure 1).
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2 Core competencies

LIA demonstrates three core competencies that we
consider key for learning from instruction:

2.1 Learning Procedures
Among the main use-cases of being able to teach
an agent is being able to define condition-action
rules and procedures, such as the following:

> If there is an important email then forward
to my project team

> Whenever it snows at the night , set my alarm
to 30 minutes earlier

> Update my calendar when there is an important
meeting request

Here, the condition and the effect (action) are
highlighted in green and red respectively. The
condition in each example requires a check that
has to be grounded in the perception sensors. If the
condition is satisfied, the required processing con-
sists of calling the execution of actions grounded
in the effectors. Giving a conversational assistant
the capacity to learn rules verbally opens the pos-
sibility of teaching more complex and personal-
ized rules, especially compared to visual program-
ming tools such as IFTTT and Zapier1. LIA can
ask questions if it cannot parse specifics parts of a
user-statement (e.g., if it cannot understand the if-
condition, see Figure 2 for an example). Another
advantage of a conversational setting is that LIA
can take initiative when certain things are left am-
biguous by the user (e.g., ask the user what to do if
there is a conflict on the calendar for the last rule
in the list above) — an issue that cannot be coped
with in traditional programming environments.

2.2 Learning World Knowledge
LIA can be taught knowledge about the world by
the user (e.g., concepts and ontologies) that can be
used as building blocks in teaching new programs.

A key advantage of a conversational interface
for teaching new programs is that it allows the
user to be naturally expressive about data (i.e.,
variables/constants) by modelling them after real-
world concepts. For example, instead of saying:

> If there is an email from Tom, Justine, Oscar
or Igor, forward it to Mary

LIA allows a user to say:

> If there is an email from my project team forward
it to my assistant

1https://ifttt.com/, https://zapier.com/

By relying on the concept of “my project team”
(instead of listing its members), the second ex-
pression is more efficient and natural. It is also
better from a programming perspective: if team
members change later, the rule will not have to be
redefined. LIA enables users to refer to arbitrary
concepts such as a project team or colleague, by
declaratively teaching it about them. For example:
> Oscar is on my project team

> Everyone on my project team is a colleague

The above examples are akin to defining formal
data-structures, containing class and field defini-
tions, instance creation and definitions of the natu-
ral concept hierarchy (class inheritance). Because
the object-oriented programming (OOP) paradigm
is designed to model the real world, LIA uses it as
the underlying knowledge model that the user can
build and modify naturally using language.

2.3 Grounding Knowledge to Perception
Not all knowledge can be easily conveyed through
crisp extensional definitions such as in the exam-
ple of project team above. Common concepts such
as important email or meeting request are difficult
to declaratively define. In a conventional program-
ming paradigm, the developer may opt to create
special functions for grounding such “fuzzy” con-
cepts using machine learning models (i.e., classi-
fiers) that are grounded in attributes of examples
(e.g., emails) observed through perceptual sensors.

A conversational programming paradigm offers
a natural interface for teaching “fuzzy” and “crisp”
concepts alike. Instead of defining hard rules for
detecting important emails for example, the user
may instead opt to provide descriptions that char-
acterize the concept statistically:
> An important email will usually be from a

colleague’s email address

> its subject may contain words like urgent or
important

By grounding such natural language descriptions
to observable attributes of emails, such descrip-
tions can be used to build classification models
for concepts such as ‘important emails’.

Example Interaction: Figure 2 shows an exam-
ple interaction exemplifying these abilities in LIA,
and also outlining its working. A video demon-
stration of the system can be seen at http://y2u.
be/YfKqpT0apQw. Next, we describe how these
abilities are implemented in LIA, and highlight
salient features of its architecture.
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Figure 2: Example interaction sequence with LIA. Anno-
tations on the right summarize different parts of the con-
versation and outline LIA’s working

3 Architecture and System Overview

An instructable conversational assistant can be
thought of as a new type of programming inter-
face that allows end-users to compose core func-
tionalities (over domains such as email, calendar,
etc.) into programs through natural language di-
alog. Just like conventional programming lan-
guages, this needs answers to design questions
such as: “how are new components (functions)
imported into the instructable agent”, and “how
do these components communicate (e.g., what are
the data types, how do variables get created and
passed between functions)”. As examples in this
paper illustrate, allowing end-users teach an assis-
tant through conversation brings new challenges to
the design of a software architecture that facilitates
programming via dialog. We outline five features
that we see as fundamental to any system which
can be “programmed” through conversation, and
describe how LIA implements them:

3.1 Verbally Referencing and Passing Data
between Sensors and Effectors

In a conventional programming language, for-
mally declared variables allow one to explicitly
store and reference information later in the pro-
gram. A conversational programming interface
needs to allow for a similar mechanism by allow-
ing users to refer and reuse data during instruc-
tion through verbal references. For example, con-
sider the following instructions that the user can
give while teaching a new procedure “If there is a
meeting request, put it on my calendar”:

> Check if there is a time or date mentioned in
the message

> Then set the time of the new event to that time

This example illustrates the requirement for pass-
ing data between two components (email and cal-
endar APIs), which requires reference resolution
on the part of LIA’s semantic parser (e.g., which
“event” did the user refer to in this context?).

LIA solves the problem of interpreting users’
utterances and that of resolving references to vari-
ables (e.g., “subject of the received email” or
“assistant’s email address”) jointly. Reference
resolution is context-dependent, and is difficult
to solve using rule-based heuristics. The prob-
lem of semantic parsing and variable resolution
is addressed by LIA using a machine learning
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based approach. For example, if the user men-
tions “Tom’s email”, and there are multiple con-
tacts named Tom, the agent can use its conversa-
tional context (e.g., most recently mentioned enti-
ties) and world knowledge to help and resolve the
reference – both are naturally incorporated as fea-
tures; weights for these are learned continuously
through interactions with the user.

LIA uses a synchronous CFG-based parser im-
plemented using SEMPRE (Berant et al., 2013),
and an underlying frame-based meaning repre-
sentation (i.e., a frame consists of an intent such
as CREATE NEW CONCEPT and any arguments
such as the name of the concept), allowing nested
frames for certain intents (currently the IF THEN
intent). The parser has an underlying log-linear
parameterization of the frame/utterance pairs, with
weights that can be learned offline and updated on-
line during interactions with the user. LIA uses
the following two classes of features to represent
utterance/frame pairs:
• Lexical/logical form features: these include

indicator features for derivation rules used in
the parse, as well as the conjunction of non-
terminals in the derivation with the part-of-
speech tags spanned by the derivation.

• Variable resolution features: these include in-
dicator features that fire if the resolved refer-
ence matches only partially to the variable name
(e.g., if the user mentions “affiliation” rather
than “university affiliation”), and a feature that
indicates whether the variable was mentioned
recently in the conversational context.

The variable resolution features are very power-
ful in that they allow the incorporation of external
context to help the agent resolve references by re-
lying on the aggregate information from all sen-
sor and effectors of the physical device. For ex-
ample, a reference to a particular person may be
ambiguous when interpreted in isolation, but may
naturally resolve to the person who recently sent
a text-message or an email. External information
such as this, can be incorporated into the variable
resolution features in a scalable way.

3.2 Generalizing Programs from a Single
Example

In conventional programming, explicit functions
serve as reusable building blocks and must be
expressed via specialized syntax to declare what
parts of the procedure can be generalized to differ-

ent arguments. In a conversational setting, the user
is not likely to be explicit about what parts of what
they teach should generalize – this knowledge is
often implicit based on the context of the taught
program. Thus, programs taught via conversation
need to be intelligent in automatically generaliz-
ing to future invocations with different arguments
where appropriate (e.g., if the user taught the agent
how to “tell colleagues to...”, the same procedure
should correctly generalize to “tell friends to...”.

When a user teaches a new procedure to LIA,
the interaction is always grounded in the specific
context within which the user was teaching it. To
explain, when teaching how to “tell my boss that
I will be late”, the user will narrate the sequence
of instructions to the agent that repeat arguments
from the original command, e.g.,
> Set the recipient to my boss ’s email address

> Then set its subject to I will be late

Here, “boss” and “I will be late” are arguments
repeated from the original utterance that is being
taught. In a conventional programming language,
the programmer would write a function that would
explicitly indicate which parts of the procedure
are placeholders and would be replaced with ar-
guments in any future invocations of the program.
In a conversational setting, the agent must have
the capacity to automatically identify what parts of
the taught program are placeholders and should be
substituted with different arguments in the future.
LIA’s algorithm is based on Azaria et al. (2016) –
it identifies matches between the command being
taught and the references to entities made in the
program; it then uses this information to store a
templated version of the taught program that can
be re-used for future invocations with different ar-
guments, e.g.,:“tell my friends I am on my way”.

3.3 Define New Knowledge
In a conventional programming language, data
structures and their relationships (e.g., inheri-
tance) must be declared formally. On the other
hand, LIA infers the data types and relationships
declared by the user from natural language state-
ments (e.g., “most colleagues have a university
affiliation” declares a new field ‘university affili-
ation’, and “everyone on the cmu team is a col-
league” creates an class-inheritance relation be-
tween a member of a cmu team and a colleague).
These are identified through a set of manually de-
fined syntactic patterns in the semantic parser.
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LIA represents an agent’s knowledge in a tradi-
tional object-oriented paradigm: the agent’s world
consists of classes (referred to as concepts), and
instances (referred to as objects). Classes can ex-
tend (i.e., be inherited by) at most one other class,
while instances can instantiate multiple classes.
Further, if a concept (or instance) in LIA extends
other concepts, it also inherits all of its fields.

3.4 Grounding New Knowledge in Sensors
and Effectors

An important component of an intelligent assis-
tant is the ability to ground language and abstract
concepts in observable perception, through sen-
sors and effectors. We envision enabling the agent
to learn concepts (such as important emails) from
a combination of explanations, and examples of
the concept. This is motivated by our recent re-
search on using natural language to define fea-
ture functions for learning tasks (Srivastava et al.,
2017), and also work on using declarative knowl-
edge in natural language explanations to super-
vise training of classifiers (Srivastava et al., 2018).
Using semantic parsing, we can map natural lan-
guage statements to predicates in a logical lan-
guage, which are grounded in sensor-effector ca-
pabilities of the personal agent. These may enable
the user to:

1. Mention specific attributes that characterize a
concept (e.g., define a boolean feature that
checks whether an email comes from a col-
league)

2. Assert fuzzy statistical constraints specifying
relationships between such feature and labels
(e.g., ‘emails from my colleagues are usually
important’)

In combination, these capabilities can poten-
tially allow the agent to be taught classifiers for
fuzzy concepts from a blend of natural language
explanations of these concepts, and labeled or un-
labeled data.

Using these explanations and unlabeled data, an
automated learner can output a classifier that can
predict the class for a new instance. The system
can currently be used to train classifiers for a small
number of restricted domains. The classifier learn-
ing component is currently a standalone module
(separate from rest of LIA). We plan to make this
publicly accessible in the future.

Figure 3: Knowledge View in user interface, which dis-
plays procedures taught by a user, along with utilized sen-
sors and effectors

3.5 Mixed-Initiative Interactions
In a conventional programming language, the pro-
grammer anticipates all possible outcomes of var-
ious API calls made in a program, wrapping these
calls with control-flow statements (if/then/else
blocks) to account for different return flows. Con-
versely, end-user programmers must not be re-
quired to be explicit about all possible program
flows, but rather must inherently be in the form
of a mixed-initiative dialog. LIA does this by be-
ing pro-active in identifying possible control flow
branches based on the instructions the user has
provided while teaching. Consider an example:

> Check that I am available tomorrow at 2pm

...

> What should I do if you are not available?

Here, the question creates a control flow branch,
from which point on the user instructs a sequence
of actions that would be triggered only if the con-
dition that the agent asked about was true. One
of the key challenges in providing this mixed-
initiative strategy is scaling it to multiple sen-
sors and effectors, where the API for each sen-
sor/effector could trigger a set of potential con-
trol flow branches based on the internal execution
paths of the individual sensor/effector methods.

LIA’s architecture facilitates a generic way of
integrating new sensor/effector classes by auto-
matically discovering possible outputs of the API
method calls through a static analysis of the API
source code. This static code analysis registers this
information as possible control flow branches and
uses it during the dialog with the user to ask what
to do when these control flow branches are reached
during execution. Of course, not every possible
output of a particular API call (e.g., checking the
user’s availability) requires asking the user what to
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Figure 4: Program flow with conditional branches for an
example program visualized in terms of the API method
calls. Dashed lines show data (variables) passed between
different method calls. White boxes denote branches that
were explicitly prompted by the agent by asking a ques-
tion on what to do in a given situation (see Fig 2)

do. It is up to the API developer to decide what ex-
ecution paths inside the API call warrant generat-
ing a question to the user. To communicate this in-
formation explicitly and in a standard way, we re-
quire that the API methods always return an object
of a special output return type that both (i) contains
the message to the user and (ii) encodes the infor-
mation about whether the execution path resulting
in this return value was successful or resulted in an
error, and whether the agent should probe the user
on what to do when this branch point is reached.

Figure 4 illustrates a full program taught by the
user (“if there is an important meeting request
then put it on my calendar”) with two conditional
branches; both branches were prompted by the
agent explicitly asking the user for what to do in
two scenarios: the user is not available at a partic-
ular time, and the original email does not contain
a time/date. See Figure 4 for more details.

4 Conclusion and Outlook

We have presented LIA, a natural language pro-
grammable assistant that allows users to teach it
new procedures, define new concepts and con-
cept hierarchies, and ground these to observable
attributes and actions in the agent’s repertoire of
sensors and effectors. Currently, LIA is limited
in some ways. For example, newly taught com-

Figure 5: Screenshot of LIA being taught a new procedure
on an Android mobile device

mands are incorporated as new grammar rules in
the semantic parser. As a result, future invocations
of the command that exhibit lexical and syntactic
variations may not correctly parse. Also, currently
LIA only uses conversational and lexical features
to resolve ambiguities in grounding frames to the
entities in the knowledge base. The mechanism of
incorporating features, however, is general and fu-
ture efforts can also incorporate external features
from multiple sensors (e.g., your location, person
you talked to most recently, etc.).

We believe that computers that can be interac-
tively instructed from natural language present an
exciting new area, which can have significant im-
plications for both learning and language research,
as well as engender a range of creative applica-
tions. We hope that through our demonstration,
we can engage the community in this direction.
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Abstract

This paper describes PizzaPal, a voice-only
agent for ordering pizza, as well as the Conver-
sational AI architecture built at b4.ai. Based
on the principles of high-density conversa-
tional AI, it supports natural and flexible in-
teractions through neural conversational lan-
guage understanding, robust dialog state track-
ing, and hierarchical task decomposition.

1 High-Density Conversational AI

Following the recent rise to prominence of smart
speakers, as well as the continuous improvement
of core technologies for speech recognition and
natural language understanding, voice-only inter-
active applications, whether in the home or in car,
have attracted increasing attention and investment
from the industry. Such applications generally fall
under two broad categories: assistants and bots.
Voice assistants, pioneered by Siri in 2010, aim at
providing a broad range of information and ser-
vices across many domains, primarily by lever-
aging natural language’s evocative power, i.e. its
ability to summon any intent, concept or entity at
any point in a conversation. On the other hand,
bots (also known as skills on Alexa and action on
Google Assistant) are much narrower in scope, of-
ten providing a voice interface to a single brand,
service, or API.

While technological progresses are undeniable,
these applications have only met limited suc-
cess1, and largely fail to sustain even simple task-
oriented conversations with humans. We believe
this relatively poor user experience stems from
the fact that neither assistants nor bots are able
to cover the space of possible (or even reason-
able) conversations with enough density. In other

1According to Smith (2017), the retention rate after two
weeks for Alexa skills was only 6% in September 2017.

words, while a given set of user intents are rec-
ognized and supported, even small variations over
those are not properly handled. There are several
root causes to these limitations. While platforms
such as Google’s DialogFlow or Facebook’s wit.ai
provide a simple way of building a relatively small
set of distinct intents to a large developer commu-
nity, these alone cannot support truly natural, sus-
tained, interaction. Therefore, companies (typi-
cally startups) that develop bots might not have the
necessary resources or knowledge to build truly
compelling conversational experiences. On the
other hand, some of the largest tech companies
are behind most voice assistants (Apple, Google,
Amazon) have plenty of resources, financial, hu-
man, and intellectual, but they are typically fo-
cused on expanding the breadth of their applica-
tions, to the expense of its density. Figure 1 gives
an example of the contrast between breadth and
density.

At b4.ai, we believe that only high-density con-
versational AI can deliver the seamless, natural ex-
perience that matches users’ expectations of Ar-
tificial Intelligence and leads to truly successful
conversational consumer products. The following
sections describe how we are tackling this chal-
lenge by first focusing on domain-specific appli-
cations in the form of Alexa skills and Google Ac-
tions.

2 The PizzaPal Conversational Ordering
System

The PizzaPal system is a voice-only conversa-
tional agent that supports ordering pizza, drinks
and side dishes for delivery or pickup. It runs ei-
ther as an Alexa skill or a Google Assistant ac-
tion and is connected to the Domino’s Pizza API.
While there exist other conversational agents (as-
sistants, skills or actions) that support pizza or-

151



Figure 1: Leveraging Natural Conversation for Breadth vs Density

dering or similar e-commerce tasks, PizzaPal is
unique in the naturalness and flexibility of its in-
teractions, as shown in the example of Figure 2.

P: (...) What will you be having?
U: Can I get a large spinach pizza?
P: One large spinach pizza. Can I get you
anything else?

U: I’ll also take a pepperoni pizza.
P: One pepperoni pizza. Do you want
that in large as well?*

U: How much was the spinach pizza?
P: A large spinach pizza is $18.49. Let’s
continue with the pepperoni pizza.**

Should I make that a large as well?
U: Do you have anything smaller?***

P: Medium is smaller. It is 12 inches.
Shall I order it for you?

U: Sure.
P: Sure. Can I get you anything else?

Figure 2: Example dialogue with PizzaPal.2

The italicized sentences show instances of natu-
2The video of this dialog is available at https://

youtu.be/BQrzgJk4-yI

ral conversational behavior exhibited by PizzaPal:

∗ PizzaPal proactively suggests sizes and items
based on the dialog history when possible.

∗∗ While the system can drive the conversation
to completion by asking the user direct ques-
tions, it also allows the user to take the initia-
tive at any time.

∗ ∗ ∗ The user can express constraints and in-
tents freely, including using contextual ex-
pressions.

These are a few examples of features character-
istic of high-density AI, which are implemented
in PizzaPal. In the remainder of the paper, we
will describe the b4.ai framework architecture and
components that support the PizzaPal system.

3 Architecture

3.1 Overview
At a high level, the b4.ai framework is composed
of three main services that run on top of a front
end platform such as Amazon Alexa or Google
Assistant. As illustrated in Figure 3, the front
end controls application launch, voice recognition
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Figure 3: Overview of the b4.ai dialog framework.

and voice synthesis. The front end sends the tran-
scription of each user input to the core dialog ser-
vice, which first calls the NLU service to extract
non-contextual semantic information, and inter-
acts with the knowledge backend, before return-
ing the bot response to the front end as a string to
be spoken back to the user. All three services are
implemented as REST APIs hosted on AWS EC2
instances.

3.2 Knowledge Service

The role of the Knowledge Service is to retrieve
domain knowledge (e.g. menus, restaurant ad-
dresses, as well as user prefererences), help re-
solve references (e.g. when the user says ”add
chicken to my pizza”, ”chicken” might match to
different possible toppings like ”BBQ Chicken”,
”Garlic Chicken” or ”Teriyaki Chicken”), and ex-
ecute transactions with 3rd party services (e.g.
placing the order for delivery). Even for a sin-
gle domain application such as pizza ordering, this
requires access to a variety of databases, APIs
and services. The Knowledge Service abstracts
away these different source schemas and allows
unified access from the dialog service. In gen-
eral, the Knowledge Service supports a variety of
queries, both structured (e.g. getting the menu of
a given store given its store ID) and unstructured
(e.g. finding menu items matching certain key-
words and key phrases), which are performed via
an API defined in terms of questions about enti-
ties and properties (e.g. ”get the available toppings
for menu item X”, ”resolve ingredient named N
for dish type T”). The initial implementation of
the Knowledge Service relies on 3rd party REST

APIs, and our own PostGres and ElasticSearch
databases to access restaurant and menu informa-
tion.

3.3 Natural Language Generation

The NLG service takes the semantic output gener-
ated by the Dialog service and converts it to natu-
ral language. We have implemented a simple, scal-
able template based approach to NLG, that allows
to control the language used by the system with
some amount of variation. The templates incor-
porate some conditionals so that entities such as
menu items or ingredients can be rendered differ-
ently based on entity properties and context.

4 Natural Language Understanding

The Natural Language Understanding (NLU) ser-
vice of PizzaPal converts the surface text of a
user’s request (taken from Alexa or Google As-
sistant’s APIs) into a structured semantic repre-
sentation that serves as the input for the Dialog
Manager. The output of the NLU follows a food
ordering schema that defines what a MenuItem
consists of.

Conventional task-oriented dialog systems use
intent detection and slot filling to identify user’s
intention and extract semantic constituents from
the natural language query. This intent-slot con-
figuration might suffice when the backend task is
outlined as a database lookup operation where the
extracted slots are used as constraints and the re-
trieved information is presented to the user by pop-
ulating fixed language templates. However, it is
not sufficient for building a genuinely natural con-
versational system that requires frequent elaborate
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high-density actions. Consider the following user
input:

“I want three large pizzas, the Honolulu
Hawaiian, and two with cheese and chicken.”

The NLU should identify three separate enti-
ties (in bold) in order to resolve the ambiguity that
the user requested two kinds of pizzas with differ-
ent quantities instead of three Honolulu Hawaiian
with extra chicken, which is inferred by the entity
model. The Subsection 4.1.1 and 4.1.2 describe
the intent and slot model; with Subsection 4.1.3
explains the entity model.

4.1 Model Description
All the neural networks for our NLU service are
trained and run using the Python deep learning li-
brary Keras (Chollet et al., 2015), with a Tensor-
Flow backend (Abadi et al., 2015).

4.1.1 Intent Model
The intent model learns a Convolutional Neural
Networks (CNN) with multiple filters and fixed
kernel size from an n × k representation of sen-
tence using GloVe word embeddings (Pennington
et al., 2014). Random word vectors were gen-
erated for Out-of-vocabulary (OOV) words be-
fore training. In addition to the word embed-
ding features, we are adding a few more dimen-
sions to the word representation with additional
one-hot encoding categorical features based on
whether the word appears in different sets of col-
lections of phrases that specify ingredients, dish
names, or portion sizes etc. At the time of writ-
ing, there are 26 intents in the current model.
A few example intents include RequestItem,
GivePortionSize, and AddToppings etc.

4.1.2 Slot Model
Slot model is independent of the intent model,
which allows different intents to share the same
set of slots. The input for learning the slot model
is identical to that for learning the intent model.
The slot model learns a Bidirectional Long Short-
Term Memory (LSTM) Networks with dropout
and emits a slot label for each token in the
word sequence. Currently, the slot model pre-
dicts a label from a total of 21 slots. Example
slots include dish name, portion size, and
ingredient etc.

4.1.3 Entity Model
Similar to the slot model, the entity model learns
a Bidirectional LSTM Networks with dropout that

emits one of the B, I, O labels for each token in the
word sequence to indicate the boundaries of sep-
arate entities. Usually an entity corresponds to a
MenuItem in the schema. As shown in the ex-
ample user request below, each underlined chunk
of text represents an entity.

“I’d like two large hand tossed Hawaiian and a
medium cheese pizza with double pepperoni.”

In addition to the word embedding and categor-
ical features as used for learning the intent and slot
model, the input for learning the entity model ad-
ditionally contains the one-hot encoding of the slot
label information. The ground truth slot labels are
used for training the entity model, while during
prediction the output of the slot model is used as
features.

4.2 Data Collection

In order to bootstrap our NLU models before we
obtain real user data from the released product, we
have been leveraging crowdsourcing to generate
reasonable sentences for the various intents, slots
and entities. We have collected both freeform sen-
tences by giving crowdworkers a general scenario
and asking them what they would say to PizzaPal,
as well as paraphrases, for which we provide a tar-
get sentence with known annotation and ask work-
ers to provide variations with the same meaning.
The first approach has proven useful to uncover
intents, slots and ways to formulate queries, while
the paraphrase approach allows us to rapidly col-
lect data for specific intents and scenarios.

5 Dialog Management

5.1 Overview

Once the NLU service has extracted intents, slots
and entities from a user utterance, the Dialog ser-
vice first updates the persistent state of the dia-
log based on the new input, and second decides
what response to give to the user. Recent work on
dialog management has focused on Deep Learn-
ing based approaches (Liu et al., 2018), show-
ing great promise when large amounts of train-
ing dialog data are available. We also believe that
such data-driven approaches are part of the solu-
tion to scale high-density AI. However, in order to
bootstrap an initial system that displays our target
flexibility and naturalness, we opted for an engi-
neered solution based on data structures and al-
gorithms inspired by computational linguistics re-
search. Specifically, the two core components of
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Figure 4: Example of Dialog Flow

our dialog state are:

• A topic stack which tracks the hierarchical
topic structure of the conversation and al-
lows switching to new topics and coming
back to previous topics. This is inspired by
the RavenClaw architecture (Bohus and Rud-
nicky, 2009). Practically speaking, the stack
contains modules, each in charge of a partic-
ular subdialog.

• An entity reference set that can be retrieved
by content as well as recency to match refer-
ring expressions provided by the user such as
”my pizza”, ”the large one”, ”the pepperoni”,
etc.

In the current implementation, the domain logic
within each module is implemented in Python
code. We are also exploring ways of implementing
modules as Deep Networks trained on example di-
alogs for both state tracking and decision making.

5.2 Example Runtime Flow
Initially, the stack contains the root module. Af-
ter each user input, the stack is traversed from top
to bottom and each module attempts to interpret
the NLU according to its own context to update
the dialog state. As soon as a module does so,
the iteration stops and the decision making phase
starts, where the module at the top of the stack
can either output a prompt to the user, push an-
other module, or pop itself from the stack, indi-
cating that it has completed its intended subtask.
For example, one module might be in charge of
handling the specification of one item from the
menu (HandleItem). When executing this mod-
ule, it might decide (e.g. based on information
from the backend about the given item) that it
needs to enquire about the size of the item, and

push another module specialized in this subtask
AskSize. If, instead of answering the ques-
tion by providing a size, the user asks a question
(e.g. ”How big is a large?”), the corresponding
module is pushed on top of the stack and han-
dles the question (ProvideSizeInfo). Once
it is done (presumably by providing the answer),
ProvideSizeInfo pops itself from the stack
and AskSize is back on top and tries again to
obtain a size from the user. Figure 4 shows a sim-
plified example of a dialog flow and the evolution
of the stack.

Modules operate as asynchronous functions that
perform a task. Once a module is completed
(which could involve several turns of interactions
with the user), it returns the information that it was
able to obtain from the user to its calling module
via callback function. This asynchronous mecha-
nism allows the system to both lead the conversa-
tion to complete the task, while also leaving the
option of the user to switch topics and ask ques-
tions, without losing track of the main task.

6 Challenges

The ambitious goals of high-density AI outlined in
section 1 raise significant challenges on all com-
ponents of the system. First, of course, are speech
recognition errors, which, even given the high
quality of ASR provided by today’s voice plat-
forms, are still prominent for certain idiosyncratic
words or phrases. Since we do not control the
ASR module, there is little we can do here, though
we have observed that training the NLU on prop-
erly annotated ASR output help resolves the most
common issues (e.g. ”I want two pizzas” misrec-
ognized as ”I want to pizzas”).

Even when ASR faithfully transcribes the ut-
terances, some nuances that are essential to un-
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derstanding the user intent are sometimes minute
such as the difference between ”I want a pepperoni
pizza” and ”I just want a pepperoni pizza” which,
in some contexts, means that the user wants to re-
move all other items from the order. This type
of small but crucial distinctions, characteristic of
high-density AI, point to the limitations of the tra-
ditional intent/slot approach where every nuance
must be captured by a different intent. In addition,
while it is more practical to implement NLU as
independent of context (and leave the contextual
interpretation to the Dialog service), the strong in-
fluence of context on interpretation makes NLU
labeling (both by human annotators, particularly
when crowdsourcing the task, and by the trained
DNNs) a challenging task. For these reasons, we
are exploring new approaches to conversational
NLU that avoid these pitfalls by integrating Dia-
log and NLU more tightly.

Finally, we found that project and product man-
agement tasks for high-density AI, while critical
to the development of a robust and useful prod-
uct, present some significant challenges too. Be-
cause dialog flows are never rigidly defined and
the user can always say anything at any point of
the conversation, representing different features of
the agent (e.g. ”supporting crust customization”)
for purposes of communication between product,
engineering and QA teams is a non trivial prob-
lem. Similarly, traditional metrics used for track-
ing progress toward milestones and product re-
leases often fail to capture the seemingly infinite
number of ways users can interact with each fea-
ture. We believe that new metrics, tools and pro-
cesses appropriate to high-density AI systems are
a critical requirement toward the development of
large scale successful conversational products and
we are actively working on building them.

7 Conclusion

In this paper, we present PizzaPal, a pizza ordering
bot that customers can interact with through Ama-
zon Alexa and Google Assistant using multi-turn
dialogs with natural language. It is based on a pro-
prietary dialog framework developed by b4.ai and
is the first implementation of High-Density Con-
versational AI (#highdensityai) as a commercially
viable product.
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Abstract
We demonstrate an end-to-end approach for
building conversational interfaces from proto-
type to production that has proven to work
well for a number of applications across di-
verse verticals. Our architecture improves
on the standard domain-intent-entity classi-
fication hierarchy and dialogue management
architecture by leveraging shallow semantic
parsing. We observe that NLU systems for in-
dustry applications often require more struc-
tured representations of entity relations than
provided by the standard hierarchy, yet with-
out requiring full semantic parses which are
often inaccurate on real-world conversational
data. We distinguish two kinds of semantic
properties that can be provided through shal-
low semantic parsing: entity groups and entity
roles. We also provide live demos of conver-
sational apps built for two different use cases:
food ordering and meeting control.

1 Introduction

Conversational interfaces are a prominent fea-
ture of many consumer technology products to-
day. Popular voice assistants, such as Alexa, Siri,
Google Assistant, and Cortana, have been built us-
ing a methodical approach of domain-intent-entity
classification and dialogue management that is be-
coming an industry standard (Dialogflow, 2018;
Wit.ai, 2018; Amazon, 2018; Microsoft, 2018).

In this demo, we share best practices on de-
veloping production conversational interfaces. We
provide attendees with an interactive demo which
illustrates the live classification of each model
in the end-to-end pipeline for different queries
and use cases. The demo systems focus on two
use cases in English—food ordering and meeting
control—though the architecture is broadly appli-
cable to other languages and use cases.

Furthermore, we introduce two components of
the pipeline that are improvements over the indus-

try standard—entity grouping and entity roles—
which are forms of shallow semantic parsing. We
demonstrate the value of these shallow seman-
tic parses, going beyond named entity recognition
without exhaustive semantic or syntactic parsing,
or even full relation extraction. We first give an
overview of the system architecture, then describe
the shallow semantic parsing problems in more de-
tail and compare our approach to related systems.

2 Architecture

The NLP pipeline is broken down into a series of
components as illustrated in Figure 1: Intent Clas-
sifier, Entity Recognizer, Entity Resolver, Seman-
tic Parser, Dialogue Manager, Question Answerer
and Application Manager. For each component,
the model type, features, and hyperparameters are
tuned for the use case.

This architecture allows us to bootstrap appli-
cations with few queries per intent—tens or hun-
dreds of queries for narrow vocabulary intents
and thousands of queries for open vocabulary
intents—and smoothly transition as data sets in-
crease. Getting a deployable version of a conver-
sational assistant on small data set sizes is key,
since generating conversational data is expensive,
and early in development, product decisions can
often change, requiring relabeling the data. Once
a model is in production, dataset sizes can grow by
labeling queries from user logs. This architecture
scales well and continues to give robust perfor-
mance as query sizes increase by orders of mag-
nitude. As the dataset sizes grow, the most op-
timal model type, features, and hyperparameters
will change.

2.1 Intent Classification
A Domain Classifier assigns an incoming query
into one of a set of pre-defined topical buckets or
domains. This is a classification model that uses
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Figure 1: Natural language processing pipeline

text features like n-grams and gazetteer matches
to determine which domain the vocabulary of the
query is most likely in. In addition to these fea-
tures that capture language and sentence structure,
this component has access to the user context and
the history of previous queries in the conversation.
Different models such as logistic regression (LR),
support vector machine (SVM), decision tree, or
random forest can be selected for different use
cases based on the data set size and distribution.

Intent Classifiers predict which of the do-
main’s intents is expressed in the request. It is a
text classification model like the domain classifier,
but trained on data to distinguish among the types
of intended dialogue acts within a domain.

Figure 2 illustrates the domain and intent classi-
fications for the input query “I’d like a plain bagel
that’s warmed up and with cream cheese” for a
food ordering app. In the demo, users can try
tweaking the language of the query and see how it
affects the model prediction. For example, when
keeping the phrase “I’d like a”, but changing the
rest of the query to an unrelated item (e.g. “I’d like
a link to a funny video”), the domain classification
changes to UNRELATED. When tweaking the lan-
guage from “I’d like a bagel” to a more explicit “I
want to order a bagel” increases the confidence of
the ORDER intent classification.

2.2 Entity Recognition
Entity Recognizers identify and label entities—
the words and phrases that must be represented
and interpreted to fulfill requests. It is a se-
quence tagging model such as a Maximum En-
tropy Markov Model (MEMM), Long Short-Term
Memory recurrent neural network (LSTM), or a
Conditional Random Field (CRF). The features
depend on the model type used but can include
word embeddings or gazetteer matches. The opti-
mal model is dependent on dataset size. A MEMM
model with gazetteer and n-gram features may
be most robust when trained on a few hundred
queries, but the LSTM model with character and

Figure 2: Domain and intent classifier demo view

Figure 3: Entity recognizer demo view

word embeddings can have better accuracy when
trained on a few hundred thousand queries.

In Figure 3 we illustrate the extracted entities
from an example query and the confidence of those
predictions.

2.3 Entity Resolution

An Entity Resolver maps each identified entity to
a canonical value. For example, in the food or-
dering use case, the text “plain bagel” needs to be
mapped to a canonical id that can be use to make
an API call to place the order.

The entity resolver uses an information retrieval
(IR) approach to resolve to the correct canonical
form by doing text matching against an index of
canonical entities. This matching uses common
IR techniques of character n-gram, token n-gram,
and fuzzy matching as well as tf-idf scoring. The
index also contains information like synonyms for
entities, so the model can correctly resolve items
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Figure 4: Entity resolver demo view

that are semantically similar but syntactically dif-
ferent. For example, “pasta with tomato sauce”
can be resolved to “spaghetti marinara”. In Fig-
ure 4, the entity text “warmed up” is resolved to
the “Warmed” (SKU: 204198) as an example.

2.4 Semantic Parser
The interpretation of some queries requires a more
structured representation than domains, intents
and entities provide. We decompose entity rela-
tion extraction into two degenerate cases: assign-
ment of entity relation type or role and association
of dependent ‘child’ entities to a head ‘parent’ en-
tity in an entity group. Though some use cases
require both kinds of information, many use cases
only require one of these, and it is productive to
treat them as separable problems.

Entity Role Classifiers add another level of
labeling when knowing an entity’s type is not
enough to interpret the entity correctly. E.g., a role
label can be used to classify a numerical entity as
a SIZE versus a QUANTITY. In the case “I’ll have
the 12 oz soda”, the role of the entity “12” should
be SIZE, but in the case “I’ll have 3 sodas”, the role
of the entity “3” should be a QUANTITY.

The addition of the role classification is novel to
our architecture. It is an intermediate between us-
ing only NER and doing a full semantic or syntac-
tic parse. The benefit of doing role classification is
that you can get important semantic and syntactic
information in a targeted way for entities that are
predefined to take multiple roles, rather than hav-
ing to generate a full parse for each query. Without
this learned role classification, systems often have
to rely on heuristics in the dialogue manager to
determine the roles of the entities. Unlike our ap-
proach, the alternative of using ruled-based heuris-
tics does not scale to unseen language patterns.

Figure 5: Semantic parser demo view

Our role classifier can be a logistic regression,
SVM, decision tree, or random forest model. The
best model is selected based on the data distribu-
tion and use case. Features include n-grams, bag
of words, and other entities present in the query.

A Entity Group Parser finds relationships be-
tween the extracted entities and groups them into
a meaningful hierarchy as illustrated in Figure 5.

The language parser for entity grouping is an-
other novel component of our architecture. A
small number of configuration parameters gener-
ates a weighted context-free grammar (WCFG)
over entities and the words not in entities. The de-
veloper can specify whether to allow parent-child
attachment to the left or right, what the minimum
or maximum number of dependent entities should
be, and the preferred direction of attachment. The
developer can also specify certain ‘linking’ words,
whose occurrence between two entities increases
the chance of the entities being in the specified
head-dependent relationship. More details on the
semantic parser are given in section 3.

2.5 Question Answerer
A Question Answerer queries a Knowledge Base,
which encompasses all of the important world
knowledge for a given application use case, to find
answers to user queries. The example in Figure 6
demonstrates the ranked list of relevant results for
the request “what pastries are available?”.

2.6 Dialogue Manager
A Dialogue Manager analyzes each processed
query, executes the required logic, and returns an
appropriate natural language response. The lan-
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Figure 6: Question answerer demo view

Figure 7: Dialogue manager demo view

guage of the response itself is often templated, but
the appropriate template is selected based on the
context of the target domain, intent, entities, and
results from the question answerer. In the exam-
ple in Figure 7, the user’s query was classified
as the order intent with the correct entity and op-
tions filled in, so the dialogue manager prompts
the user to confirm their order and informs them
of the pickup time.

2.7 Application Manager

An Application Manager orchestrates the query
workflow. It receives requests from the client in-
cluding both text queries and context information,
processes the requests by passing them through
each of the other components, and then returns the
final response to the client endpoint.

3 Shallow Semantic Parsing

In conventional semantic parsing, a single tree of
dependency relations is constructed to cover ap-
proximately a whole sentence, enabling a transla-
tion from natural language to logical form for each
sentence. In the example below, the dependencies
OWNER, POSSESSION and QUANTITY can be as-
signed within a sentence in which a NUMBER en-
tity and DRINK entity are already recognized.

I’ll have six sodas
NUMBER DRINK

QUANTITY

POSSESSION

OWNER

For many information retrieval tasks, including
this task-oriented dialogue system, it is sufficient
to just extract the relations among entities, in this
case QUANTITY.

I’ll have six sodas
NUMBER DRINK

QUANTITY

The QUANTITY relation enables the system to dis-
tinguish the sentence above from the sentence be-
low, for example, where the same NUMBER entity
has a SIZE relation.

I’ll have the six ounce soda
NUMBER DRINK

SIZE

But beyond that, it is often sufficient for the trained
model to recognize the relation type, without spec-
ifying the parent. When this is the case, we can
treat the relation type as a role label on the entity.

I’ll have the six ounce soda
NUMBER DRINK

SIZE

I’ll have six sodas
NUMBER DRINK

QUANTITY

This unifies the classification problem with cases
where the same disambiguation is required even
though there is no explicit head, as in the query
below.

I’ll have six
NUMBER

QUANTITY
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In contrast, entity grouping associates child enti-
ties to a parent entity without specifying a rela-
tion type, such as the OPTION entities to the corre-
sponding DISH entities below.

a bagel with butter and warm muffin
DISH OPTION OPTION DISH

Entity grouping is sufficient in cases where there
is only one relation type relevant to a particular in-
tent, or in cases where the relation type is fully de-
termined by the associated entity types. But even
when both relation type and parent-child links are
required, as below, we benefit from decomposing
the problem.

a bagel and two of the muffins
DISH NUMBER DISH

QUANTITY

In the initial stages of development, when train-
ing data is limited, this allows the system to use a
probabilistic model for role labeling which gener-
alizes across cases with and without explicit heads,
while using a simple deterministic parser for entity
grouping. Once training data is sufficient, these
can be smoothly transitioned to a fully probabilis-
tic dependency parser, performing joint learning
of entity roles and entity groups.

4 Evaluation of the Semantic Parser

To illustrate the trade-off in model approaches
within this architecture as development matures,
we provide an evaluation of different entity group-
ing systems in Table 1. The test data in this eval-
uation is 200 food ordering queries with more
than one DISH entity, and we focus on query-level
accuracy—the percentage of queries with correct
labels. The baseline system Nearest Head simply
assigns any dependent entity to the nearest avail-
able head entity. The Default WCFG system uses
NLTK (Bird et al., 2009) to construct a CFG over
entities and assigns domain-general costs to se-
lect a parse, while the Tuned WCFG uses prefer-
ences specified by the developer for this use case
(e.g. particular entities tend to associate left vs.
right) to adapt the cost calculation to the use case.
Tuning the WCFG on 1225 queries with multi-
ple dish entities provides an acceptable 97% accu-
racy. The DepP system trains the transition-based

System Train # Test %

Nearest Head N/A 86.0
Default WCFG N/A 91.5

Tuned WCFG 1225 97.0
DepP 1225 86.0
DepP + Fixups 1225 95.5

DepP 5106 92.0
DepP + Fixups 5106 98.5

Table 1: Evaluation of approaches to entity grouping
for a food ordering use case.

dependency parser from Spacy v. 1.9 (Honnibal
and Johnson, 2015) on the entity grouping prob-
lem. With only 1225 training queries, the parser is
not able to learn the structure of the problem well,
sometimes leaving dependent entity types unas-
sociated or producing impossible tag sequences.
Fixup rules that force dependent entities to asso-
ciate to a head entity improve the accuracy, and
adding nearly 4000 training queries that only have
one DISH name allows the parser to learn the ba-
sic structure better. The combination of these al-
lows the DepP system to reach 98.5% accuracy.
With smaller training data set sizes the DepP sys-
tem is not viable, but once training data increases,
we can expect more robust performance from the
more powerful model.

5 Related Work

Our approach extends a long history of work
in shallow semantics for NLU. Conceptually the
most similar is work on relation extraction, as
established by the Automatic Content Extraction
(ACE) program (Doddington et al., 2004). For ex-
ample, Culotta and Sorensen (2004) and Bunescu
and Mooney (2005) use full syntactic dependency
parses as features in tree-kernel SVMs to recog-
nize relations among entities. Similarly, seman-
tic role labeling (Màrquez et al., 2008; Palmer
et al., 2010) constructs event representations by
identifying arguments of predicate heads, typi-
cally treating it as a sequence labeling task. More
recently, neural network models that combine se-
quential representations with dependency struc-
tures have obtained improvements on both relation
extraction (Miwa and Bansal, 2016) and semantic
role labeling (Roth and Lapata, 2016), and simi-
lar models have the power to jointly learn role la-
bels and entity groups. However, these methods
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only perform well with abundant training data, so
while product decisions are in flux, working with
simpler models facilitates the quick development
of a production app on smaller data sets.

Some researchers have attempted full seman-
tic parsing for task-oriented systems similar to
ours. Berant et al. (2013) induce a semantic parser
from question–answer pairs, and then these parses
can be used to find answers for unseen questions.
Chen et al. (2014) combine a semantic parser
with word embeddings to induce mappings from
the semantic parser’s relations to the slots of a
task-oriented dialogue system. In customer-facing
products, systems trained by unsupervised learn-
ing have too high risk of misbehavior. Moreover,
in our applied domains, either the relation head or
the relation type is often predetermined or irrele-
vant, so that information can remain undefined or
implicit, leaving a simpler problem.

6 Conclusion

We have described a dialogue system interface
for an architecture which extends the traditional
NLU pipeline with entity role labeling and entity
grouping, forms of shallow semantic parsing. The
described methodology has allowed us to consis-
tently build production-level conversational assis-
tants. In this demo, we hope to share these insights
in an interactive way.
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Abstract

We present an online interactive tool1 that gen-
erates titles of blog titles and thus take the
first step toward automating science journal-
ism. Science journalism aims to transform
jargon-laden scientific articles into a form that
the common reader can comprehend while en-
suring that the underlying meaning of the arti-
cle is retained. In this work, we present a tool,
which, given the title and abstract of a research
paper will generate a blog title by mimicking
a human science journalist. The tool makes
use of a model trained on a corpus of 87, 328
pairs of research papers and their correspond-
ing blogs, built from two science news aggre-
gators. The architecture of the model is a two-
stage mechanism which generates blog titles.
Evaluation using standard metrics indicate the
viability of the proposed system.

1 Introduction

With approximately 2.5 million new scientific pa-
pers being published every year (Jinha, 2010),
there is an ever growing need to make this vast
trove of scientific knowledge accessible to the
common man. This accessibility of scientific
knowledge plays an important role in key politi-
cal, economic, cultural and social policy discus-
sions and also in public dialogue. Websites like
sciencedaily.com, phys.org, eurekalert.org aim to
address this problem by aggregating and showcas-
ing the top science news stories from the worlds
leading universities and research organizations.

News-writing bots have captured the headlines
in the recent past, leading to the growing popular-
ity of “Robo Reporting”2,3. However, extending

∗* The authors contributed equally.
1https://irel.iiit.ac.in/science-ai/
2Washington Post’s robot reporter has published 850 arti-

cles.
3New York Times is using bots to create more one-to-one

experiences.

this framework to be used for science journalism is
a non-trivial task as that would entail understand-
ing scientific content and translating it to simpler
language without distorting its underlying seman-
tics. To our knowledge, there have been no prior
attempts within the scientific community to extend
“Robo Reporting” to science journalism, and this
dearth of research in this area can be partially at-
tributed to the lack of suitable data for AI algo-
rithms to be trained. To address this lack of an
appropriate training corpus, we have created a par-
allel corpus of scientific paper titles and abstracts,
and their corresponding blog titles with the aim of
initiating this foray into automated science jour-
nalism and engendering further research.

This initiative is an initial step towards the
larger goal of understanding the entire research
paper and generating a complete blog. The sys-
tem makes use of a pipeline-based architecture
that uses a combination of the title of the research
paper and its abstract to generate the title of the
blog. Sample of an abstract, paper title and its cor-
responding blog title is given in Table 1.

Table 1: Sample - Blog Title, Paper Title and
Abstract from our corpus

Blog title: Applying machine learning to the
universe’s mysteries
Paper title: An equation-of-state-meter of
quantum chromodynamics transition from
deep learning

Abstract: A primordial state of matter consist-
ing of free quarks and gluons... Here we use
supervised learning with a deep convolutional
neural network to identify the EoS employed...

Our system models the blog title generation task
via a two-stage process: first, it uses a heuris-
tic function mechanism to extract relevant infor-
mation from the title and abstract of the research
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Figure 1: Layout of the web application for our prototype, demonstrating blog title generation

paper and then it it uses the extracted informa-
tion to generate the blog title. The state-of-the-
art sequence-to-sequence neural networks for nat-
ural language generation like the Pointer Genera-
tor Network (See et al., 2017) are used in the sec-
ond stage of the pipeline. The generated blog titles
are evaluated using all standard metrics for natu-
ral language generation tasks and the results indi-
cate the viability of the proposed model to produce
semantically sound blog titles. Our contributions
can be summed up as follows:

1. A new parallel corpus of 87, 328 pairs of re-
search paper titles and abstracts and their cor-
responding blog titles.

2. Demonstrating the web application, which
uses a pipeline-based architecture that can
generate blog titles in a step-by-step fashion,
while enabling the user to choose between
various heuristic functions as well as the neu-
ral model to be used for generating the blog
title.

3. Analyzing the outcomes of the experiments
conducted to find the best heuristic function
as well as network architecture.

We have thus taken the first steps towards build-
ing an automated science journalism system by
generating blog titles with a long-term vision of

generating an entire blog from a given research pa-
per - thereby paving the way for future research in
the area.

2 Related Work

Recently, a lot of activity in the space of ad-
vances in natural language generation has resulted
from pioneering works in building sequence-to-
sequence neural networks. Among these ad-
vances, two particular areas relevant to the prob-
lem we have formulated are neural headline gen-
eration and style transfer.

In the space of Neural Headline Genera-
tion, Long Short Term Memory (LSTM) based
sequence-to-sequence architectures for headline
generation using the attention mechanism have
been explored (Ayana et al., 2017). However, the
authors generate headlines for the same domain
which effectively means we cannot apply the ar-
chitectures directly to our problem where the do-
mains and vocabulary are very different. While di-
rectly using seq2seq architectures was somewhat
helpful in our case - as we will show later; cross
domain headline generation requires the consider-
ation of aspects such as style, readability, etc in the
two different domains of study.
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Figure 2: Model of pipeline architecture, describing the two stages in which we model blog title
generation

Existing literature in non-parallel style trans-
fer assumes the unavailability of sufficient paral-
lel data (Shen et al., 2017; Fu et al., 2018; Kab-
bara and Cheung, 2016). In first trying to address
the problem of style transfer on non-parallel data,
Shen et al. (2017) tried to separate the content
from the style of the article. It was assumed that a
shared latent content distribution exists across dif-
ferent text corpora, and proposed a method that
leveraged refined alignment of latent representa-
tions to perform style transfer. While Shen et al.
(2017) demonstrated their results on sentiment
transfer, this cannot be accepted as style transfer
from a linguistic point of view.

In other recent works, Fu et al. (2018) address
the style-transfer problem by learning separate
content and style representations using adversarial
networks. Their reported results are on their cus-
tom Paper-News Title dataset and the samples re-
ported by the authors either copy the entire source
text or replace a few words. Their evaluation crite-
ria leaves a lot to be desired as they evaluate trans-
fer strength using a classifier and content preser-
vation using word embeddings. A lack of parallel
data again presents a drawback. While Kabbara
and Cheung (2016) presented a variant of an auto-
encoder where the latent representation had two
separate components: one for style and one for
content, the authors do not report results on any
dataset and hence is not useful in our context.

One key assumption across all the non-parallel
style transfer works is a significant overlap be-
tween the vocabulary of the source and target
style. On the other hand, in the context of sci-
ence journalism - the overlap in vocabulary be-

tween the source and the target is not significant
which is one of the prime reasons why the non-
parallel style transfer methods cannot be directly
extended to our problem. This puts our problem
in the bracket of content re-purposing, for which
we give a demonstrable prototype.

3 Parallel Corpus for Science Journalism

In the process of building a solution to address
the problem of automated science journalism, we
built a corpus of parallel data consisting of sci-
entific papers and their corresponding blog arti-
cles from two science news aggregation websites:
sciencedaily.com and phys.org. Both these web-
sites publish articles explaining the latest scien-
tific advancements and are rich sources of parallel
data. Though we were able to obtain over 300, 000
blog titles, only around 100, 000 of those arti-
cles had links to original research papers. These
100, 000 or so research papers were published on
over 1000 different research publication websites
and we used manual rules to extract abstracts and
titles from the research papers that were published
on the more frequent research publication web-
sites like nature.com, pnas.org. Our final dataset
comprises of 87, 328 (blog title, paper title, ab-
stract) triples.

Out of 87, 328 triples, 77, 604 are obtained from
sciencedaily.com, 9724 tuples are obtained from
phys.org. The statistical analysis of the dataset is
as presented below:

1. Average length of blog titles: 9.55 words
2. Average length of research paper titles: 12.07

words
3. Average length of research paper abstracts:
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179.54 words
4. Average word overlap between blog titles and

paper titles: 1.93 words
5. Average word overlap between the paper ab-

stracts and blog titles: 3.64 words.

The models must therefore learn which words in
the target vocabulary correspond to which words
in the source, so that the generated output adheres
to the target style.

4 Blog Title Generation

Figure 2 illustrates the proposed architecture. Our
demonstrable prototype consists of a two-stage
pipeline, which is described in detail as follows:

1. A heuristic function takes the title and ab-
stract of the research paper and extracts rel-
evant information which is then used for fur-
ther processing.

2. The output of the previous step is fed into
a sequence-to-sequence neural generation
model in order to generate the title of the blog
post.

The dataset is of the format T =
{ (bt, pt, abs) }, where, bt is the blog ti-
tle, pt is the paper title and abs is the abstract.
We define a heuristic function H(pt, abs)
which takes a paper title and abstract as param-
eters and outputs a sequence s. The various
heuristic functions H we explored are outlined
below:

H(pt, abs) = pt : In this heuristic, we as-
sume that the paper title will encapsulate sufficient
information to generate the blog title.

H(pt, abs) = RP(abs) : TF-IDF based
measure that selects the sentence that best repre-
sents the abstract. (Allahyari et al., 2017)

H(pt, abs) = RD(abs) : Flesch Reading
Ease based measure that selects the most readable
sentence in the abstract.

H(pt, abs) = RPD(abs) : Selects the sen-
tence that maximizes the product of normalized
RD(abs) and RP(abs) scores, where normal-
ization is performed across all sentences.

We also experimented with different combina-
tions of the above heuristics: H(pt, abs) =
pt | RD(abs), H(pt, abs) = pt | RP(abs),
H(pt, abs) = pt | RPD(abs) and
H(pt, abs) = pt | abs; where | implies con-

catenation of the associated heuristics.

In stage 2, neural natural language generation
models are used to generate the blog title. The sys-
tem provides a baseline attention network which
defines ‘attention’ over the input sequence to allow
the network to focus on specific parts of the input
text and the pointer-generator (See et al., 2017)
network which extends the attention-network to
compute a probability Pgen that decides whether
the next word in sequence should be copied from
the source or generated from the rest of the vo-
cabulary. The pointer-generator aids in copying
factual information from the source, and we hy-
pothesize that this will be useful when generat-
ing blog titles. Formally, the sequence s obtained
from the first stage is the input to the neural natural
language generation model which generates bt′ as
output with a loss function L(bt, bt′), given by
sum of cross entropy loss at all time-steps:

L(bt, bt′) = −
t=T∑

t=0

P (bt′t)

5 Demonstration

Figure 1 illustrates the layout of our demonstra-
ble web application. It can be accessed publicly
at the following URL: https://irel.iiit.
ac.in/science-ai. The layout of the web
application is broadly divided into two parts. the
left half of the page has the necessary text fields
and drop down menus to accept inputs from the
user and the right half of the page displays the
outputs- both the intermediate sequence, which is
the output of the first stage of the pipeline, and the
blog title, which is the output of the second stage
of the pipeline. The application accepts two text
inputs from the user: the title of the research paper
and the abstract of the research paper. The appli-
cation also allows the user to select the heuristic
function to be used in the first stage of the pipeline
as well as the neural generation model to be used
in the second stage of the pipeline. Running the
engine will parse the inputs and pass them on to
the appropriate heuristic function, which will pro-
duce an intermediate sequence viewable on the
right side of the page. This intermediate sequence
is then passed on to the neural generation model
that is selected by the user which then generates
the final output, which can be viewed below the
intermediate sequence.
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BLEU ROUGE L CIDEr
SkipThought

Sim.
Flesch

Reading Ease

H(pt, abs) PG Attn PG Attn PG Attn PG Attn PG Attn
pt 0.157 0.149 0.157 0.138 0.453 0.433 0.430 0.432 46.481 43.069
abs 0.135 0.095 0.136 0.089 0.359 0.123 0.444 0.119 45.484 39.021

RD(abs) 0.091 0.142 0.09 0.137 0.161 0.450 0.403 0.431 57.468 47.521
RP(abs) 0.101 0.143 0.105 0.134 0.183 0.571 0.414 0.429 46.338 41.179
RPD(abs) 0.096 0.134 0.097 0.126 0.179 0.543 0.415 0.428 43.89 40.761
pt | RD(abs) 0.139 0.152 0.129 0.145 0.351 0.754 0.435 0.444 49.504 42.964
pt | RP(abs) 0.142 0.153 0.137 0.144 0.372 0.745 0.431 0.448 40.856 35.311
pt | RPD(abs) 0.151 0.152 0.158 0.140 0.399 0.759 0.435 0.433 40.193 44.339

pt | abs 0.171 0.096 0.172 0.091 0.523 0.123 0.446 0.219 41.307 45.641

Table 2: Performance of the various heuristic functions contrasted with the proposed
sequence-to-sequence generation framework

Figure 3: Results in the application

It is important to note that our research proto-
type is still in a nascent stage and the problem
of automated science journalism is far from being
solved. The same heuristic function or neural gen-
eration model might not exhibit the best results for
all possible inputs. Thus, it is of exceptional im-
portance to provide the users fine grained control
over the individual components of the model. The
system does this by allowing the user the freedom
to select a heuristic function and neural genera-
tion model of their choice. This allows for more
flexibility for the users to experiment with vari-
ous heuristic functions and neural generation mod-
els and ensures better results than forcing the user
to use one particular configuration for all inputs.

If not selected by the user, the heuristic function
H(pt, abs) = pt and the attention network
neural generation model are used as defaults as
this configuration has consistently exhibited good
results.

In order to further facilitate experimentation by
the user, the web application shows the perfor-
mance of the user-selected configuration on our
test dataset, it displays the readability scores of the
generated output, and also highlights the words in
the output that were copied from the source. All
these features give anyone using this system a de-
tailed view of how various configurations work
and provide the flexibility to select the one that
works best of their use-case. Figure 3 showcases
the above mentioned features.

6 Evaluation and Analysis

We evaluate the generated titles using various met-
rics surveyed by Sharma et al. (2017) for task-
oriented language generation.

1. BLEU (Papineni et al., 2002): It uses a
modified precision to compare generated text
against multiple reference texts

2. ROUGE L (Lin, 2004): It is an F-measure
that is based on the Longest Common Subse-
quence (LCS) between the candidate and ref-
erence utterances

3. CIDEr (Vedantam et al., 2015): It is based
on n-gram overlap

4. Skip Thought Cosine Similarity (Kiros
et al., 2015): It is based on a continuous
representation of sentences known as skip-
thought vectors
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5. Flesch Reading Ease (Flesch, 1948): It mea-
sures the readability of the sentence based on
the number of syllables and words

Table 2 shows the performance of our proposed
input functions of the architecture contrasted with
the proposed neural generation models pointer-
generator (abbr. PG) and the attention-network
(abbr. Attn).

The blogs had a Flesch Reading Ease of around
30-35, while the research paper’s reading ease was
between 15-20. Our generated samples have a
reading ease (>30) highlighting the transfer in
style from research paper to the blog. The higher
FRE indicates that the generated titles are easier to
understand than the paper titles.

To further shed some light on the quality of the
generated blog titles, Table 3 shows a few sampled
sentences generated by the best performing mod-
els in our architecture. Based on our experiments,
we conclude that our system learns to generate ti-
tles similar to a human expert for scientific blogs.

Table 3: Samples generated by our prototype

Blog title: Safer alternatives to nonsteroidal
antinflamatory pain killers
Model-generated title: New hope for treating
inflammatory cardiovascular disease
Blog title: The effects of soy and whey protein
supplementation on acute hormonal responses
to resistance exercise in men
Model-generated title: Soy protein supple-
mentation linked to resistance exercise in men
Blog title: Scientists reconcile three unrelated
theories of schizophrenia
Model-generated title: A new way to fight psy-
chiatric disorders

7 Conclusion and Future Work

This work serves as a baseline first attempt toward
automating science journalism. We proposed an
architecture with a two stage pipeline and have de-
veloped a demonstrable web application that ac-
cepts the title and abstract of a research paper and
outputs a blog title, while also giving the user the
flexibility to tinker with the individual components
of the system. Future work would include using
more advanced architectures to generate the body
of the blog.
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Chris Tara, Yun-Hsuan Sunga, Brian Stropea, Ray Kurzweila

aGoogle AI
Mountain View, CA

bGoogle AI
New York, NY

cGoogle
Cambridge, MA

Abstract

We present easy-to-use TensorFlow Hub
sentence embedding models having good
task transfer performance. Model vari-
ants allow for trade-offs between accuracy
and compute resources. We report the re-
lationship between model complexity, re-
sources, and transfer performance. Com-
parisons are made with baselines with-
out transfer learning and to baselines that
incorporate word-level transfer. Transfer
learning using sentence-level embeddings
is shown to outperform models without
transfer learning and often those that use
only word-level transfer. We show good
transfer task performance with minimal
training data and obtain encouraging re-
sults on word embedding association tests
(WEAT) of model bias.

1 Introduction

We present easy-to-use sentence-level embed-
ding models with good transfer task performance
even when using remarkably little training data.1

Model engineering characteristics allow for trade-
offs between accuracy versus memory and com-
pute resource consumption.

2 Model Toolkit

Models are implemented in TensorFlow (Abadi
et al., 2016) and are made publicly available on
TensorFlow Hub.2 Listing 1 provides an example

† Corresponding authors:
{cer, yinfeiy}@google.com

1We describe our publicly released models. See Yang
et al. (2018) and Henderson et al. (2017) for additional ar-
chitectural details of models similar to those presented here.

2 https://www.tensorflow.org/hub/, Apache
2.0 license, with models available as saved TF graphs.

import tensorflow_hub as hub

embed = hub.Module("https://tfhub.dev/google/"
"universal-sentence-encoder/2")

embedding = embed(["Hello World!"])

Listing 1: Python sentence embedding code.

code snippet to compute a sentence-level embed-
ding from a raw untokenized input string.3 The re-
sulting embedding can be used directly or incorpo-
rated into a downstream model for a specific task.4

3 Encoders

Two sentence encoding models are provided: (i)
transformer (Vaswani et al., 2017), which achieves
high accuracy at the cost of greater resource con-
sumption; (ii) deep averaging network (DAN)
(Iyyer et al., 2015), which performs efficient in-
ference but with reduced accuracy.

3.1 Transformer

The transformer sentence encoding model con-
structs sentence embeddings using the encod-
ing sub-graph of the transformer architecture
(Vaswani et al., 2017). The encoder uses atten-
tion to compute context aware representations of
words in a sentence that take into account both the
ordering and identity of other words. The context
aware word representations are averaged together
to obtain a sentence-level embedding.

We train for broad coverage using multi-task
learning, with the same encoding model support-
ing multiple downstream tasks. The task types
include: a Skip-Thought like task (Kiros et al.,

3Basic text preprocessing and white-space tokenization is
performed internally. Preprocessing lowercases the text and
removes punctuation. OOV items are handled using string
hashing to index into 400,000 OOV embeddings.

4Visit https://colab.research.google.com/ to try the code
snippet in Listing 1. Example code and documentation is
available on the TF Hub website.
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2015);5 conversational response prediction (Hen-
derson et al., 2017); and a select supervised classi-
fication task that improves sentence embeddings.6

The transformer encoder achieves the best transfer
performance. However, this comes at the cost of
compute time and memory usage scaling dramati-
cally with sentence length.

3.2 Deep Averaging Network (DAN)

The DAN sentence encoding model begins by
averaging together word and bi-gram level em-
beddings. Sentence embeddings are then obtain
by passing the averaged representation through
a feedforward deep neural network (DNN). The
DAN encoder is trained similar to the transformer
encoder. Multitask learning trains a single DAN
encoder to support multiple downstream tasks. An
advantage of the DAN encoder is that compute
time is linear in the length of the input sequence.
Similar to Iyyer et al. (2015), our results demon-
strate that DANs achieve strong baseline perfor-
mance on text classification tasks.

3.3 Encoder Training Data

Unsupervised training data are drawn from a va-
riety of web sources. The sources are Wikipedia,
web news, web question-answer pages and discus-
sion forums. We augment unsupervised learning
with training on supervised data from the Stanford
Natural Language Inference (SNLI) corpus (Bow-
man et al., 2015) in order to further improve our
representations (Conneau et al., 2017). Since the
only supervised training data is SNLI, the models
can be used for a wide range of downstream super-
vised tasks that do not overlap with this dataset.7

4 Transfer Tasks

This section presents the data used for the transfer
learning experiments and word embedding asso-
ciation tests (WEAT): (MR) Movie review senti-
ment on a five star scale (Pang and Lee, 2005);
(CR) Sentiment of customer reviews (Hu and
Liu, 2004); (SUBJ) Subjectivity of movie re-
views and plot summaries (Pang and Lee, 2004);

5The Skip-Thought like task replaces the LSTM (Hochre-
iter and Schmidhuber, 1997) in the original formulation with
a transformer model.

6SNLI (Bowman et al., 2015; Conneau et al., 2017)
7For questions on downstream evaluations possibly over-

lapping with the encoder training data, visit the TF Hub
discussion board, https://groups.google.com/a/
tensorflow.org/d/forum/hub, or e-mail the corre-
sponding authors.

DATASET TRAIN DEV TEST

SST 67,349 872 1,821
STS Bench 5,749 1,500 1,379

TREC 5,452 - 500
MR - - 10,662
CR - - 3,775

SUBJ - - 10,000
MPQA - - 10,606

Table 1: Transfer task evaluation sets.

(MPQA) Phrase opinion polarity from news data
(Wiebe et al., 2005); (TREC) Fine grained ques-
tion classification sourced from TREC (Li and
Roth, 2002); (SST) Binary phrase sentiment clas-
sification (Socher et al., 2013); (STS Benchmark)
Semantic textual similarity (STS) between sen-
tence pairs scored by Pearson r with human judg-
ments (Cer et al., 2017); (WEAT) Word pairs from
the psychology literature on implicit association
tests (IAT) that are used to characterize model bias
(Caliskan et al., 2017).8 Table 1 gives the number
of samples for each transfer task.

5 Transfer Learning Models

For sentence classification transfer tasks, the out-
put of the sentence encoders are provided to a task
specific DNN. For the pairwise semantic similar-
ity task, the similarity of sentence embeddings u

and v is assessed using − arccos
(

uv
||u|| ||v||

)
.9

5.1 Baselines
For each transfer task, we include baselines that
only make use of word-level transfer and baselines
that make use of no transfer learning at all. For
word-level transfer, we incorporate word embed-
dings from a word2vec skip-gram model trained
on a corpus of news data (Mikolov et al., 2013).
The pretrained word embeddings are included as
input to two model types: a convolutional neural
network model (CNN) (Kim, 2014); a DAN. The
baselines that use pretrained word embeddings al-
low us to contrast word- vs. sentence-level trans-
fer. Additional baseline CNN and DAN models
are trained without using any pretrained word or
sentence embeddings. For reference, we com-
pare with InferSent (Conneau et al., 2017) and

8For MR, CR, SUBJ, SST, and TREC we use the prepa-
ration of the data provided by Conneau et al. (2017).

9arccos converts cosine similarity into an angular distance
that obeys the triangle inequality. We find that angular dis-
tance performs better on STS than cosine similarity.
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Skip-Thought with layer normalization (Ba et al.,
2016) on sentence-classification tasks. On the STS
Benchmark, we compare with InferSent and the
state-of-the-art neural STS systems CNN (HCTI)
(Shao, 2017) and gConv (Yang et al., 2018).

5.2 Combined Transfer Models
We explore combining the sentence and word-
level transfer models by concatenating their rep-
resentations prior to the classification layers. For
completeness, we report results providing the clas-
sification layers with the concatenating of the
sentence-level embeddings and the representations
produced by baseline models that do not make use
of word-level transfer learning.

6 Experiments

Experiments use our most recent transformer and
DAN encoding models.10 Transfer task model hy-
perparamaters are tuned using a combination of
Vizier (Golovin et al., 2017) and light manual tun-
ing. When available, model hyperparameters are
tuned using task dev sets. Otherwise, hyperparam-
eters are tuned by cross-validation on task train-
ing data or the evaluation test data when neither
training nor dev data are provided. Training re-
peats ten times for each task with randomly ini-
tialized weights and we report results by averaging
across runs. Transfer learning is important when
training data is limited. We explore using vary-
ing amounts of training data for SST. Contrasting
the transformer and DAN encoders demonstrates
trade-offs in model complexity and the training
data required to reach a desired level of task ac-
curacy. Finally, to assess bias in our encoders, we
evaluate the strength of biased model associations
on WEAT. We compare to Caliskan et al. (2017)
who discovered that word embeddings reproduce
human-like biases on implicit association tasks.

7 Results

Table 2 presents results on classification tasks. Us-
ing transformer sentence-level embeddings alone
outperforms InferSent on MR, SUBJ, and TREC.
The transformer sentence encoder also strictly out-
performs the DAN encoder. Models that make use
of just the transformer sentence-level embeddings
tend to outperform all models that only use word-
level transfer, with the exception of TREC and

10universal-sentence-encoder/2 (DAN); universal-
sentence-encoder-large/3 (Transformer).

MODEL MR CR SUBJ MPQA TREC SST
Sentence Embedding Transfer Learning

UT 82.2 84.2 95.5 88.1 93.2 83.7
UD 72.2 78.5 92.1 86.9 88.1 77.5

Word Embedding Transfer Learning
CNNw2v 75.1 80.5 91.1 80.3 96.6 84.1
DANw2v 74.7 75.3 90.2 82.1 83.5 80.6

Sentence Embedding Transfer Learning
+ DNN/CNN with word-level transfer

UT +CNNw2v 80.1 85.2 95.8 88.4 98.7 85.3
UT +DANw2v 81.4 86.4 93.7 87.5 97.0 86.0
UD+CNNw2v 76.7 82.0 91.2 85.2 97.1 85.1
UD+DANw2v 76.4 81.0 94.0 88.0 92.6 82.2

Sentence Embedding Transfer Learning
+ DNN/CNN without word-level transfer

UT +CNNrnd 82.7 88.6 93.6 87.8 98.5 88.9
UT +DANrnd 80.6 84.8 94.3 86.0 98.6 86.2
UD+CNNrnd 78.0 82.9 90.2 87.8 96.2 83.2
UD+DANrnd 76.4 84.9 94.0 85.3 98.1 86.2

Baselines with No Transfer Learning
CNNrnd 76.5 81.0 89.6 82.2 97.9 85.0
DANrnd 74.6 81.2 91.8 79.9 93.9 82.0

Prior Work
InferSent 81.1 86.3 92.4 90.2 88.2 84.6

Skip Thght 79.4 83.1 93.7 89.3 - -

Table 2: Classification tasks. UT uses the trans-
former encoder for transfer learning, while UD

uses the DAN encoder. DAN/CNNw2v use pre-
trained w2v emb. DAN/CNNrnd train rand. init.
word emb. on the final classification task.

SST, on which CNNw2v performs better. Trans-
fer learning with DAN sentence embeddings tends
to outperform a DAN with word-level transfer, ex-
cept on MR and SST. Models with sentence- and
word-level transfer often outperform similar mod-
els with sentence-level transfer alone.

MODEL DEV TEST

Transformer Encoder 0.802 0.766
DAN Encoder 0.760 0.717

Prior Work

gConv (Yang et al., 2018) 0.835 0.808
CNN (HCTI) (Shao, 2017) 0.834 0.784

InferSent (Conneau et al., 2017) 0.801 0.758

Table 3: STS Benchmark Pearson’s r. Our prior
gConv model (Yang et al., 2018) is a variant of
our TF Hub transformer model tuned to STS.

Table 3 compares our models to strong base-
lines on the STS Benchmark. Our transformer em-
beddings outperform the sentence representations
produced by InferSent. Moreover, computing sim-
ilarity scores by directly comparing the repre-
sentations produced by our encoders approaches
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the performance of state-of-the-art neural models
whose representations are fit to the STS task.

Table 4 illustrates transfer task performance for
varying amounts of training data. With small
quantities of training data, sentence-level trans-
fer achieves surprisingly good performance. Us-
ing only 1k labeled examples and the transformer
embeddings for sentence-level transfer surpasses
the performance of transfer learning using In-
ferSent on the full training set of 67.3k exam-
ples. Training with 1k labeled examples and the
transformer sentence embeddings surpasses word-
level transfer using the full training set, CNNw2v,
and approaches the performance of the best model
without transfer learning trained on the complete
dataset, CNNrnd@67.3k. Transfer learning is not
always helpful when there is enough task training
data. However, we observe that our best perform-
ing model still makes use of transformer sentence-
level transfer but combined with a CNN with no
word-level transfer, UT+CNNrnd.

Table 5 contrasts Caliskan et al. (2017)’s find-
ings on bias within GloVe embeddings with results
from the transformer and DAN encoders. Similar
to GloVe, our models reproduce human associa-
tions between flowers vs. insects and pleasantness
vs. unpleasantness. However, our models demon-
strate weaker associations than GloVe for probes
targeted at revealing ageism, racism and sexism.11

Differences in word association patterns can be at-
tributed to training data composition and the mix-
ture of tasks used to train the representations.

8 Resource Usage

This section describes memory and compute re-
source usage for the transformer and DAN sen-
tence encoding models over different batch sizes
and sentence lengths. Figure 1 plots model re-
source consumption against sentence length.12

Compute Usage The transformer model time
complexity is O(n2) in sentence length, while the

11The development of our models did not target reducing
bias. Researchers and developers are strongly encouraged to
independently verify whether biases in their overall model
or model components impacts their use case. For resources
on ML fairness visit https://developers.google.com/machine-
learning/fairness-overview/.

12 All benchmark values are averaged over 25 runs that
follow 5 priming runs. CPU and mem. benchmarks are per-
formed on a machine with an Intel(R) Xeon(R) Platinum
P-8136 CPU @ 2.00GHz CPU. GPU benchmarks use an
Intel(R) Xeon(R) CPU E5-2696 v4 @ 2.20GHz CPU and
NVIDIA Tesla P100 GPU.

MODEL SST 1K SST 4K SST 16K SST 67.3K

Sentence Embedding Transfer Learning

UT 84.8 84.8 84.8 83.7
UD 78.7 78.6 76.9 77.5

Word Embedding Transfer Learning

CNNw2v 70.7 73.8 81.5 84.1
DANw2v 67.5 75.1 78.4 80.6

Sentence Embedding Transfer Learning

+ DNN/CNN with word-level transfer

UT +CNNw2v 84.9 84.9 85.4 85.3
UT +DANw2v 85.1 85.4 85.0 86.0
UD+CNNw2v 78.6 79.7 80.9 85.1
UD+DANw2v 78.7 79.1 81.6 82.2

Sentence Embedding Transfer Learning

+ DNN/CNN without word-level transfer

UT +CNNrnd 83.1 83.3 84.9 88.9
UT +DANrnd 84.9 84.2 86.0 86.2
UD+CNNrnd 77.5 77.9 81.3 83.2
UD+DANrnd 78.5 78.8 82.5 86.2

Baselines with No Transfer Learning

CNNrnd 68.9 74.6 81.5 85.0
DANrnd 68.4 73.1 78.0 82.0

Prior Work

InferSent - - - 84.6

Table 4: SST performance varying the amount of
training data. Model types are the same as Table
2. Using 1k examples, UT transfer learning rivals
models trained on the full training set, 67.3k.

DAN model is O(n). As seen in Figure 1 (a-
b), for short sentences, the transformer encoding
model is only moderately slower than the much
simpler DAN model. However, compute time
for transformer increases noticeably with sentence
length. In contrast, the compute time for the
DAN model stays nearly constant across different
lengths. When running on GPU, even for large
batches and longer sentence lengths, the trans-
former model still achieves performance that can
be used within an interactive systems.

Memory Usage The transformer model space
complexity also scales quadratically, O(n2), in
sentence length, while the DAN is linear, O(n).
Similar to compute usage, memory for the trans-
former model increases quickly with sentence
length, while the memory for the DAN model re-
mains nearly constant. For the DAN model, mem-
ory is dominated by the parameters used to store
the model unigram and bigram embeddings. Since
the transformer model only stores unigrams, for
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(a) CPU Time vs. Sentence Length (b) GPU Time vs. Sentence Length (c) Memory vs. Sentence Length

Figure 1: Resource usage for the Universal Sentence Encoder DAN (USE-D) and Transformer (USE-T)
models for different batch sizes and sentence lengths.

Target words Attrib. words Ref GloVe U. Enc. DAN U. Enc. Trans.
d p d p d p

Eur.- vs. Afr.-American names Pleasant vs. Unpleasant a 1.41 10−8 0.36 0.04 0.22 0.14
Eur.- vs. Afr.-American names Pleasant vs.Unpleasant from (a) b 1.50 10−4 -0.37 0.87 0.21 0.27
Eur.- vs. Afr.-American names Pleasant vs. Unpleasant from (c) b 1.28 10−3 0.72 0.02 0.93 10−2

Male vs. female names Career vs. family c 1.81 10−3 0.02 0.48 0.95 0.03
Math vs. arts Male vs. female terms c 1.06 0.02 0.59 0.12 0.12 0.41

Science vs. arts Male vs. female terms d 1.24 10−2 0.24 0.32 -0.21 0.67
Mental vs. physical disease Temporary vs. permanent e 1.38 10−2 1.60 10−2 0.42 0.23
Young vs old peoples names Pleasant vs unpleasant c 1.21 10−2 1.01 0.02 0.06 0.46

Flowers vs. Insects Pleasant vs. Unpleasant a 1.50 10−7 1.38 10−6 1.47 10−7

Instruments vs. Weapons Pleasant vs Unpleasant a 1.53 10−7 1.44 10−7 1.65 10−7

Table 5: WEAT for GloVe vs. our DAN and transformer encoding models. Effect size is reported as
Cohen’s d over the mean cosine similarity scores across grouped attribute words. Statistical significance
uses one-tailed p-scores. The Ref column indicates the source of the IAT word lists: (a) Greenwald
et al. (1998) (b) Bertrand and Mullainathan (2004) (c) Nosek et al. (2002a) (d) Nosek et al. (2002b) (e)
Monteith and Pettit (2011).

very short sequences transformer requires almost
half as much memory as the DAN model.

9 Conclusion

Our encoding models provide sentence-level em-
beddings that demonstrate strong transfer perfor-
mance on a number of NLP tasks. The encoding
models make different trade-offs regarding accu-
racy and model complexity that should be consid-
ered when choosing the best one for a particular
application. Overall, our sentence-level embed-
dings tend to surpass the performance of trans-
fer using word-level embeddings alone. Models
that make use of sentence- and word-level trans-
fer often achieve the best performance. Sentence-
level transfer using our models can be exception-
ally helpful when limited training data is avail-
able. The pre-trained encoding models are pub-
licly available for research and use in industry

applications that can benefit from a better under-
standing of natural language.

Acknowledgments

We thank our teammates from Descartes, Ai.h and
other Google groups for their feedback and sug-
gestions. Special thanks goes to Ben Packer and
Yoni Halpern for implementing the WEAT assess-
ments and discussions on model bias.

References
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. Ten-
sorflow: A system for large-scale machine learning.
In Proceedings of USENIX OSDI’16.

173



Lei Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton.
2016. Layer normalization. CoRR, abs/1607.06450.

Marianne Bertrand and Sendhil Mullainathan. 2004.
Are emily and greg more employable than lakisha
and jamal? a field experiment on labor market
discrimination. The American Economic Review,
94(4).

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of EMNLP.

Aylin Caliskan, Joanna J. Bryson, and Arvind
Narayanan. 2017. Semantics derived automatically
from language corpora contain human-like biases.
Science, 356(6334):183–186.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
SemEval-2017.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. arXiv preprint
arXiv:1705.02364.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra,
Greg Kochanski, John Karro, and D. Sculley. 2017.
Google vizier: A service for black-box optimization.
In Proceedings of KDD ’17.

Anthony G. Greenwald, Debbie E. McGhee, and Jor-
dan L. K. Schwartz. 1998. Measuring individual
differences in implicit cognition: the implicit asso-
ciation test. Journal of personality and social psy-
chology, 74(6).

Matthew Henderson, Rami Al-Rfou, Brian Strope,
Yun-Hsuan Sung, László Lukács, Ruiqi Guo, San-
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