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Abstract

Even though machine learning has become
the major scene in dialogue research commu-
nity, the real breakthrough has been blocked
by the scale of data available. To address this
fundamental obstacle, we introduce the Multi-
Domain Wizard-of-Oz dataset (MultiWOZ), a
fully-labeled collection of human-human writ-
ten conversations spanning over multiple do-
mains and topics. At a size of 10k dialogues,
it is at least one order of magnitude larger than
all previous annotated task-oriented corpora.
The contribution of this work apart from the
open-sourced dataset labelled with dialogue
belief states and dialogue actions is two-fold:
firstly, a detailed description of the data collec-
tion procedure along with a summary of data
structure and analysis is provided. The pro-
posed data-collection pipeline is entirely based
on crowd-sourcing without the need of hir-
ing professional annotators; secondly, a set of
benchmark results of belief tracking, dialogue
act and response generation is reported, which
shows the usability of the data and sets a base-
line for future studies.

1 Introduction

Conversational Artificial Intelligence (Conversa-
tional AI) is one of the long-standing challenges in
computer science and artificial intelligence since
the Dartmouth Proposal (McCarthy et al., 1955).
As human conversation is inherently complex and
ambiguous, learning an open-domain conversa-
tional AI that can carry on arbitrary tasks is still
very far-off (Vinyals and Le, 2015). As a conse-
quence, instead of focusing on creating ambitious
conversational agents that can reach human-level
intelligence, industrial practice has focused on
building task-oriented dialogue systems (Young
et al., 2013) that can help with specific tasks such
as flight reservation (Seneff and Polifroni, 2000)

⇤The work was done while at the University of Cam-
bridge.

or bus information (Raux et al., 2005). As the need
of hands-free use cases continues to grow, build-
ing a conversational agent that can handle tasks
across different application domains has become
more and more prominent (Ram et al., 2018).

Dialogues systems are inherently hard to build
because there are several layers of complexity: the
noise and uncertainty in speech recognition (Black
et al., 2011); the ambiguity when understand-
ing human language (Williams et al., 2013); the
need to integrate third-party services and dialogue
context in the decision-making (Traum and Lars-
son, 2003; Paek and Pieraccini, 2008); and finally,
the ability to generate natural and engaging re-
sponses (Stent et al., 2005). These difficulties
have led to the same solution of using statistical
framework and machine learning for various sys-
tem components, such as natural language under-
standing (Henderson et al., 2013; Mesnil et al.,
2015; Mrkšić et al., 2017a), dialogue manage-
ment (Gašić and Young, 2014; Tegho et al., 2018),
language generation (Wen et al., 2015; Kiddon
et al., 2016), and even end-to-end dialogue mod-
elling (Zhao and Eskenazi, 2016; Wen et al., 2017;
Eric et al., 2017).

To drive the progress of building dialogue sys-
tems using data-driven approaches, a number of
conversational corpora have been released in the
past. Based on whether a structured annotation
scheme is used to label the semantics, these cor-
pora can be roughly divided into two categories:
corpora with structured semantic labels (Hemphill
et al., 1990; Williams et al., 2013; Asri et al., 2017;
Wen et al., 2017; Eric et al., 2017; Shah et al.,
2018); and corpora without semantic labels but
with an implicit user goal in mind (Ritter et al.,
2010; Lowe et al., 2015). Despite these efforts,
aforementioned datasets are usually constrained in
one or more dimensions such as missing proper
annotations, only available in a limited capacity,
lacking multi-domain use cases, or having a negli-
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Metric DSTC2 SFX WOZ2.0 FRAMES KVRET M2M MultiWOZ

# Dialogues 1,612 1,006 600 1,369 2,425 1,500 8,438
Total # turns 23,354 12,396 4,472 19,986 12,732 14,796 115,424
Total # tokens 199,431 108,975 50,264 251,867 102,077 121,977 1,520,970
Avg. turns per dialogue 14.49 12.32 7.45 14.60 5.25 9.86 13.68
Avg. tokens per turn 8.54 8.79 11.24 12.60 8.02 8.24 13.18
Total unique tokens 986 1,473 2,142 12,043 2,842 1,008 24,071
# Slots 8 14 4 61 13 14 25
# Values 212 1847 99 3871 1363 138 4510

Table 1: Comparison of our corpus to similar data sets. Numbers in bold indicate best value for the
respective metric. The numbers are provided for the training part of data except for FRAMES data-set
were such division was not defined.

gible linguistic variability.
This paper introduces the Multi-Domain

Wizard-of-Oz (MultiWOZ) dataset, a large-scale
multi-turn conversational corpus with dialogues
spanning across several domains and topics. Each
dialogue is annotated with a sequence of dia-
logue states and corresponding system dialogue
acts (Traum, 1999). Hence, MultiWOZ can be
used to develop individual system modules as sep-
arate classification tasks and serve as a benchmark
for existing modular-based approaches. On the
other hand, MultiWOZ has around 10k dialogues,
which is at least one order of magnitude larger
than any structured corpus currently available.
This significant size of the corpus allows re-
searchers to carry on end-to-end based dialogue
modelling experiments, which may facilitate a lot
of exciting ongoing research in the area.

This work presents the data collection approach,
a summary of the data structure, as well as a se-
ries of analyses of the data statistics. To show
the potential and usefulness of the proposed Mul-
tiWOZ corpus, benchmarking baselines of belief
tracking, natural language generation and end-to-
end response generation have been conducted and
reported. The dataset and baseline models will be
freely available online.1

2 Related Work

Existing datasets can be roughly grouped into
three categories: machine-to-machine, human-to-
machine, and human-to-human conversations. A
detailed review of these categories is presented be-
low.

1
http://dialogue.mi.eng.cam.ac.uk/

index.php/corpus/

Machine-to-Machine Creating an environment
with a simulated user enables to exhaustively
generate dialogue templates. These templates
can be mapped to a natural language by either
pre-defined rules (Bordes et al., 2017) or crowd
workers (Shah et al., 2018). Such approach
ensures a diversity and full coverage of all possi-
ble dialogue outcomes within a certain domain.
However, the naturalness of the dialogue flows
relies entirely on the engineered set-up of the
user and system bots. This poses a risk of a mis-
match between training data and real interactions
harming the interaction quality. Moreover, these
datasets do not take into account noisy conditions
often experienced in real interactions (Black et al.,
2011).

Human-to-Machine Since collecting dialogue
corpus for a task-specific application from scratch
is difficult, most of the task-oriented dialogue
corpora are fostered based on an existing dia-
logue system. One famous example of this kind
is the Let’s Go Bus Information System which
offers live bus schedule information over the
phone (Raux et al., 2005) leading to the first Di-
alogue State Tracking Challenge (Williams et al.,
2013). Taking the idea of the Let’s Go system
forward, the second and third DSTCs (Hender-
son et al., 2014b,c) have produced bootstrapped
human-machine datasets for a restaurant search
domain in the Cambridge area, UK. Since then,
DSTCs have become one of the central research
topics in the dialogue community (Kim et al.,
2016, 2017).

While human-to-machine data collection is an
obvious solution for dialogue system develop-

http://dialogue.mi.eng.cam.ac.uk/index.php/corpus/
http://dialogue.mi.eng.cam.ac.uk/index.php/corpus/
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ment, it is only possible with a provision of an
existing working system. Therefore, this chicken
(system)-and-egg (data) problem limits the use
of this type of data collection to existing system
improvement instead of developing systems in a
completely new domain. What is even worse is
that the capability of the initial system introduces
additional biases to the collected data, which
may result in a mismatch between the training
and testing sets (Wen et al., 2016). The limited
understanding capability of the initial system
may prompt the users to adapt to simpler input
examples that the system can understand but are
not necessarily natural in conversations.

Human-to-Human Arguably, the best strategy
to build a natural conversational system may
be to have a system that can directly mimic
human behaviors through learning from a large
amount of real human-human conversations. With
this idea in mind, several large-scale dialogue
corpora have been released in the past, such as
the Twitter (Ritter et al., 2010) dataset, the Reddit
conversations (Schrading et al., 2015), and the
Ubuntu technical support corpus (Lowe et al.,
2015). Although previous work (Vinyals and Le,
2015) has shown that a large learning system can
learn to generate interesting responses from these
corpora, the lack of grounding conversations onto
an existing knowledge base or APIs limits the
usability of developed systems. Due to the lack of
an explicit goal in the conversation, recent studies
have shown that systems trained with this type of
corpus not only struggle in generating consistent
and diverse responses (Li et al., 2016) but are also
extremely hard to evaluate (Liu et al., 2016).

In this paper, we focus on a particular type of
human-to-human data collection. The Wizard-
of-Oz framework (WOZ) (Kelley, 1984) was first
proposed as an iterative approach to improve user
experiences when designing a conversational sys-
tem. The goal of WOZ data collection is to log
down the conversation for future system develop-
ment. One of the earliest dataset collected in this
fashion is the ATIS corpus (Hemphill et al., 1990),
where conversations between a client and an air-
line help-desk operator were recorded.

More recently, Wen et al. (2017) have shown
that the WOZ approach can be applied to collect
high-quality typed conversations where a machine

Figure 1: A sample task template spanning over
three domains - hotels, restaurants and booking.

learning-based system can learn from. By modify-
ing the original WOZ framework to make it suit-
able for crowd-sourcing, a total of 676 dialogues
was collected via Amazon Mechanical Turk. The
corpus was later extended to additional two lan-
guages for cross-lingual research (Mrkšić et al.,
2017b). Subsequently, this approach is followed
by Asri et al. (2017) to collect the Frame corpus in
a more complex travel booking domain, and Eric
et al. (2017) to collect a corpus of conversations
for in-car navigation. Despite the fact that all these
datasets contain highly natural conversations com-
paring to other human-machine collected datasets,
they are usually small in size with only a limited
domain coverage.

3 Data Collection Set-up

Following the Wizard-of-Oz set-up (Kelley,
1984), corpora of annotated dialogues can be gath-
ered at relatively low costs and with a small
time effort. This is in contrast to previous ap-
proaches (Henderson et al., 2014a) and such WOZ
set-up has been successfully validated by Wen
et al. (2017) and Asri et al. (2017).

Therefore, we follow the same process to create
a large-scale corpus of natural human-human con-
versations. Our goal was to collect multi-domain
dialogues. To overcome the need of relying the
data collection to a small set of trusted workers2,
the collection set-up was designed to provide an

2Excluding annotation phase.
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Table 2: Full ontology for all domains in our data-set. The upper script indicates which domains it belongs
to. *: universal, 1: restaurant, 2: hotel, 3: attraction, 4: taxi, 5: train, 6: hospital, 7: police.

act type
inform⇤ / request⇤ / select123 / recommend/123 / not found123

request booking info123 / offer booking1235 / inform booked1235 / decline booking1235

welcome⇤ /greet⇤ / bye⇤ / reqmore⇤

slots

address⇤ / postcode⇤ / phone⇤ / name1234 / no of choices1235 / area123 /
pricerange123 / type123 / internet2 / parking2 / stars2 / open hours3 / departure45

destination45 / leave after45 / arrive by45 / no of people1235 / reference no.1235 /
trainID5 / ticket price5 / travel time5 / department7 / day1235 / no of days123

easy-to-operate system interface for the Wizards
and easy-to-follow goals for the users. This re-
sulted in a bigger diversity and semantical richness
of the collected data (see Section 4.3). Moreover,
having a large set of workers mitigates the prob-
lem of artificial encouragement of a variety of be-
havior from users. A detailed explanation of the
data-gathering process from both sides is provided
below. Subsequently, we show how the crowd-
sourcing scheme can also be employed to annotate
the collected dialogues with dialogue acts.

3.1 Dialogue Task

The domain of a task-oriented dialogue system is
often defined by an ontology, a structured repre-
sentation of the back-end database. The ontology
defines all entity attributes called slots and all pos-
sible values for each slot. In general, the slots may
be divided into informable slots and requestable
slots. Informable slots are attributes that allow
the user to constrain the search (e.g., area or price
range). Requestable slots represent additional in-
formation the users can request about a given en-
tity (e.g., phone number). Based on a given on-
tology spanning several domains, a task template
was created for each task through random sam-
pling. This results in single and multi-domain di-
alogue scenarios and domain specific constraints
were generated. In domains that allowed for that,
an additional booking requirement was sampled
with some probability.

To model more realistic conversations, goal
changes are encouraged. With a certain proba-
bility, the initial constraints of a task may be set
to values so that no matching database entry ex-
ists. Once informed about that situation by the
system, the users only needed to follow the goal
which provided alternative values.

3.2 User Side
To provide information to the users, each task tem-
plate is mapped to natural language. Using heuris-
tic rules, the task is then gradually introduced to
the user to prevent an overflow of information.
The goal description presented to the user is de-
pendent on the number of turns already performed.
Moreover, if the user is required to perform a
sub-task (for example - booking a venue), these
sub-goals are shown straight-away along with the
main goal in the given domain. This makes the
dialogues more similar to spoken conversations.3

Figure 1 shows a sampled task description span-
ning over two domains with booking requirement.
Natural incorporation of co-referencing and lex-
ical entailment into the dialogue was achieved
through implicit mentioning of some slots in the
goal.

3.3 System Side
The wizard is asked to perform a role of a clerk
by providing information required by the user. He
is given an easy-to-operate graphical user inter-
face to the back-end database. The wizard conveys
the information provided by the current user input
through a web form. This information is persis-
tent across turns and is used to query the database.
Thus, the annotation of a belief state is performed
implicitly while the wizard is allowed to fully fo-
cus on providing the required information. Given
the result of the query (a list of entities satisfy-
ing current constraints), the wizard either requests
more details or provides the user with the adequate
information. At each system turn, the wizard starts
with the results of the query from the previous
turn.

To ensure coherence and consistency, the wiz-
ard and the user alike first need to go through the

3However, the length of turns are significantly longer
than with spoken interaction (Section 4.3).
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Figure 2: Dialogue length distribution (left) and distribution of number of tokens per turn (right).

dialogue history to establish the respective con-
text. We found that even though multiple workers
contributed to one dialogue, only a small margin
of dialogues were incoherent.

3.4 Annotation of Dialogue Acts

Arguably, the most challenging and time-
consuming part of any dialogue data collection is
the process of annotating dialogue acts. One of
the major challenges of this task is the definition
of a set and structure of dialogue acts (Traum and
Hinkelman, 1992; Bunt, 2006). In general, a dia-
logue act consists of the intent (such as request or
inform) and slot-value pairs. For example, the act
inform(domain=hotel,price=expensive)

has the intent inform, where the user is informing
the system to constrain the search to expensive
hotels.

Expecting a big discrepancy in annotations be-
tween annotators, we initially ran three trial tests
over a subset of dialogues using Amazon Mechan-
ical Turk. Three annotations per dialogue were
gathered resulting in around 750 turns. As this re-
quires a multi-annotator metric over a multi-label
task, we used Fleiss’ kappa metric (Fleiss, 1971)
per single dialogue act. Although the weighted
kappa value averaged over dialogue acts was at
a high level of 0.704, we have observed many
cases of very poor annotations and an unsatisfac-
tory coverage of dialogue acts. Initial errors in
annotations and suggestions from crowd workers
gradually helped us to expand and improve the fi-
nal set of dialogue acts from 8 to 13 - see Table
2.

The variation in annotations made us change the
initial approach. We ran a two-phase trial to first

identify set of workers that perform well. Turk-
ers were asked to annotate an illustrative, long di-
alogue which covered many problematic examples
that we have observed in the initial run described
above. All submissions that were of high quality
were inspected and corrections were reported to
annotators. Workers were asked to re-run a new
trial dialogue. Having passed the second test, they
were allowed to start annotating real dialogues.
This procedure resulted in a restricted set of an-
notators performing high quality annotations. Ap-
pendix A contains a demonstration of a created
system.

3.5 Data Quality
Data collection was performed in a two-step pro-
cess. First, all dialogues were collected and then
the annotation process was launched. This setup
allowed the dialogue act annotators to also report
errors (e.g., not following the task or confusing
utterances) found in the collected dialogues. As
a result, many errors could be corrected. Finally,
additional tests were performed to ensure that the
provided information in the dialogues match the
pre-defined goals.

To estimate the inter-annotator agreement, the
averaged weighted kappa value for all dialogue
acts was computed over 291 turns. With  =
0.884, an improvement in agreement between an-
notators was achieved although the size of action
set was significantly larger.

4 MultiWOZ Dialogue Corpus

The main goal of the data collection was to acquire
highly natural conversations between a tourist and
a clerk from an information center in a touristic
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Figure 3: Dialogue acts frequency (left) and number of dialogue acts per turn (right) in the collected
corpus.

city. We considered various possible dialogue sce-
narios ranging from requesting basic information
about attractions through booking a hotel room or
travelling between cities. In total, the presented
corpus consists of 7 domains - Attraction, Hospi-
tal, Police, Hotel, Restaurant, Taxi, Train. The lat-
ter four are extended domains which include the
sub-task Booking. Through a task sampling pro-
cedure (Section 3.1), the dialogues cover between
1 and 5 domains per dialogue thus greatly varying
in length and complexity. This broad range of do-
mains allows to create scenarios where domains
are naturally connected. For example, a tourist
needs to find a hotel, to get the list of attractions
and to book a taxi to travel between both places.
Table 2 presents the global ontology with the list
of considered dialogue acts.

4.1 Data Statistics

Following data collection process from the previ-
ous section, a total of 10, 438 dialogues were col-
lected. Figure 2 (left) shows the dialogue length
distribution grouped by single and multi domain
dialogues. Around 70% of dialogues have more
than 10 turns which shows the complexity of the
corpus. The average number of turns are 8.93 and
15.39 for single and multi-domain dialogues re-
spectively with 115, 434 turns in total. Figure 2
(right) presents a distribution over the turn lengths.
As expected, the wizard replies are much longer -
the average sentence lengths are 11.75 and 15.12
for users and wizards respectively. The responses
are also more diverse thus enabling the training of
more complex generation models.

Figure 3 (left) shows the distribution of dialogue
acts annotated in the corpus. We present here a
summarized list where different types of actions
like inform are grouped together. The right graph
in the Figure 3 presents the distribution of number
of acts per turn. Almost 60% of dialogues turns
have more than one dialogue act showing again
the richness of system utterances. These create
a new challenge for reinforcement learning-based
models requiring them to operate on concurrent
actions.

In total, 1, 249 workers contributed to the cor-
pus creation with only few instances of intentional
wrongdoing. Additional restrictions were added
to automatically discover instances of very short
utterances, short dialogues or missing single turns
during annotations. All such cases were corrected
or deleted from the corpus.

4.2 Data Structure

There are 3, 406 single-domain dialogues that in-
clude booking if the domain allows for that and
7, 032 multi-domain dialogues consisting of at
least 2 up to 5 domains. To enforce reproducibil-
ity of results, the corpus was randomly split into
a train, test and development set. The test and de-
velopment sets contain 1k examples each. Even
though all dialogues are coherent, some of them
were not finished in terms of task description.
Therefore, the validation and test sets only con-
tain fully successful dialogues thus enabling a fair
comparison of models.

Each dialogue consists of a goal, multiple user
and system utterances as well as a belief state and
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set of dialogue acts with slots per turn. Addition-
ally, the task description in natural language pre-
sented to turkers working from the visitor’s side is
added.

4.3 Comparison to Other Structured
Corpora

To illustrate the contribution of the new corpus,
we compare it on several important statistics with
the DSTC2 corpus (Henderson et al., 2014a), the
SFX corpus (Gašić et al., 2014), the WOZ2.0 cor-
pus (Wen et al., 2017), the FRAMES corpus (Asri
et al., 2017), the KVRET corpus (Eric et al., 2017),
and the M2M corpus (Shah et al., 2018). Figure 1
clearly shows that our corpus compares favorably
to all other data sets on most of the metrics with
the number of total dialogues, the average number
of tokens per turn and the total number of unique
tokens as the most prominent ones. Especially the
latter is important as it is directly linked to linguis-
tic richness.

5 MultiWOZ as a New Benchmark

The complexity and the rich linguistic variation
in the collected MultiWOZ dataset makes it a
great benchmark for a range of dialogue tasks.
To show the potential usefulness of the Multi-
WOZ corpus, we break down the dialogue mod-
elling task into three sub-tasks and report a bench-
mark result for each of them: dialogue state track-
ing, dialogue-act-to-text generation, and dialogue-
context-to-text generation. These results illus-
trate new challenges introduced by the MultiWOZ
dataset for different dialogue modelling problems.

5.1 Dialogue State Tracking
A robust natural language understanding and dia-
logue state tracking is the first step towards build-
ing a good conversational system. Since multi-
domain dialogue state tracking is still in its infancy
and there are not many comparable approaches
available (Rastogi et al., 2017), we instead report
our state-of-the-art result on the restaurant subset
of the MultiWOZ corpus as the reference baseline.
The proposed method (Ramadan et al., 2018) ex-
ploits the semantic similarity between dialogue ut-
terances and the ontology terms which allows the
information to be shared across domains. Further-
more, the model parameters are independent of the
ontology and belief states, therefore the number of
the parameters does not increase with the size of

the domain itself.4

Slot WOZ 2.0 MultiWOZ
(restaurant)

Overall accuracy 96.5 89.7
Joint goals 85.5 80.9

Table 3: The test set accuracies overall and for joint
goals in the restaurant sub-domain.

The same model was trained on both the
WOZ2.0 and the proposed MultiWOZ datasets,
where the WOZ2.0 corpus consists of 1200 sin-
gle domain dialogues in the restaurant domain.
Although not directly comparable, Table 3 shows
that the performance of the model is consecutively
poorer on the new dataset compared to WOZ2.0.
These results demonstrate how demanding is the
new dataset as the conversations are richer and
much longer.

5.2 Dialogue-Context-to-Text Generation
After a robust dialogue state tracking module
is built, the next challenge becomes the dia-
logue management and response generation com-
ponents. These problems can either be addressed
separately (Young et al., 2013), or jointly in an
end-to-end fashion (Bordes et al., 2017; Wen et al.,
2017; Li et al., 2017). In order to establish a clear
benchmark where the performance of the compos-
ite of dialogue management and response genera-
tion is completely independent of the belief track-
ing, we experimented with a baseline neural re-
sponse generation model with an oracle belief-
state obtained from the wizard annotations as dis-
cussed in Section 3.3.5

Following Wen et al. (2017) which frames the
dialogue as a context to response mapping prob-
lem, a sequence-to-sequence model (Sutskever
et al., 2014) is augmented with a belief tracker
and a discrete database accessing component as
additional features to inform the word decisions
in the decoder. Note, in the original paper the
belief tracker was pre-trained while in this work
the annotations of the dialogue state are used as an
oracle tracker. Figure 4 presents the architecture
of the system (Budzianowski et al., 2018).

4The model is publicly available at
https://github.com/osmanio2/

multi-domain-belief-tracking

5The model is publicly available at https://

github.com/budzianowski/multiwoz

https://github.com/osmanio2/multi-domain-belief-tracking
https://github.com/osmanio2/multi-domain-belief-tracking
https://github.com/budzianowski/multiwoz
https://github.com/budzianowski/multiwoz
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Figure 4: Architecture of the multi-domain response generator. The attention is conditioned on the oracle
belief state and the database pointer.

Training and Evaluation Since often times the
evaluation of a dialogue system without a direct
interaction with the real users can be mislead-
ing (Liu et al., 2016), three different automatic
metrics are included to ensure the result is better
interpreted. Among them, the first two metrics
relate to the dialogue task completion - whether
the system has provided an appropriate entity (In-
form rate) and then answered all the requested at-
tributes (Success rate); while fluency is measured
via BLEU score (Papineni et al., 2002). The best
models for both datasets were found through a grid
search over a set of hyper-parameters such as the
size of embeddings, learning rate and different re-
current architectures.

We trained the same neural architecture (taking
into account different number of domains) on both
MultiWOZ and Cam676 datasets. The best results
on the Cam676 corpus were obtained with bidirec-
tional GRU cell. In the case of MultiWOZ dataset,
the LSTM cell serving as a decoder and an en-
coder achieved the highest score with the global
type of attention (Bahdanau et al., 2014). Table 4
presents the results of a various of model architec-
tures and shows several challenges. As expected,
the model achieves almost perfect score on the In-
form metric on the Cam676 dataset taking the ad-
vantage of an oracle belief state signal. However,
even with the perfect dialogue state tracking of the
user intent, the baseline models obtain almost 30%
lower score on the Inform metric on the new cor-
pus. The addition of the attention improves the
score on the Success metric on the new dataset
by less than 1%. Nevertheless, as expected, the

best model on MultiWOZ is still falling behind
by a large margin in comparison to the results on
the Cam676 corpus taking into account both In-
form and Success metrics. As most of dialogues
span over at least two domains, the model has to
be much more effective in order to execute a suc-
cessful dialogue. Moreover, the BLEU score on
the MultiWOZ is lower than the one reported on
the Cam676 dataset. This is mainly caused by
the much more diverse linguistic expressions ob-
served in the MultiWOZ dataset.

5.3 Dialogue-Act-to-Text Generation

Natural Language Generation from a structured
meaning representation (Oh and Rudnicky, 2000;
Bohus and Rudnicky, 2005) has been a very pop-
ular research topic in the community, and the lack
of data has been a long standing block for the field
to adopt more machine learning methods. Due to
the additional annotation of the system acts, the
MultiWOZ dataset serves as a new benchmark for
studying natural language generation from a struc-
tured meaning representation. In order to verify
the difficulty of the collected dataset for the lan-
guage generation task, we compare it to the SFX
dataset (see Table 1), which consists of around 5k
dialogue act and natural language sentence pairs.
We trained the same Semantically Conditioned
Long Short-term Memory network (SC-LSTM)
proposed by Wen et al. (2015) on both datasets
and used the metrics as a proxy to estimate the dif-
ficulty of the two corpora. To make a fair compari-
son, we constrained our dataset to only the restau-
rant sub-domain which contains around 25k dia-
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Cam676 MultiWOZ
w/o attention w/ attention w/o attention w/ attention

Inform (%) 99.17 99.58 71.29 71.33
Success (%) 75.08 73.75 60.29 60.96
BLEU 0.219 0.204 0.188 0.189

Table 4: Performance comparison of two different model architectures using a corpus-based evaluation.

logue turns. To give more statistics about the two
datasets: the SFX corpus has 9 different act types
with 12 slots comparing to 12 acts and 14 slots in
our corpus. The best model for both datasets was
found through a grid search over a set of hyper-
parameters such as the size of embeddings, learn-
ing rate, and number of LSTM layers.6

Table 5 presents the results on two metrics:
BLEU score (Papineni et al., 2002) and slot error
rate (SER) (Wen et al., 2015). The significantly
lower metrics on the MultiWOZ corpus showed
that it is much more challenging than the SFX
restaurant dataset. This is probably due to the fact
that more than 60% of the dialogue turns are com-
posed of at least two system acts, which greatly
harms the performance of the existing model.

Metric SFX MultiWOZ
(restaurant)

SER (%) 0.46 4.378
BLEU 0.731 0.616

Table 5: The test set slot error rate (SER) and
BLEU on the SFX dataset and the MultiWOZ
restaurant subset.

6 Conclusions

As more and more speech oriented applications
are commercially deployed, the necessity of build-
ing an entirely data-driven conversational agent
becomes more apparent. Various corpora were
gathered to enable data-driven approaches to di-
alogue modelling. To date, however, the avail-
able datasets were usually constrained in linguis-
tic variability or lacking multi-domain use cases.
In this paper, we established a data-collection
pipeline entirely based on crowd-sourcing en-
abling to gather a large scale, linguistically rich
corpus of human-human conversations. We hope
that MultiWOZ offers valuable training data and
a new challenging testbed for existing modular-
based approaches ranging from belief tracking to

6The model is publicly available at
https://github.com/andy194673/

nlg-sclstm-multiwoz

dialogue acts generation. Moreover, the scale of
the data should help push forward research in the
end-to-end dialogue modelling.
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Milica Gašić, Lina M Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2017. A network-
based end-to-end trainable task-oriented dialogue
system. EACL.

Jason Williams, Antoine Raux, Deepak Ramachan-
dran, and Alan Black. 2013. The dialog state track-
ing challenge. In Proceedings of the SIGDIAL 2013
Conference, pages 404–413.
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