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Abstract

Lexicon relation extraction given distribu-
tional representation of words is an important
topic in NLP. We observe that the state-of-the-
art projection-based methods cannot be gener-
alized to handle unseen hypernyms. We pro-
pose to analyze it in the perspective of pol-
lution, that is, the predicted hypernyms are
limited to those appeared in training set. We
propose a word relation autoencoder (WRAE)
model to address the challenge and construct
the corresponding indicator to measure the
pollution. Experiments on several hypernym-
like lexicon datasets show that our model out-
performs the competitors significantly.

1 Introduction

This paper discusses the inference of relations be-
tween words. For the hypernym beer IsA drink, ,
denoted as IsA(x, y), beer is the hyponym x and
drink serves as the hypernym y. Relation lexi-
cons are precious resource for NLP systems, while
constructing the semantic graphs such as Word-
Net (Fellbaum, 1998) and ConceptNet (Speer and
Havasi, 2012) requires expensive human efforts
for labeling.

Recently, researchers have started working on
extracting word relations based on pre-trained
word embedding without the need of an exist-
ing corpus, thanks to the success of distributional
word representation models such as GloVe (Pen-
nington et al., 2014).

Comparing with hypernym classification mod-
els (Lenci and Benotto, 2012; Weeds et al., 2014;
Levy et al., 2015; Vylomova et al., 2016) that take
a pair of entities (x,y) as inputs and output a binary

Query Answer
beef → meat ≈ crab→ ? seafood
tiger → zoo ≈ dolphin→ ? aquarium
paint→ artist ≈ book → ? writer
japan→ asia ≈ italy → ? europe

Table 1: Unseen relation extraction examples for IsA,
AtLocation, CreatedBy, and PartOf (top row to bottom
row) in ConceptNet. The answers are not appeared in
training.

decision about the existence of relation, there has
been less work focusing on hypernym extraction
task. It is a challenging task to automatically ex-
tract all possible hypernyms of a given hyponym
query, especially the unlabeled ones, from the vo-
cabularies.

Classification-based models are not applicable
for this task because the complexity of inference
is O(V ), where V is the size of vocabulary that
often scales to billions.

Among the existing solutions, projection-based
methods (Fu et al., 2014; Yamane et al., 2016;
Espinosa-Anke et al., 2016; Ustalov et al., 2017)
emphasize on hypernym extraction which intu-
itively represent a relation as y − x according to
the linear structure of word embedding. By di-
rectly learning a linear mapping Φ between two
words such that xΦ = y, the prediction ŷ can be
obtained with nearest neighbor search for xΦ in
the word embedding space. Moreover, the poten-
tial candidates of y are not required to be seen in
advance so that the method can be used to predict
unseen hypernym directly.

Fu et al. (2014) further observe the existence of
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cluster structures in relation representation y − x
and propose to learn a piecewise linear mapping
such that xΦk = y for each cluster Ck. Their ex-
periments show that domain clustering on training
offset is very useful for hypernym identification.

However, we observe that each cluster contains
very few distinct hypernyms. For instance, about
83% of the clusters contain fewer than 5 hyper-
nyms for ConceptNet-IsA in our experiments. Hy-
pernyms can be seen as the collections of related
word pairs, e.g., IsA(dog, animal), IsA(cat, ani-
mal), IsA(horse, animal), ... etc. The piecewise
projection matrices can hardly learn the inference
between hyponyms and hypernyms but only mem-
orize some words which serve as the hypernyms
in the training data. Inevitably, the state-of-the-art
models using piecewise projection learning face
generalization problem and fail to predict unseen
hypernyms correctly.

We design a novel Word Relation Autoen-
coder (WRAE) framework, which adopts the con-
ditional autoencoder structure (x → r → x′) that
encodes hyponyms and reconstructs itself by de-
coding from r = y − x. The weights of encoder
are further tied with decoder which is imposed to
learn how to separate the hypernym and the hy-
ponym from the relation vectors and extract the
hyponym x with the intention to optimize recon-
struction loss, thus effectively mitigates the men-
tioned generalization problem.

We summarize our main contributions as fol-
lows: (1) We propose a novel, yet more general
scenario for relation extraction to handle unseen
hypernyms. (2) We propose an intuitive pollu-
tion indicator that allows us to empirically mea-
sure whether the model learns the inference be-
tween a relation pair or not. (3) We propose a
novel Word Relation Autoencoder (WRAE) which
can effectively reduce pollution. We conduct thor-
ough experiments to show that our model outper-
forms the competitors, and can be applied to other
hypernym-like relations.

2 Related Work

Fu et al. (2014) first apply projection learning for
generalized hypernym extraction by learning a lin-
ear transformation from a hyponym word embed-
ding to the corresponding hypernym word vector.
They further conduct piecewise projection learn-
ing, i.e., learning a projection matrix for each clus-
ter and harvest significant improvements by first

applying k-means clustering. They perform train-
ing with stochastic gradient descent methods, im-
plying good potential for attaching different reg-
ularizers for optimization. Several recent works
also follow the schema as the one proposed by
Espinosa-Anke et al. (2016) and operate the sim-
ilar model at the sense level and took advan-
tage of domain clustering to discover hypernyms
through domain adaption between different top-
ics. Yamane et al. (2016) focus on improving the
performance through better cluster assignments
by learning clustering and the projections jointly.
Ustalov et al. (2017) propose several regulariza-
tion terms in addition to the original loss function
(Fu et al., 2014) using extra synonym pairs or the
asymmetric property of hypernym. Nayak (2015)
provides detailed technical studies on piecewise
projection models.

Our work differs from all of them, as we empha-
size on the setting that all hyponyms and hyper-
nyms in testing vocabulary are not seen in train-
ing.

3 Model Formulation

3.1 Piecewise Projection
Piecewise projection learning (Fu et al., 2014)
serves as our baseline. The objective is to learn
a relation transform from x to y on training pairs
(x, y). Piecewise projection matrix Φk is learned
separately for each cluster, after applying k-means
clustering on the offset of training using y− x be-
tween each pair.

min
Φk

1

|Ck|
∑

(x,y)∈Ck

‖xΦk − y‖22 , (1)

where Ck represents the size of the kth cluster.
In addition, we also examine a simple solution
of L2-penalized projection learning model which
imposes a L2 constraint on Φ in Equation 1, i.e.,
α ‖Φk‖22.

3.2 Word Relation Autoencoder (WRAE)
Our model takes the form of an autoencoder. As
shown in Equation 2,

min
Φk

1

|Ck|
∑

(x,y)∈Ck

‖x− xΦkΦ∗k‖
2
2 , (2)

where xΦk = y − x. Here we adopt the simplify-
ing trick (Kodirov et al., 2017a) to tie with the con-
straint (Ranzato et al., 2008) Φ∗ = ΦT . Note that
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the L2-norm regularization term is not necessary
for WRAE to avoid overfitting since the constraint
of Φ∗ = ΦT guarantees ‖Φ‖22 cannot be large oth-
erwise the reconstruction loss will be bad. Also,
the learning process is more efficient.

To release the constraint of xΦk = y − x, the
objective can be further split into two terms:

min
Φk

1

|Ck|
∑

(x,y)∈Ck

(‖xΦk − (y − x)‖22

+λ
∥∥(y − x)ΦT

k − x
∥∥2

2
),

(3)

where λ is a weighting constant.
We find that learning relation mapping from

x→ (y−x) instead of x→ y effectively mitigates
the pollution problem (Lazaridou et al., 2015).
A prediction is said to be polluted if the nearest
neighbor of predicted ŷ matches a hypernym ap-
peared in training set. The operation fundamen-
tally solves the cause of pollution since each pair
of input and output becomes (x, y − x) instead of
(x, y). Unlike projecting to a small number of tar-
get y, the target y−x obviously differs from pair to
pair thus avoiding simply overfitting the lexicons.

Conceptually, WRAE learns to extract the hy-
ponym x from the relation vectors r = y − x to
optimize on the reconstruction loss. By encourag-
ing the projection to learn the relationship between
a word pair, WRAE effectively mitigates the men-
tioned generalized problem.

Our model is related to Semantic Autoencoder
(SAE) (Kodirov et al., 2017b). With the latent re-
lation directly associates with input x, WRAE can
be regarded as a special conditional SAE where
the condition is the input itself and is incorporated
into the middle layer.

Relation #Pair #Head #Tail
IsA 78073 21714 62455
AtLocation 39916 10100 11311
PartOf 14231 9784 5519
CreatedBy 503 385 414

Table 2: Relations from ConceptNet. For a relation pair
x→ y, x is the head and y is the tail.

4 Experiments

4.1 Setup
Different from the experimental setup in previous
works (Fu et al., 2014; Ustalov et al., 2017; Ya-
mane et al., 2016) that do not assume the candi-
date hypernyms are unseen, in our experiments the

vocabulary sets for training and testing are com-
pletely disjoint, i.e., all vocabularies in testing are
not seen in training at all.

To further examine the generality of our model,
we collect several hypernym-like relations listed
in Table 2 from ConceptNet semantic graph. Con-
sidering the property of these relations, we treat
the head and tail words of a pair as the x and y
for our models similar to hyponym and hypernym,
respectively. Examples are in Table 1.

We split the datasets with ratios 0.7, 0.2, and
0.1 for training, testing, and validation, respec-
tively. For all results, we report the mean of 30
random splits. We test two different settings, one
uses k-means clustering and one does not (k = 1).
We tune the number of cluster k unsupervisedly
with the Silhouette score (Rousseeuw, 1987) on
validation. The projection matrices are optimized
with the Adam method (Kingma and Ba, 2014)
with learning rate = 1e−3. We adopt the GloVe
(Pennington et al., 2014) 300d pre-trained word
embeddings1 which are trained on 6B token cor-
pus (Wikipedia 2014 + Gigaword 5) with 400,000
words.

4.2 Evaluation Metrics

Hit Rate
To evaluate the precision of returned hypernyms,
we follow Ustalov et al. (2017) and Kodirov et al.
(2017a) using the hit rate measure (Frome et al.,
2013). We also adopt area under curve (AUC)
measure which computes the averaged area under
the l − 1 trapezoids of hit@l to take the ranks of
ground truth into consideration:

AUCl =
1

2(l − 1)

l−1∑
i=1

(hit@i+ hit@(i+ 1)),

(4)

Soft Pollution
To evaluate the degree of pollution of the extracted
hypernym, we adopt a metric similar to Lazaridou
et al. (2015). A prediction is said to be polluted
if the nearest neighbor of predicted ŷ matches a
hypernym appears in the training set, noted as a
binary function pol1(ŷ).

However, it is possible that ground truth unseen
hypernyms are be very close to some seen hyper-
nyms in Ytrain in real cases. We take ground truths

1https://nlp.stanford.edu/projects/glove/
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Relation Hit Rate Pollution Hit Rate Pollution
Model hit10 hit30 AUC30 pol1 polsoft30 hit10 hit30 AUC30 pol1 polsoft30

IsA* k=1 k=25
Proj. .110 .157 .107 .715 .223 .090 .137 .087 .721 .232
Proj.+L2 .112 .172 .108 .712 .223 .090 .139 .088 .719 .231
WRAE-Y .120 .190 .110 .691 .220 .096 .146 .089 .720 .230
WRAE† .124 .194 .122 .602 .191 .164 .249 .160 .124 .034
AtLocation k=1 k=25
Proj. .075 .149 .103 .707 .115 .131 .220 .149 .782 .094
Proj.+L2 .083 .161 .110 .693 .113 .129 .222 .149 .796 .096
WRAE-Y .086 .166 .127 .699 .112 .129 .236 .153 .782 .094
WRAE† .122 .224 .152 .409 .063 .148 .261 .174 .191 .024
CreatedBy k=1 k=10
Proj. .016 .040 .026 .625 .226 .054 .103 .059 .819 .591
Proj.+L2 .016 .044 .030 .624 .227 .050 .099 .048 .818 .592
WRAE-Y .021 .060 .031 .586 .151 .057 .103 .052 .819 .591
WRAE† .070 .131 .095 .191 .067 .142 .243 .156 .071 .048
PartOf k=1 k=45
Proj. .335 .434 .341 .660 .187 .260 .405 .294 .796 .224
Proj.+L2 .340 .439 .344 .660 .188 .263 .407 .292 .793 .224
WRAE-Y .342 .449 .350 .644 .182 .267 .411 .297 .793 .222
WRAE† .355 .464 .370 .546 .149 .437 .539 .440 .117 .038

Table 3: Performance on ConceptNet relation dataset. †: all results pass the hypothesis test against the other
models with p < 0.01. *: for IsA, we report hit@5 and hit@10. For hit rates, the higher the better. For pollution,
the lower the better.

into consideration:

polsoftl (ŷ, y) = ρ · pol1(ŷ), y ∈ Ytest,

ρ =

{
1, if NNl(y) ∩ Ytrain = φ,

2
n−1
l−1 − 1, otherwise,

(5)

where n is for the top n nearest neighbors (from
1 to l) of y that appears in Ytrain and ρ is a
factor term exponentially decreases from 1 to 0
along with the increase of n therefore provides a
smoother estimation. With pollution indications,
one can understand to what degree the model suf-
fers from overfitting on the seen examples. φ is the
empty set. Note that it is reasonable to set l equal
for both hit rate and soft pollution.

4.3 Results: Unseen General Hypernym-Like
Relation Extraction

We report two sets of results for all models, one
with clustering and one without (k = 1). As
shown in Table 3, WRAE outperforms the com-
petitors significantly with and without clustering.
The naive application of Equation 2 which set
xΦk = y, denoted as WRAE-Y, consistently ranks

second. The y − x operation is crucial to avoid
pollution thus guarantees the generalization power
of the mapping. Apply simple L2-norm regular-
ization Equation 1 for Proj., denoted as Proj.+L2,
only slightly improves the performance. The re-
sults in Table 3 supports our hypothesis that Proj.
models deteriorate significantly for larger k, due
to lack of training examples for hypernyms in each
cluster. We prove that WRAE is effective against
pollution. The role of regularizer is important for
decoders to optimize towards better objective.

The negative effects derived from pollution im-
pact accuracy. We observe severe pollution prob-
lem in simple projection learning. Take IsA as
example, in k = 1 group the pol1 is about 71%
for Proj., which implies about two of out of three
returned predictions are data points from training
data. Our WRAE reduces the pollution pol1 to
60% and 12% after clustering. The improvement
on accuracy supports that pollution indication re-
flects the inherent overfitting problem. In general,
results are consistent with our claims that pollution
can be viewed as valid negative indicators.

Across the board, the performance should ben-
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efit from domain clustering if pollution is handled
properly as the experiments showed.

5 Conclusion

We present an unseen hypernym extraction frame-
work and analyze the pollution problem with this
setup. Consequently we argue that only by us-
ing unseen candidates in evaluation can truly test
whether the model learns the true relation repre-
sentation, instead of being polluted by the seen
training examples. Future work includes relation
discovery, which is to identify new relations be-
sides hypernyms in an unsupervised manner.
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Luis Espinosa-Anke, José Camacho Collados, Clau-

dio Delli Bovi, and Horacio Saggion. 2016. Super-
vised Distributional Hypernym Discovery via Do-
main Adaptation. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP 2016), pages 424–435.

C Fellbaum. 1998. WordNet: An Electronic Lexical
Database: Bradford Book. Cambridge, MA: MIT
Press.

Andrea Frome, Gs Corrado, and Jonathon Shlens.
2013. Devise: A deep visual-semantic embedding
model. Advances in neural information processing
systems, pages 1–11.

Ruiji Fu, Jiang Guo, Bing Qin, Wanxiang Che, Haifeng
Wang, and Ting Liu. 2014. Learning semantic hier-
archies via word embeddings. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1199–1209. Baltimore, Maryland.

Diederik P. Kingma and Jimmy Ba. 2014.
Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs.LG].

Elyor Kodirov, Tao Xiang, and Shaogang Gong. 2017a.
Semantic Autoencoder for Zero-Shot Learning. In
Computer Vision and Pattern Recognition. Com-
puter Vision Foundation.

Elyor Kodirov, Tao Xiang, and Shaogang Gong. 2017b.
Semantic autoencoder for zero-shot learning.

Angeliki Lazaridou, Georgiana Dinu, and Marco Ba-
roni. 2015. Hubness and Pollution: Delving into

Cross-Space Mapping for Zero-Shot Learning. In
Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing, pages 270–280. Association for
Computational Linguistics.

Alessandro Lenci and Giulia Benotto. 2012. Identi-
fying hypernyms in distributional semantic spaces.
In Proceedings of the Sixth International Workshop
on Semantic Evaluation, SemEval ’12, pages 75–79,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Omer Levy, Steffen Remus, Chris Biemann, and Ido
Dagan. 2015. Do supervised distributional meth-
ods really learn lexical inference relations? In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
970–976. Association for Computational Linguis-
tics.

Neha Nayak. 2015. Learning hypernymy over word
embeddings. Technical report, Stanford Univ.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global Vectors
for Word Representation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2014), pages 1532–
1543.

Marc’aurelio Ranzato, Y lan Boureau, and Yann Le-
cun. 2008. Sparse Feature Learning for Deep Belief
Networks. In Advances in Neural Information Pro-
cessing Systems 20 (NIPS 2007), pages 1185–1192.
Curran Associates, Inc.

Peter J Rousseeuw. 1987. Silhouettes: a graphical aid
to the interpretation and validation of cluster anal-
ysis. Journal of computational and applied mathe-
matics, 20:53–65.

Robert Speer and Catherine Havasi. 2012. Represent-
ing General Relational Knowledge in ConceptNet 5.
In International conference on language resources
and evaluation (LREC), pages 3679–3686.

Dmitry Ustalov, Nikolay Arefyev, Chris Biemann, and
Alexander Panchenko. 2017. Negative Sampling
Improves Hypernymy Extraction Based on Projec-
tion Learning. In Proceedings of the 15th Confer-
ence of the European Chapter of the Association
for Computational Linguistics (EACL 2017), pages
543–550, Valencia, Spain. Association for Compu-
tational Linguistics.

Ekaterina Vylomova, Laura Rimell, Trevor Cohn, and
Timothy Baldwin. 2016. Take and took, gaggle and
goose, book and read: Evaluating the utility of vec-
tor differences for lexical relation learning. In Pro-
ceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2016),
pages 1671–1682, Berlin, Germany. Association for
Computational Linguistics.



4839

Julie Weeds, Daoud Clarke, Jeremy Reffin, David Weir,
and Bill Keller. 2014. Learning to Distinguish
Hypernyms and Co-Hyponyms. In Proceedings
of the 25th International Conference on Compu-
tational Linguistics (COLING 2014), pages 2249–
2259, Dublin, Ireland. Dublin City University and
Association for Computational Linguistics.

Josuke Yamane, Tomoya Takatani, Hitoshi Yamada,
Makoto Miwa, and Yutaka Sasaki. 2016. Distribu-
tional hypernym generation by jointly learning clus-
ters and projections. In Proceedings of 26th Inter-
national Conference on Computational Linguistics
(COLING 2016), pages 1871–1879, Osaka, Japan.
The COLING 2016 Organizing Committee.


