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Abstract
We present a Few-Shot Relation Classifica-
tion Dataset (FewRel), consisting of 70, 000
sentences on 100 relations derived from
Wikipedia and annotated by crowdworkers.
The relation of each sentence is first rec-
ognized by distant supervision methods, and
then filtered by crowdworkers. We adapt the
most recent state-of-the-art few-shot learning
methods for relation classification and conduct
thorough evaluation of these methods. Empir-
ical results show that even the most competi-
tive few-shot learning models struggle on this
task, especially as compared with humans. We
also show that a range of different reasoning
skills are needed to solve our task. These re-
sults indicate that few-shot relation classifica-
tion remains an open problem and still requires
further research. Our detailed analysis points
multiple directions for future research. All de-
tails and resources about the dataset and base-
lines are released on http://zhuhao.me/
fewrel.

1 Introduction

Relation classification (RC) is an important task
in NLP, aiming to determine the correct relation
between two entities in a given sentence. Many
works have been proposed for this task, includ-
ing kernel methods (Zelenko et al., 2002; Mooney
and Bunescu, 2006), embedding methods (Gorm-
ley et al., 2015), and neural methods (Zeng et al.,
2014). The performance of these conventional
models heavily depends on time-consuming and
labor-intensive annotated data, which make them-
selves hard to generalize well. Adopting distant
supervision is a primary approach to alleviate this
problem for RC (Mintz et al.; Riedel et al.; Hoff-
mann et al., 2011; Surdeanu et al., 2012; Zeng
∗ The first four authors contribute equally. The order is de-

termined by dice rolling.
† Z. Wang is now at New York University.
‡ Correspondence author.

Supporting Set

(A) capital of (1) London is the capital of the U.K.
(2) Washington is the capital of the U.S.A.

(B) member of
(1) Newton served as the president of the
Royal Society.
(2) Leibniz was a member of the Prussian
Academy of Sciences.

(C) birth name

(1) Samuel Langhorne Clemens, better
known by his pen name Mark Twain, was
an American writer.
(2) Alexei Maximovich Peshkov, primarily
known as Maxim Gorky, was a Russian and
Soviet writer.

Test Instance

(A) or (B) or (C) Euler was elected a foreign member of the
Royal Swedish Academy of Sciences.

Table 1: An example for a 3 way 2 shot scenario.
Different colors indicate different entities, blue for
head entity, and red for tail entity.

et al., 2015; Lin et al., 2016), which heuristically
aligns knowledge bases (KBs) and text to automat-
ically annotate adequate amounts of training in-
stances. We evaluate the model proposed by Lin
et al. (2016), which is followed by the recent state-
of-the-art methods (Zeng et al., 2017; Ji et al.,
2017; Huang and Wang, 2017; Wu et al., 2017;
Liu et al., 2017; Feng et al., 2018; Zeng et al.,
2018), on the benchmark dataset NYT-10 (Riedel
et al.). Though it achieves promising results on
common relations, the performance of a relation
drops dramatically when its number of training
instances decrease. About 58% of the relations
in NYT-10 are long-tail with fewer than 100 in-
stances. Furthermore, distant supervision suffers
from the wrong labeling problem, which makes it
harder to classify long-tail relations. Hence, it is
necessary to study training RC models with insuf-
ficient training instances.

We formulate RC as a few-shot learning task in

http://zhuhao.me/fewrel
http://zhuhao.me/fewrel
http://zhuhao.me/fewrel
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this paper, which requires models capable of han-
dling classification task with a handful of training
instances, as shown in Table 1. Many efforts have
devoted to few-shot learning. The early works
(Caruana, 1995; Bengio, 2012; Donahue et al.,
2014) apply transfer learning methods to fine-
tune pre-trained models from the common classes
containing adequate instances to the uncommon
classes with only few instances. Then metric
learning methods (Koch et al., 2015; Vinyals et al.,
2016; Snell et al., 2017) have been proposed to
learn the distance distributions among classes.
Similar classes are adjacent in the distance space.
The metric methods also take advantage of non-
parametric estimation to make models efficient
and general. Recently, the idea of meta-learning
is proposed, which encourages the models to learn
fast-learning abilities from previous experience
and rapidly generalize to new concepts. Many
meta-learning models (Ravi and Larochelle, 2017;
Santoro et al., 2016; Finn et al., 2017; Munkhdalai
and Yu, 2017) achieve the state-of-the-art results
on several few-shot benchmarks.

Though meta-learning methods develop fast,
most of these works evaluate on two popular
datasets, Omniglot (Lake et al., 2015) and mini-
ImageNet (Vinyals et al., 2016). Both the datasets
concentrate on image classification. Many works
in NLP mainly focus on the zero-shot/semi-
supervised scenario (Xie et al., 2016; Ma et al.,
2016; Carlson et al., 2009), which incorporate ex-
tra information to classify objects never appearing
in the training sets. However, the few-shot sce-
nario needs models to classify objects with few in-
stances without any extra information. Recently,
Yu et al. (2018) propose a multi-metric method
for few-shot text classification. However, there
lack systematic researches about adopting few-
shot learning for NLP tasks. We propose FewRel:
a new large-scale supervised Few-shot Relation
Classification dataset. To address the wrong la-
beling problem in most distantly supervised RC
datasets, we apply crowd-sourcing to manually re-
move the noise.i

Besides constructing the dataset, we system-
atically implement the most recent state-of-the-
art few-shot learning methods and adapt them for

i Many previous works, such as (Roth et al., 2013; Luo
et al., 2017; Xin et al., 2018) have worked on automati-
cally removing noise from distantly supervision. Instead,
we use crowd-sourcing methods to achieve a high accu-
racy.

RC. We conduct a detailed evaluation for all these
models on our dataset. Though the state-of-the-
art few-shot learning methods have much lower
results than humans on our challenging dataset,
they significantly outperform the vanilla RC mod-
els, indicating that incorporating few-shot learning
is promising and needs further research. In sum-
mary, our contribution is three-fold:

(1) We formulate RC as a few-shot learning
task, and propose a new large supervised few-shot
RC dataset.

(2) We systematically adapt the most recent
state-of-the-art few-shot learning methods for RC,
which may further benefit other NLP tasks.

(3) We conduct a comprehensive evaluation of
few-shot learning methods on our dataset, which
indicates some promising research directions for
RC.

2 FewRel Dataset

In this section, we describe the process of creat-
ing FewRel in detail. The whole procedure can
be divided into two steps: (1) We create a large
candidate set of sentences aligned to relations via
distant supervision. (2) We ask human annotators
to filter out the wrong labeled sentences for each
relation to finally achieve a clean RC dataset.

2.1 Distant Supervision
For the first step, We use Wikipedia as the cor-
pusii and Wikidata as the KB. Wikidata is a large-
scale KB where many entities are already linked to
Wikipedia articles. The articles in Wikipedia also
contain anchors linking to each other. Thus it is
convenient to align sentences in Wikipedia articles
to KB facts in Wikidata. We also employ entity
linking technique to extract more unanchored enti-
ties in articles. We first adopt named entity recog-
nition via spaCyiii to find possible entity mentions,
then match each mention with the name of an en-
tity in KBs, and link the mention to the entity if
successfully matched.

For each sentence s in Wikipedia articles con-
taining head and tail entities e1 and e2, if there
exists a Wikidata statement (e1, e2, r) meaning
e1 and e2 have the relation r, we denote the
(s, e1, e2, r) tuple as an instance and add it to the
candidate set. Empirically, many instances of a
given relation contain the same entity pair. For

ii We use whole Wikipedia articles as corpus, not just the
first sentence.

iii https://spacy.io/

https://spacy.io/
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such relation, classifiers may prefer memorizing
the entity pairs in the training instances rather than
grasping the sentence semantics. Therefore, in the
candidate set of each relation, we only keep 1 in-
stance for each unique entity pair. Finally, we
remove relations with fewer than 1000 instances,
and randomly keep 1000 instances for the rest of
the relations. As a result, we get a candidate set of
122 relations and 122, 000 instances.

2.2 Human Annotation
Next, we invite some well-educated annotators to
filter the raw data on a platform similar to Ama-
zon MTurk developed by ourselves. The platform
presents each annotator with one instance each
time, by showing the sentence, two entities in the
sentence, and the corresponding relation labeled
by distant supervision. The platform also pro-
vides the name of the entities and relation in Wiki-
data accompanied with the detailed description of
that relation. Then the annotator is asked to judge
whether the relation could be deduced only from
the sentence semantics. We also ask the annotator
to mark an instance as negative if the sentence is
not complete, or the mention is falsely linked with
the entity.

Relations are randomly assigned to annotators
from the candidate set, and each annotator will
consecutively annotate 20 instances of the same
relation before switching to next relation. To en-
sure the labeling quality, each instance is labeled
by at least two annotators. If the two annotators
have disagreements on this instance, it will be as-
signed to a third annotator. As a result, each in-
stance has at least two same annotations, which
will be the final decision. After the annotation,
we remove relations with fewer than 700 positive
instances. For the remaining 105 relations, we
calculate the inter-annotator agreement for each
relation using the free-marginal multirater kappa
(Randolph, 2005), and keep the top 100 relations.

2.3 Dataset Statistics
The final FewRel dataset consists of 100 relations,
each has 700 instances. A full list of relations, in-
cluding their names and descriptions, is provided
in Appendix A.2. The average number of tokens
in each sentence is 24.99, and there are 124, 577
unique tokens in total. Following recent meta-
learning tasks (Vinyals et al., 2016), which use
separate sets of classes for training and testing,
we use 64, 16, and 20 relations for training, val-

Dataset #cls. #inst./cls #insts.

Omniglot 1, 623 20 32, 460
mini-ImageNet 100 600 60, 000
FewRel 100 700 70, 000

Table 2: Comparison of FewRel with Omniglot
and mini-ImageNet.

Dataset #cls. #insts.

SemEval-2010 Task 8 9 6, 674
ACE 2003-2004 24 16, 771
TACRED 42 21, 784
NYT-10 57 143, 391
FewRel 100 70, 000

Table 3: Comparison of FewRel with existing RC
datasets. Note that negative (no relation) instances
in some datasets are ignored.

idation, and testing respectively. Table 2 provides
a comparison of our FewRel dataset to two other
popular few-shot classification datasets, Omniglot
and mini-ImageNet. Table 3 provides a compar-
ison of FewRel to the previous RC datasets, in-
cluding SemEval-2010 Task 8 dataset (Hendrickx
et al., 2009), ACE 2003-2004 dataset (Strassel
et al., 2008), TACRED dataset (Zhang et al.,
2017), and NYT-10 dataset (Riedel et al., 2010).
While some RC datasets contain instances with no
relations (negative), we ignore such instances for
comparison.

3 Experiments

We conduct comprehensive evaluations of vanilla
RC models with simple strategies such as finetune
or kNN on our new dataset. We also evaluate the
recent state-of-the-art few-shot learning methods.

3.1 Task Formulation
In few-shot relation classification, we intend to
obtain a function F : (R,S, x) 7→ y. Here
R = {r1, . . . , rm} defines the relations that the
instances are classified into. S is a support set

S = {(x11, r1), (x21, r1), . . . , (x
n1
1 , r1),

. . . ,

(x1m, rm), (x2m, rm), . . . , (xnm
m , rm)}

(1)

including ni instances for each relation ri ∈ R.
For relation classification, a data instance xji is a
sentence accompanied with a pair of entities. The
query data x is an unlabeled instance to classify,
and y ∈ R is the prediction of x given by F .



4806

Model 5 Way 1 Shot 5 Way 5 Shot 10 Way 1 Shot 10 Way 5 Shot

Finetune (CNN) 44.21± 0.44 68.66± 0.41 27.30± 0.28 55.04± 0.31
Finetune (PCNN) 45.64± 0.62 57.86± 0.61 29.65± 0.40 37.43± 0.42
kNN (CNN) 54.67± 0.44 68.77± 0.41 41.24± 0.31 55.87± 0.31
kNN (PCNN) 60.28± 0.43 72.41± 0.39 46.15± 0.31 59.11± 0.30

Meta Network (CNN) 64.46± 0.54 80.57± 0.48 53.96± 0.56 69.23± 0.52
GNN (CNN) 66.23± 0.75 81.28± 0.62 46.27± 0.80 64.02± 0.77
SNAIL (CNN) 67.29± 0.26 79.40± 0.22 53.28± 0.27 68.33± 0.25
Prototypical Network (CNN) 69.20± 0.20 84.79± 0.16 56.44± 0.22 75.55± 0.19

Human performance 92.22± 5.53 - 85.88± 7.40 -

Table 4: Accuracies (%) of all models on FewRel under four different settings.

In recent research on few-shot learning, N way
K shot setting is widely adopted. We follow
this setting for the few-shot relation classification
problem. To be exact, for N way K shot learning

N = m = |R|,K = n1 = . . . = nm (2)

3.2 Experiment Settings
We consider four types of few-shot tasks in our ex-
periments: 5 way 1 shot, 5 way 5 shot, 10 way 1
shot, 10 way 5 shot. Under this setting, we evalu-
ate different few-shot training strategies and state-
of-the-art few-shot learning methods built upon
two widely used instance encoders, CNN (Zeng
et al., 2014) and PCNN (Zeng et al., 2015).

For both CNN and PCNN, the sentence is first
represented to the input vectors by transforming
each word into concatenation of word embeddings
and position embeddings. In CNN, the input vec-
tors pass a convolution layer, a max-pooling layer,
and a non-linear activation layer to get the final
output sentence embedding. PCNN is a variant of
CNN, which replaces the max-pooling operation
with a piecewise max-pooling operation.

To evaluate this two vanilla models in few-shot
RC task, we first consider two training strate-
gies, namely Finetune and kNN. For the Finetune
baseline, it learns to classify all relations on the
training set with CNN/PCNN, and tune parame-
ters on the support set. We only tune the param-
eters of output layer, and keep other parameters
unchanged. For the kNN baseline, it also jointly
classifies all relations during training, while at the
test time, it uses the neural networks to embed all
the instances and then adopts k-nearest-neighbor
(kNN) to classify the test instances.

By adapting them to relation classification,
we also evaluate four recently proposed few-
shot learning methods, including Meta Network

(Munkhdalai and Yu, 2017), GNN (Satorras and
Estrach, 2018), SNAIL (Mishra et al., 2018), and
Prototypical Network (Snell et al., 2017). We de-
scribe briefly about these baselines in Sec. 3.3.
If you are familiar with these methods, you can
safely skip that subsection. The hyperparameters
of each model are selected via grid search against
the validation set.

Human performance is also evaluated under 5
way 1 shot setting and 10 way 1 shot setting. A
human labeler is given 5/10 instances from differ-
ent relations and one extra test instance. Human
labelers are asked to decide which relation the test
instance belongs to. Note that these labelers are
not provided the name of the relations and any ex-
tra information. Since 5 way 5 shot and 10 way
5 shot settings are easier, we only evaluate perfor-
mance of 5 way 1 shot and 10 way 1 shot.

3.3 Baselines of Few-shot Learning Models

Meta Network Meta Network (Munkhdalai and
Yu, 2017) is a meta learning algorithm utilizing a
high level meta learner on top of the traditional
classification model, or base learner, to supervise
the training process. The weights of base learner
are divided into two groups, fast weights and slow
weights. Fast weights are generated by the meta
learner, whereas slow weights are simply updated
by minimizing classification loss. The fast weights
are expected to help the model generalize to new
tasks with very few training instances.

GNN GNN (Satorras and Estrach, 2018) tackles
the few-shot learning problem by considering each
supporting instance or query instance as a node
in the graph. For those instances in the support
sets, label information is also embedded into the
corresponding node representations. Graph neural
networks are then employed to propagate the in-
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formation between nodes. A query instance is ex-
pected to receive information from support sets in
order to make the classification. In our adaption,
while the instances are encoded by CNNs, labels
are represented by one-hot encoding.

SNAIL SNAIL (Mishra et al., 2018) is a meta
learning model that utilizes temporal convolu-
tional neural networks and attention modules for
fast learning from past experience. SNAIL ar-
ranges all the supporting instance-label pairs into
a sequence and appends the query instance be-
hind them. Such an order agrees with the tem-
poral order of learning process where we learn
information by reading supporting instances be-
fore making predictions for unlabeled instances.
Temporal convolution (a 1-D convolution) is then
performed along the sequence to aggregate infor-
mation across different time steps and a causally
masked attention model is used over the sequence
to aggregate useful information from former in-
stances to latter ones.

Prototypical Networks Prototypical Network
(Snell et al., 2017) is a few-shot classification
model based on the assumption that for each class
there exists a prototype. The model tries to find the
prototypes for classes from supporting instances,
and compares the distance between the query in-
stance and each prototype under certain distance
metric. Prototypical network learns a embedding
function u to embed each class’s instances, and
computes each prototype by averaging over all the
output embeddings of instances in the support set
S that are labeled with the corresponding class.

4 Result Analysis and Future Work

We report evaluation results in Table 4. From
our preliminary experiments, PCNN with few-shot
learning methods perform 3-10 percentages worse
than CNN, therefore only CNN results are shown
in our experimental results. From the results, we
observe that integrating few-shot learning methods
into CNN significantly outperforms CNN/PCNN
with finetune or kNN, which means adapting few-
shot learning methods for RC is promising. How-
ever, there are still huge gaps between their perfor-
mance and humans’, which means our dataset is a
challenging testbed for both relation classification
and few-shot learning.

In this paper, we propose a new large and high
quality dataset, FewRel, for few-shot relation clas-

Sentence Reasoning

Chris Bohjalian graduated from Amherst Col-
lege Summa Cum Laude, where he was a
member of the Phi Beta Kappa Society.

Simple Pat-
tern

James Alty obtained a 1st class honours
(Physics) at Liverpool University.

Common-
sense
Reasoning

He was a professor at Reed College, where
he taught Steve Jobs, and replaced Lloyd J.
Reynolds as the head of the calligraphy pro-
gram.

Logical
Reasoning

He and Cesare Borgia were thought to be
close friends since childhood, going on to ac-
company one another during their studies at
the University of Pisa.

Co-
reference
Reasoning

Table 5: Examples from relation “educated at”.
Different colors indicate different entities, blue for
head entity, and red for tail entity.

sification task. This dataset provides a new point
of view for RC, and also a new benchmark for few-
shot learning. Through the evaluation of differ-
ent few-shot learning methods, we find even the
best model performs much worse than humans,
which suggests there is still large space for few-
shot learning methods to improve.

The most challenging characteristic of our
dataset is the diversity in expressing the same re-
lation. We provide some examples from FewRel
in Table 5, showing different reasoning modes
needed for classifying some instances. Future
researches may consider incorporating common-
sense knowledge or improved causal modules.

Acknowledgement

This work is supported by the National Nat-
ural Science Foundation of China (NSFC No.
61572273, 61532010). This work is also funded
by the Natural Science Foundation of China
(NSFC) and the German Research Foundation
(DFG) in Project Crossmodal Learning, NSFC
61621136008 / DFC TRR-169. Hao Zhu is sup-
ported by Tsinghua University Initiative Scientific
Research Program. We thank all annotators for
their hard work. We also thank all members from
Tsinghua NLP Lab for their strong support for an-
notator recruitment.

References
Yoshua Bengio. 2012. Deep learning of representa-

tions for unsupervised and transfer learning. In Pro-
ceedings of ICML.

Andrew Carlson, Justin Betteridge, Estevam R Hr-
uschka Jr, and Tom M Mitchell. 2009. Coupling



4808

semi-supervised learning of categories and relations.
In Proceedings of the NAACL HLT 2009 Workshop
on Semi-supervised Learning for Natural Language
Processing, pages 1–9. Association for Computa-
tional Linguistics.

Rich Caruana. 1995. Learning many related tasks at the
same time with backpropagation. In Proceedings of
NIPS.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoff-
man, Ning Zhang, Eric Tzeng, and Trevor Darrell.
2014. Decaf: A deep convolutional activation fea-
ture for generic visual recognition. In Proceedings
of ICML.

Jun Feng, Minlie Huang, Li Zhao, Yang Yang, and Xi-
aoyan Zhu. 2018. Reinforcement learning for rela-
tion classification from noisy data. In Proceedings
of AAAI.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of ICML.

Matthew R. Gormley, Mo Yu, and Mark Dredze. 2015.
Improved relation extraction with feature-rich com-
positional embedding models. In Proceedings of
EMNLP.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian
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