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Abstract

We analyze the performance of different sen-
timent classification models on syntactically-
complex inputs like A-but-B sentences. The
first contribution of this analysis addresses re-
producible research: to meaningfully compare
different models, their accuracies must be av-
eraged over far more random seeds than what
has traditionally been reported. With proper
averaging in place, we notice that the distil-
lation model described in Hu et al. (2016),
which incorporates explicit logic rules for sen-
timent classification, is ineffective. In contrast,
using contextualized ELMo embeddings (Pe-
ters et al., 2018a) instead of logic rules yields
significantly better performance. Additionally,
we provide analysis and visualizations that
demonstrate ELMo’s ability to implicitly learn
logic rules. Finally, a crowdsourced analysis
reveals how ELMo outperforms baseline mod-
els even on sentences with ambiguous senti-
ment labels.

1 Introduction

In this paper, we explore the effectiveness of meth-
ods designed to improve sentiment classification
(positive vs. negative) of sentences that con-
tain complex syntactic structures. While simple
bag-of-words or lexicon-based methods (Pang and
Lee, 2005; Wang and Manning, 2012; Iyyer et al.,
2015) achieve good performance on this task, they
are unequipped to deal with syntactic structures
that affect sentiment, such as contrastive conjunc-
tions (i.e., sentences of the form “A-but-B”’) or
negations. Neural models that explicitly encode
word order (Kim, 2014), syntax (Socher et al.,
2013; Tai et al., 2015) and semantic features (Li
et al., 2017) have been proposed with the aim
of improving performance on these more compli-
cated sentences. Recently, Hu et al. (2016) in-
corporate logical rules into a neural model and

show that these rules increase the model’s accu-
racy on sentences containing contrastive conjunc-
tions, while Peters et al. (2018a) demonstrate in-
creased overall accuracy on sentiment analysis by
initializing a model with representations from a
language model trained on millions of sentences.
In this work, we carry out an in-depth study
of the effectiveness of the techniques in Hu et al.
(2016) and Peters et al. (2018a) for sentiment clas-
sification of complex sentences. Part of our con-
tribution is to identify an important gap in the
methodology used in Hu et al. (2016) for perfor-
mance measurement, which is addressed by av-
eraging the experiments over several executions.
With the averaging in place, we obtain three key
findings: (1) the improvements in Hu et al. (2016)
can almost entirely be attributed to just one of
their two proposed mechanisms and are also less
pronounced than previously reported; (2) contex-
tualized word embeddings (Peters et al., 2018a)
incorporate the “A-but-B” rules more effectively
without explicitly programming for them; and (3)
an analysis using crowdsourcing reveals a big-
ger picture where the errors in the automated sys-
tems have a striking correlation with the inherent
sentiment-ambiguity in the data.

2 Logic Rules in Sentiment Classification

Here we briefly review background from Hu et al.
(2016) to provide a foundation for our reanalysis
in the next section. We focus on a logic rule for
sentences containing an “A-but-B” structure (the
only rule for which Hu et al. (2016) provide exper-
imental results). Intuitively, the logic rule for such
sentences is that the sentiment associated with the
whole sentence should be the same as the senti-
ment associated with phrase “B”.!

!The rule is vacuously true if the sentence does not have
this structure.
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More formally, let py(y|z) denote the proba-
bility assigned to the label y € {+,—} for an
input = by the baseline model using parameters
0. A logic rule is (softly) encoded as a variable
ro(z,y) € [0,1] indicating how well labeling x
with y satisfies the rule. For the case of A-but-B
sentences, rg(x,y) = pg(y|B) if = has the struc-
ture A-but-B (and 1 otherwise). Next, we discuss
the two techniques from Hu et al. (2016) for in-
corporating rules into models: projection, which
directly alters a trained model, and distillation,
which progressively adjusts the loss function dur-
ing training.

Projection. The first technique is to project a
trained model into a rule-regularized subspace, in
a fashion similar to Ganchev et al. (2010). More
precisely, a given model py is projected to a model
qg defined by the optimum value of ¢ in the fol-
lowing optimization problem:?

min KL(g(X,V)llps(X,Y)) +C 3 &
= zeX

s.t. (]— - Eyeq(\w) [TG(‘T’ y)]) <&

Here ¢(X,Y) denotes the distribution of (x,y)
when z is drawn uniformly from the set X and
y is drawn according to ¢(-|x).

Iterative Rule Knowledge Distillation. The
second technique is to transfer the domain knowl-
edge encoded in the logic rules into a neural
network’s parameters. Following Hinton et al.
(2015), a “student” model py can learn from
the “teacher” model gy, by using a loss function
7H (pg, Pirue) + (1 — 7)H (pg, qp) during training,
where Py, denotes the distribution implied by
the ground truth, H (-, -) denotes the cross-entropy
function, and 7 is a hyperparameter. Hu et al.
(2016) computes gy after every gradient update
by projecting the current pg, as described above.
Note that both mechanisms can be combined: Af-
ter fully training pg using the iterative distillation
process above, the projection step can be applied
one more time to obtain gy which is then used as
the trained model.

Dataset. All of our experiments (as well as those
in Hu et al. (2016)) use the SST2 dataset, a

The formulation in Hu et al. (2016) includes another hy-
perparameter A per rule, to control its relative importance;
when there is only one rule, as in our case, this parameter can
be absorbed into C'.

binarized subset of the popular Stanford Senti-
ment Treebank (SST) (Socher et al., 2013). The
dataset includes phrase-level labels in addition
to sentence-level labels (see Table 1 for detailed
statistics); following Hu et al. (2016), we use both
types of labels for the comparisons in Section 3.2.
In all other experiments, we use only sentence-
level labels, and our baseline model for all exper-
iments is the CNN architecture from Kim (2014).

3 A Reanalysis

In this section we reanalyze the effectiveness of
the techniques of Hu et al. (2016) and find that
most of the performance gain is due to projection
and not knowledge distillation. The discrepancy
with the original analysis can be attributed to the
relatively small dataset and the resulting variance
across random initializations. We start by analyz-
ing the baseline CNN by Kim (2014) to point out
the need for an averaged analysis.
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Figure 1: Variation in models trained on SST-2 (sentence-
only). Accuracies of 100 randomly initialized models are
plotted against the number of epochs of training (in gray),
along with their average accuracies (in red, with 95% confi-
dence interval error bars). The inset density plot shows the
distribution of accuracies when trained with early stopping.

3.1 Importance of Averaging

We run the baseline CNN by Kim (2014) across
100 random seeds, training on sentence-level la-

Number of  Phrases Train Dev Test
Instances 76961 6920 872 1821
A-but-B 35% 11.1% 11.5% 11.5%
Negations 20% 17.5% 183% 17.2%
Discourse 50% 24.6% 26.0% 24.5%

Table 1: Statistics of SST2 dataset. Here “Discourse” in-
cludes both A-but-B and negation sentences. The mean length
of sentences is in terms of the word count.
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Reported Test Accuracy

A Test A A A-but-B
(Hu et al.. 2016) veraged Test Accuracy veraged A-but-B accuracy
no-distill distill no-distill distill no-distill distill
no-project 87.2 +1.6 ~ 888 87.66  +0.29 87.97 8025 4+1.92 82.17
+0.7 +0.5 +1.07 +0.80 +9.31 +6.96
project 879 +1.4 . 893 88.73 +0.04. 8377 89.56 -0.43.89.13

Figure 2: Comparison of the accuracy improvements reported in Hu et al. (2016) and those obtained by averaging over 100
random seeds. The last two columns show the (averaged) accuracy improvements for A-but-B style sentences. All models use
the publicly available implementation of Hu et al. (2016) trained on phrase-level SST2 data.

bels. We observe a large amount of variation from
run-to-run, which is unsurprising given the small
dataset size. The inset density plot in Figure 1
shows the range of accuracies (83.47 to 87.20)
along with 25, 50 and 75 percentiles.® The figure
also shows how the variance persists even after the
average converges: the accuracies of 100 models
trained for 20 epochs each are plotted in gray, and
their average is shown in red.

We conclude that, to be reproducible, only av-
eraged accuracies should be reported in this task
and dataset. This mirrors the conclusion from a
detailed analysis by Reimers and Gurevych (2017)
in the context of named entity recognition.

3.2 Performance of Hu et al. (2016)

We carry out an averaged analysis of the publicly
available implementation4 of Hu et al. (2016).
Our analysis reveals that the reported performance
of their two mechanisms (projection and distil-
lation) is in fact affected by the high variability
across random seeds. Our more robust averaged
analysis yields a somewhat different conclusion of
their effectiveness.

In Figure 2, the first two columns show the re-
ported accuracies in Hu et al. (2016) for models
trained with and without distillation (correspond-
ing to using values 7 = 1 and 7 = 0.95' in the
tM epoch, respectively). The two rows show the
results for models with and without a final projec-
tion into the rule-regularized space. We keep our
hyper-parameters identical to Hu et al. (2016).

The baseline system (no-project, no-distill) is
identical to the system of Kim (2014). All the sys-
tems are trained on the phrase-level SST2 dataset

3We use early stopping based on validation performance

for all models in the density plot.
‘nttps://github.com/zZhitingHu/logicnn/
>In particular, C' = 6 for projection.

with early stopping on the development set. The
number inside each arrow indicates the improve-
ment in accuracy by adding either the projection
or the distillation component to the training al-
gorithm. Note that the reported figures suggest
that while both components help in improving ac-
curacy, the distillation component is much more
helpful than the projection component.

The next two columns, which show the re-
sults of repeating the above analysis after averag-
ing over 100 random seeds, contradict this claim.
The averaged figures show lower overall accuracy
increases, and, more importantly, they attribute
these improvements almost entirely to the projec-
tion component rather than the distillation com-
ponent. To confirm this result, we repeat our av-
eraged analysis restricted to only “A-but-B” sen-
tences targeted by the rule (shown in the last two
columns). We again observe that the effect of pro-
jection is pronounced, while distillation offers lit-
tle or no advantage in comparison.

4 Contextualized Word Embeddings

Traditional context-independent word embed-
dings like word2vec (Mikolov et al., 2013) or
GloVe (Pennington et al., 2014) are fixed vec-
tors for every word in the vocabulary. In contrast,
contextualized embeddings are dynamic represen-
tations, dependent on the current context of the
word. We hypothesize that contextualized word
embeddings might inherently capture these logic
rules due to increasing the effective context size
for the CNN layer in Kim (2014). Following the
recent success of ELMo (Peters et al., 2018a) in
sentiment analysis, we utilize the TensorFlow Hub
implementation of ELMo® and feed these contex-
tualized embeddings into our CNN model. We

*https://tfhub.dev/google/elmo/1
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fine-tune the ELMo LSTM weights along with the
CNN weights on the downstream CNN task. As in
Section 3, we check performance with and without
the final projection into the rule-regularized space.
We present our results in Table 2.

Switching to ELMo word embeddings improves
performance by 2.9 percentage points on an aver-
age, corresponding to about 53 test sentences. Of
these, about 32 sentences (60% of the improve-
ment) correspond to A-but-B and negation style
sentences, which is substantial when considering
that only 24.5% of test sentences include these dis-
course relations (Table 1). As further evidence that
ELMo helps on these specific constructions, the
non-ELMo baseline model (no-project, no-distill)
gets 255 sentences wrong in the test corpus on av-
erage, only 89 (34.8%) of which are A-but-B style
or negations.

Statistical Significance: Using a two-sided
Kolmogorov-Smirnov statistic (Massey Jr, 1951)
with o = 0.001 for the results in Table 2, we find
that ELMo and projection each yield statistically
significant improvements, but distillation does not.
Also, with ELMo, projection is not significant.
Specific comparisons have been added in the Ap-
pendix, in Table A3.

KL Divergence Analysis: We observe no sig-
nificant gains by projecting a trained ELMo model
into an A-but-B rule-regularized space, unlike the
other models. We confirm that ELMo’s predic-
tions are much closer to the A-but-B rule’s man-
ifold than those of the other models by computing
KL(qgp||ps) where py and gy are the original and
projected distributions: Averaged across all A-but-
B sentences and 100 seeds, this gives 0.27,0.26
and 0.13 for the Kim (2014), Hu et al. (2016)
with distillation and ELMo systems respectively.

Intra-sentence Similarity: To understand the
information captured by ELMo embeddings for
A-but-B sentences, we measure the cosine simi-
larity between the word vectors of every pair of
words within the A-but-B sentence (Peters et al.,
2018b). We compare the intra-sentence similar-
ity for fine-tuned word2vec embeddings (base-
line), ELMo embeddings without fine-tuning and
finally fine-tuned ELMo embeddings in Figure 3.
In the fine-tuned ELMo embeddings, we notice
the words within the A and within the B part of
the A-but-B sentence share the same part of the
vector space. This pattern is less visible in the

Model Test but but or neg
no-distill  no-project 8598  78.69 80.13
no-distill project  86.54  83.40 -

distill7  no-project 86.11  79.04 -

distill project  86.62  83.32 -
ELMo no-project 88.89 86.51 87.24

ELMo project 88.96 87.20 -

Table 2: Average performance (across 100 seeds) of ELMo
on the SST2 task. We show performance on A-but-B sen-
tences (“but”), negations (“neg”).

ELMo embeddings without fine-tuning and absent
in the word2vec embeddings. This observation
is indicative of ELMo’s ability to learn specific
rules for A-but-B sentences in sentiment classifica-
tion. More intra-sentence similarity heatmaps for
A-but-B sentences are in Figure Al.

5 Crowdsourced Experiments

We conduct a crowdsourced analysis that reveals
that SST2 data has significant levels of ambiguity
even for human labelers. We discover that ELMo’s
performance improvements over the baseline are
robust across varying levels of ambiguity, whereas
the advantage of Hu et al. (2016) is reversed in
sentences of low ambiguity (restricting to A-but-B
style sentences).

Our crowdsourced experiment was conducted
on Figure Eight.® Nine workers scored the senti-
ment of each A-but-B and negation sentence in the
test SST2 split as 0 (negative), 0.5 (neutral) or 1
(positive). (SST originally had three crowdwork-
ers choose a sentiment rating from 1 to 25 for ev-
ery phrase.) More details regarding the crowd ex-
periment’s parameters have been provided in Ap-
pendix A.

We average the scores across all users for each
sentence. Sentences with a score in the range
(x, 1] are marked as positive (where = € [0.5, 1)),
sentences in [0,1 — x) marked as negative, and
sentences in [1 — x,xz] are marked as neutral.
For instance, “flat , but with a revelatory perfor-
mance by michelle williams” (score=0.56) is neu-
tral when z = 0.6.° We present statistics of
our dataset'” in Table 3. Inter-annotator agree-

"Trained on sentences and not phrase-level labels for a fair
comparison with baseline and ELMo, unlike Section 3.2.

8 https://www.figure-eight.com/

“More examples of neutral sentences have been provided
in the Appendix in Table A1, as well as a few “flipped” sen-
tences receiving an average score opposite to their SST2 label
(Table A2).

The dataset along with source code can be found in
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Figure 3: Heat map showing the cosine similarity between pairs of word vectors within a single sentence. The left figure has
fine-tuned word2vec embeddings. The middle figure contains the original ELMo embeddings without any fine-tuning. The
right figure contains fine-tuned ELMo embeddings. For better visualization, the cosine similarity between identical words has

been set equal to the minimum value in the heat map.

ment was computed using Fleiss’ Kappa (k). As
expected, inter-annotator agreement is higher for
higher thresholds (less ambiguous sentences). Ac-
cording to Landis and Koch (1977), k € (0.2,0.4]
corresponds to “fair agreement”, whereas x €
(0.4, 0.6] corresponds to “moderate agreement”.

We next compute the accuracy of our model
for each threshold by removing the correspond-
ing neutral sentences. Higher thresholds corre-
spond to sets of less ambiguous sentences. Table 3
shows that ELMo’s performance gains in Table 2
extends across all thresholds. In Figure 4 we com-
pare all the models on the A-but-B sentences in this
set. Across all thresholds, we notice trends similar
to previous sections: 1) ELMo performs the best
among all models on A-but-B style sentences, and
projection results in only a slight improvement; 2)
models in Hu et al. (2016) (with and without distil-
lation) benefit considerably from projection; but 3)
distillation offers little improvement (with or with-
out projection). Also, as the ambiguity threshold
increases, we see decreasing gains from projection
on all models. In fact, beyond the 0.85 threshold,
projection degrades the average performance, in-
dicating that projection is useful for more ambigu-
ous sentences.

6 Conclusion

We present an analysis comparing techniques for
incorporating logic rules into sentiment classifi-
cation systems. Our analysis included a meta-
study highlighting the issue of stochasticity in
performance across runs and the inherent ambi-
guity in the sentiment classification task itself,
which was tackled using an averaged analysis and

https://github.com/martiansideofthemoon/
logic—rules—-sentiment.

Threshold  0.50 0.66 0.75 0.90
Neutral Sentiment 10 70 95 234

Flipped Sentiment 15 4 2 0
Fleiss’ Kappa (k)  0.38 0.42 0.44 0.58
no-distill, no-project  81.32 83.54 84.54 87.55
ELMo, no-project 87.56  90.00 91.31 93.14

Table 3: Number of sentences in the crowdsourced study
(447 sentences) which got marked as neutral and which got
the opposite of their labels in the SST2 dataset, using vari-
ous thresholds. Inter-annotator agreement is computed using
Fleiss’ Kappa. Average accuracies of the baseline and ELMo
(over 100 seeds) on non-neutral sentences are also shown.

96

no-distill, no—;iroject
— no-distill, project
distill, no-project

— distill, project
| — ELMo, no-project
— ELMo, project

.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
threshold

94

test performance

Figure 4: Average performance on the A-but-B part of the
crowd-sourced dataset (210 sentences, 100 seeds)). For each
threshold, only non-neutral sentences are used for evaluation.

a crowdsourced experiment identifying ambigu-
ous sentences. We present evidence that a re-
cently proposed contextualized word embedding
model (ELMo) (Peters et al., 2018a) implicitly
learns logic rules for sentiment classification of
complex sentences like A-but-B sentences. Future
work includes a fine-grained quantitative study of
ELMo word vectors for logically complex sen-
tences along the lines of Peters et al. (2018b).
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Appendix
A Crowdsourcing Details

Crowd workers residing in five English-speaking
countries (United States, United Kingdom, New
Zealand, Australia and Canada) were hired. Each
crowd worker had a Level 2 or higher rating on
Figure Eight, which corresponds to a “group of
more experienced, higher accuracy contributors”.
Each contributor had to pass a test questionnaire
to be eligible to take part in the experiment. Test
questions were also hidden throughout the task
and untrusted contributions were removed from
the final dataset. For greater quality control, an
upper limit of 75 judgments per contributor was
enforced.

Crowd workers were paid a total of $1 for 50 judg-
ments. An internal unpaid workforce (including
the first and second author of the paper) of 7 con-
tributors was used to speed up data collection.
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# Judgments Average Sentence
Positive Negative Neutral
1 1 7 0.50 the fight scenes are fun , but it grows tedious
it ’s not exactly a gourmet meal but the fare is fair ,
3 2 4 0.56 . .
even coming from the drive thru
2 3 4 0.44 propelled not by characters but by caricatures
not everything works , but the average is higher than
4 2 3 0.61 . .
in mary and most other recent comedies
Table A1l: Examples of neutral sentences for a threshold of 0.66
# Judgments Average Original Sentence
Positive Negative Neutral
de niro and mcdormand give solid perfor-
1 5 3 0.28 Positive  mances , but their screen time is sabotaged by
the story ’s inability to create interest
son of the bride may be a good half hour too
6 0 3 0.83 Negative long but comes replete with a flattering sense
of mystery and quietness
wasabi is slight fare indeed , with the entire
project having the feel of something tossed
0 5 4 0.22 Positive  off quickly ( like one of hubert ’s punches )

, but it should go down smoothly enough with
popcorn

Table A2: Examples of flipped sentiment sentences, for a threshold of 0.66

Model 1 Vs Model 2 Significant

distill no-project distill project Yes
no-distill no-project no-distill project Yes
ELMo no-project ELMo project No
no-distill no-project distill  no-project No
no-distill project distill project No
no-distill  no-project ELMo no-project Yes
distill no-project ELMo no-project Yes
no-distill project ELMo project Yes
distill project ELMo project Yes

Table A3: Statistical significance using a two-sided Kolmogorov-Smirnov statistic (Massey Jr, 1951) with o = 0.001.
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Figure Al: Heat map showing the cosine similarity between pairs of word vectors within a single sentence. The leftmost
column has word2vec (Mikolov et al., 2013) embeddings, fine-tuned on the downstream task (SST2). The middle column
contains the original ELMo embeddings (Peters et al., 2018a) without any fine-tuning. The representations from the three layers
(token layer and two LSTM layers) have been averaged. The rightmost column contains ELMo embeddings fine-tuned on the

downstream task. For better visualization, the cosine similarity between identical words has been set equal to the minimum
value in the map.
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