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Abstract
Recent work has shown that recurrent neural
networks (RNNs) can implicitly capture and
exploit hierarchical information when trained
to solve common natural language processing
tasks (Blevins et al., 2018) such as language
modeling (Linzen et al., 2016; Gulordava et al.,
2018) and neural machine translation (Shi
et al., 2016). In contrast, the ability to model
structured data with non-recurrent neural net-
works has received little attention despite their
success in many NLP tasks (Gehring et al.,
2017; Vaswani et al., 2017). In this work, we
compare the two architectures—recurrent ver-
sus non-recurrent—with respect to their abil-
ity to model hierarchical structure and find that
recurrency is indeed important for this pur-
pose. The code and data used in our experi-
ments is available at https://github.com/
ketranm/fan_vs_rnn

1 Introduction

Recurrent neural networks (RNNs), in particu-
lar Long Short-Term Memory networks (LSTMs),
have become a dominant tool in natural language
processing. While LSTMs appear to be a natu-
ral choice for modeling sequential data, recently a
class of non-recurrent models (Gehring et al., 2017;
Vaswani et al., 2017) have shown competitive per-
formance on sequence modeling. Gehring et al.
(2017) propose a fully convolutional sequence-to-
sequence model that achieves state-of-the-art per-
formance in machine translation. Vaswani et al.
(2017) introduce Transformer networks that do
not use any convolution or recurrent connections
while obtaining the best translation performance.
These non-recurrent models are appealing due to
their highly parallelizable computations on modern
GPUs. But do they have the same ability to exploit
hierarchical structures implicitly in comparison to
RNNs? In this work, we provide a first answer to
this question.

Our interest here is the ability of capturing hi-
erarchical structure without being equipped with
explicit structural representations (Bowman et al.,
2015b; Tran et al., 2016; Linzen et al., 2016). We
choose Transformer as a non-recurrent model to
study in this paper. We refer to Transformer as
Fully Attentional Network (FAN) to emphasize
this characteristic. Our motivation to favor FANs
over convolutional neural networks (CNNs) is that
FANs always have full access to the sequence
history, making them more suited for modeling
long distance dependencies than CNNs. Addition-
ally, FANs promise to be more interpretable than
LSTMs by visualizing attention weights.

The rest of the paper is organized as follows:
We first highlight the differences between the two
architectures (§2) and introduce the two tasks (§3).
Then we provide setup and results for each task (§4
and §5) and discuss our findings (§6).

2 FAN versus LSTM

Conceptually, FANs differ from LSTMs in the way
they utilize the previous input to predict the next
output. Figure 1 depicts the main difference in
terms of computation when each model is making
predictions. At time step t, a FAN can access infor-
mation from all previous time steps directly with
O(1) computational operations. FANs do so by
employing a self-attention mechanism to compute
the weighted average of all previous input repre-
sentations. In contrast, LSTMs compress at each
time step all previous information into a single vec-
tor recursively based on the current input and the
previous compressed vector. By their definition,
LSTMs require O(d) computational operations to
access the information at time step t− d.

For the details of self-attention mechanics in
FANs, we refer to the work of Vaswani et al. (2017).
We now proceed to measure both models’ ability to

https://github.com/ketranm/fan_vs_rnn
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(a) LSTM (b) FAN

Figure 1: Diagram showing the main difference be-
tween a LSTM and a FAN. Purple boxes indicate
the summarized vector at current time step t which
is used to make prediction. Orange arrows indicate
the information flow from a previous input to that
vector.

learn hierarchical structure with a set of controlled
experiments.

3 Tasks

We choose two tasks to study in this work: (1)
subject-verb agreement, and (2) logical inference.
The first task was proposed by Linzen et al. (2016)
to test the ability of recurrent neural networks to
capture syntactic dependencies in natural language.
The second task was introduced by Bowman et al.
(2015b) to compare tree-based recursive neural net-
works against sequence-based recurrent networks
with respect to their ability to exploit hierarchical
structures to make accurate inferences. The choice
of tasks here is important to ensure that both mod-
els have to exploit hierarchical structural features
(Jia and Liang, 2017).

4 Subject-Verb Agreement

Linzen et al. (2016) propose the task of predict-
ing number agreement between subject and verb in
naturally occurring English sentences as a proxy
for the ability of LSTMs to capture hierarchical
structure in natural language. We use the dataset
provided by Linzen et al. (2016) and follow their
experimental protocol of training each model us-
ing either (a) a general language model, i.e., next
word prediction objective, and (b) an explicit super-
vision objective, i.e., predicting the number of the
verb given its sentence history. Table 1 illustrates
the training and testing conditions of the task.
Data: Following the original setting, we take 10%
of the data for training, 1% for validation, and the
rest for testing. The vocabulary consists of the 10k
most frequent words, while the remaining words
are replaced by their part-of-speech.

Table 1: Examples of training and test conditions
for the two subject-verb agreement subtasks. The
full input sentence is “The keys to the cabinet are
on the table” where verb and subject are bold and
intervening nouns are underlined.

Input Train Test

(a) the keys to the cabinet are p(are) > p(is)?
(b) the keys to the cabinet plural plural/singular?

Hyperparameters: To allow for a fair comparison,
we find the best configuration for each model by
running a grid search over the following hyperpa-
rameters: number of layers in {2, 3, 4}, dropout
rate in {0.2, 0.3, 0.5}, embedding size and num-
ber of hidden units in {128, 256, 512}, number
of heads (for FAN) in {2, 4}, and learning rate
in {0.00001, 0.0001, 0.001}. The weights of the
word embeddings and output layer are shared (Inan
et al., 2017; Press and Wolf, 2017). Models are op-
timized by Adam (Kingma and Ba, 2015).

We first assess whether the LSTM and FAN
models trained with respect to the language model
objective assign higher probabilities to the cor-
rectly inflected verbs. As shown in Figures 2a
and 2b, both models achieve high accuracies for
this task, but LSTMs consistently outperform
FANs. Moreover, LSTMs are clearly more ro-
bust than FANs with respect to task difficulty, mea-
sured both in terms of word distance and num-
ber of agreement attractors1 between subject and
verb. Christiansen and Chater (2016); Cornish et al.
(2017) have argued that human memory limitations
give rise to important characteristics of natural lan-
guage, including its hierarchical structure. Simi-
larly, our experiments suggest that, by compress-
ing the history into a single vector before making
predictions, LSTMs are forced to better learn the
input structure. On the other hand, despite having
direct access to all words in their history, FANs are
less capable of detecting the verb’s subject. We
note that the validation perplexities of the LSTM
and FAN are 67.06 and 69.14, respectively.

Secondly, we evaluate FAN and LSTM models
explicitly trained to predict the verb number (Fig-
ures 2c and 2d). Again, we observe that LSTMs
consistently outperform FANs. This is a partic-
ularly interesting result since the self-attention
mechanism in FANs connects two words in any po-

1Agreement attractors are intervening nouns with the op-
posite number from the subject.
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Figure 2: Results of subject-verb agreement with different training objectives.
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Figure 3: Proportion of times the subject is the most
attended word by different heads at different layers
(`3 is the highest layer). Only cases where the
model made a correct prediction are shown.

sition with a O(1) number of executed operations,
whereas RNNs require more recurrent operations.
Despite this apparent advantage of FANs, the per-
formance gap between FANs and LSTMs increases
with the distance and number of attractors.2

To gain further insights into our results, we ex-
amine the attention weights computed by FANs
during verb-number prediction (supervised objec-
tive). Specifically, for each attention head at each
layer of the FAN, we compute the percentage of

2We note that our LSTM results are better than those in
Linzen et al. (2016). Also surprising is that the language
model objective yields higher accuracies than the number pre-
diction objective. We believe this may be due to better model
optimization and to the embedding-output layer weight shar-
ing, but we leave a thorough investigation to future work.

times the subject is the most attended word among
all words in the history. Figure 3 shows the results
for all cases where the model made the correct pre-
diction. While it is hard to interpret the exact role
of attention for different heads and at different lay-
ers, we find that some of the attention heads at the
higher layers (`2 h1, `3 h0) frequently point to
the subject with an accuracy that decreases linearly
with the distance between subject and verb.

5 Logical inference

In this task, we choose the artificial language in-
troduced by Bowman et al. (2015b). The vocab-
ulary of this language includes six word types {a,
b, c, d, e, f } and three logical operators {or, and,
not}. The task consists of predicting one of seven
mutually exclusive logical relations that describe
the relationship between a pair of sentences: en-
tailment (@, A), equivalence (≡), exhaustive and
non-exhaustive contradiction (∧, |), and two types
of semantic independence (#, `). We generate
60,000 samples3 with the number of logical op-
erations ranging from 1 to 12. The train/dev/test
dataset ratios are set to 0.8/0.1/0.1. Here are some
samples of the training data:

( d ( or f ) ) A ( f ( and a ) )
( d ( and ( c ( or d ) ) ) ) # ( not f )

( not ( d ( or ( f ( or c ) ) ) ) ) @ ( not ( c ( and ( not d ) ) ) )

Why artificial data? Despite the simplicity of the

3https://github.com/sleepinyourhat/
vector-entailment

https://github.com/sleepinyourhat/vector-entailment
https://github.com/sleepinyourhat/vector-entailment
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language, this task is not trivial. To correctly
classify logical relations, the model must learn
nested structures as well as the scope of logical
operators. We verify the difficulty of the task by
training three bag-of-words models followed by
sum/average/max-pooling. The best of the three
models achieve less than 59% accuracy on the log-
ical inference versus 77% on the Stanford Natu-
ral Language Inference (SNLI) corpus (Bowman
et al., 2015a). This shows that the SNLI task can be
largely solved by exploiting shallow features with-
out understanding the underlying linguistic struc-
tures, which has also been pointed out by recent
work (Glockner et al., 2018; Gururangan et al.,
2018).

Concurrently to our work Evans et al. (2018) pro-
posed an alternative data set for logical inference
and also found that a FAN model underperformed
various other architectures including LSTMs.

5.1 Models
We follow the general architecture proposed in
(Bowman et al., 2015b): Premise and hypothesis
sentences are encoded by fixed-size vectors. These
two vectors are then concatenated and fed to a 3-
layer feed-forward neural network with ReLU non-
linearities to perform 7-way classification of the
logical relation.

The LSTM architecture used in this experiment
is similar to that of Bowman et al. (2015b). We
simply take the last hidden state of the top LSTM
layer as a fixed-size vector representation of the
sentence. Here, we use a 2-layer LSTM with skip
connections. The FAN maps a sentence x of length
n to H = [h1, . . . ,hn] ∈ Rd×n. To obtain a fixed-
size representation z, we use a self-attention layer
with two trainable queries q1,q2 ∈ R1×d:

zi = softmax
(
qiH√

d

)
H> i ∈ {1, 2}

z = [z1, z2]

We find the best hyperparameters for each model
by running a grid search as explained in §4.

5.2 Results
Following the experimental protocol of Bowman
et al. (2015b), the data is divided into 13 bins based
on the number of logical operators. Both FANs
and LSTMs are trained on samples with at most n
logical operators and tested on all bins. Figure 4
shows the result of the experiments with n ≤ 6 and
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Figure 4: Results of logical inference when training
on all data (a) or only on samples with at most n
logical operators (b).

n ≤ 12. We see that FANs and LSTMs perform
similarly when trained on the whole dataset (Fig-
ure 4a). However when trained on a subset of the
data (Figure 4b), LSTMs obtain better accuracies
on similar examples (n ≤ 6) and generalize better
on longer examples (6 < n ≤ 12).

6 Discussion and Conclusion

We have compared a recurrent architecture (LSTM)
to a non-recurrent one (FAN) with respect to the
ability of capturing the underlying hierarchical
structure of sequential data. Our experiments show
that LSTMs slightly but consistently outperform
FANs. We found that LSTMs are notably more ro-
bust with respect to the presence of misleading fea-
tures in the agreement task, whether trained with
explicit supervision or with a general language
model objective. Secondly, we found that LSTMs
generalize better than FANs to longer sequences
in a logical inference task. These findings sug-
gest that recurrency is a key model property which
should not be sacrificed for efficiency when hierar-
chical structure matters for the task.

This does not imply that LSTMs should al-
ways be preferred over non-recurrent architectures.
In fact, both FAN- and CNN-based networks
have proved to perform comparably or better than
LSTM-based ones on a very complex task like ma-
chine translation (Gehring et al., 2017; Vaswani
et al., 2017). Nevertheless, we believe that the abil-
ity of capturing hierarchical information in sequen-
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tial data remains a fundamental need for building
intelligent systems that can understand and process
language. Thus we hope that our insights will be
useful towards building the next generation of neu-
ral networks.
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