Dual Fixed-Size Ordinally Forgetting Encoding (FOFE)
for Competitive Neural Language Models

Sedtawut Watcharawittayakul*and Mingbin Xu* and Hui Jiang
Department of Electrical Engineering and Computer Science
Lassonde School of Engineering, York University
4700 Keele Street, Toronto, Ontario, Canada
{watchara, xmb, hj}@eecs.yorku.ca

Abstract

In this paper, we propose a new approach to
employ the fixed-size ordinally-forgetting en-
coding (FOFE) (Zhang et al., 2015b) in neural
languages modelling, called dual-FOFE. The
main idea behind dual-FOFE is that it allows
to use two different forgetting factors so that it
can avoid the trade-off in choosing either small
or large values for the single forgetting factor
in the original FOFE. In our experiments, we
have compared the dual-FOFE based neural
network language models (NNLM) against the
original FOFE counterparts and various tradi-
tional NNLMs. Our results on the challeng-
ing Google Billion Words corpus show that
both FOFE and dual FOFE yield very strong
performance while significantly reducing the
computational complexity over other NNLMs.
Furthermore, the proposed dual-FOFE method
further gives over 10% relative improvement
in perplexity over the original FOFE model.

1 Introduction

Language modelling is an essential task for many
natural language processing (NLP) applications
including speech recognition, machine translation
and text summarization. The goal of language
modelling is to learn the distribution over a se-
quence of characters or words; this distribution
may be utilized for encoding the language struc-
ture (e.g. the grammatical structure) as well as
extracting information from the corpora (Joze-
fowicz et al., 2016). In the recent years, the
popularity of neural networks (NN) has been a
significant driving force for language modelling
(LM) research; the well-known NN-LM models
includes the feedforward NN-LMs (FNN-LMs)
(Bengio et al., 2001, 2003), recurrent NN-LMs
(RNN-LMs) (Mikolov et al., 2010; Mikolov

*Equal contribution.

and Zweig, 2012) and the long short-term mem-
ory (LSTM-LMs) (Hochreiter and Schmidhuber,
1997). Among all, FNN-LMs often have a simpler
and more efficient learning process, but they tend
to underperform the other NN-LMs due to the lim-
ited capability to memorize the long term depen-
dency in natural languages (Zhang et al., 2015b).
However this drawback could be addressed by ap-
plying the fixed-size ordinally-forgetting encoding
(FOFE) to FNN’s inputs. FOFE is an encoding
method, which relies on the ordinally-forgetting
mechanism to encode any word sequence based on
the positions of words; this also allows the FOFE
code to capture the long-term dependency (Zhang
et al., 2015b). As shown in Zhang (2015b), FNN-
LMs with FOFE can easily yield comparable per-
formance as other NN-LMs. The key parameter in
the FOFE method is the forgetting factor, which is
responsible for determining the degree of sensitiv-
ity of the encoding with respect to the past con-
text. However, the choice of a good value for the
forgetting factor could be tricky since both small
and large forgetting factors are offering different
benefits.

In this paper, we propose a simple alteration to
FOFE method, which allows to incorporate two
forgetting factors into the fixed-size encoding of
the variable-length word sequences. We name this
approach as dual-FOFE. Our hypothesis is that
by incorporating both the small and large forget-
ting factors in the FOFE encoding, the dual-FOFE
is able to simultaneously optimize the abilities to
capture the positional information as well as to
model long term dependency. In our experiments,
we have evaluated the proposed dual FOFE mod-
els on two large scale language modeling tasks,
namely enwiki9 and Google Billion Words (GBW)
corpora. Experimental results have shown that
both FOFE models yield very competitive perfor-
mance on these tasks, comparable with the state-

4725

Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4725-4730
Brussels, Belgium, October 31 - November 4, 2018. (©2018 Association for Computational Linguistics

of-the-art systems but with significantly reduced
learning complexity. Furthermore, the proposed
dual-FOFE method further gives over 10% relative
improvement in perplexity over the original FOFE
model.

2 Related Work

In this section, we will briefly review the NN-LMs
and the original FOFE method. The general idea
behind NN-LM is to project the discrete words
onto a continuous space, then learn to estimate
the conditional probabilities of each known word
within the projected space. The training of NN-
LMs are often incredibly slow due to the ineffi-
ciency of softmax normalization when applied to
the extremely large output layer. The solution cur-
rently used by many NN-LMs (including our mod-
els in this work) is to use noise contrastive estima-
tion (NCE) (Gutmann and Hyvrinen, 2010). The
basic idea of NCE is to reduce the probability esti-
mation problem into a probabilistic binary classi-
fication problem (Mnih and Teh, 2012; Mnih and
Kavukcuoglu, 2013).

2.1 Fixed-Size Ordinally Forgetting
Encoding

Fixed-size ordinally-forgetting Encoding (FOFE)
is an encoding method which generates a fixed-
size representation, namely the FOFE code, for
any variable-length word sequence (Zhang et al.,
2015b). For a given word sequence S =
{wy, wa, ..., wr}, let e; denote the one-hot repre-
sentation of the word wy, z; for the FOFE code
of the partial word sequence up to word wy, z; is
computed as follows:
p=a-z1+e (1<t<T) (1)
where a (0 < a < 1) denotes the forgetting factor,
a parameter responsible for determining the de-
gree of influence each time step of the past context
has on the FOFE code. Obviously, FOFE can con-
vert any variable-length sequence into a fixed-size
code with length equal to the size of vocabulary.
In regard to uniqueness of FOFE code, the code
is said to be (almost) unique under the two theo-
rems (proven in Zhang (2015a)):
Theorem 1 If 0 < a < 0.5, then FOFE code is
guarantee uniqueness for any values of vocabu-
lary’s size and sequence’s length.
Theorem 2 [f 0.5 < o < I, then FOFE code is
guarantee almost uniqueness for any finite values

of vocabulary’s size and sequence’s length, except
for a finite set of countable choices of a.

Furthermore, the chance of actually having any
collisions for o between 0.5 and 1 is nearly impos-
sible in practice, due to quantization errors in real
computer systems. Hence in practice, it is safe to
argue that FOFE is able to uniquely encodes any
variable-length sequence into a fixed-size repre-
sentation.

2.2 FOFE for FNN-LMs

The idea of FOFE based NN-LMs is to use FOFE
to encode the partial history sequence of past
words in a sentence, then feed this fixed-size
FOFE code to a feedforward neural network as an
input to predict next word. As shown in Figure 1,
the FOFE code could be efficiently computed via
time-delayed recursive structure, where the sym-
bol 2! in the figure represents a unit time delay
(or equivalently a memory unit) from 2; to z;_1.

Output layer: ye ¥ ¥

t t t

Hidden layers: N :

he he he

4 —M ———44

Projection layer: Xe1 xt Xez Xe1 Xt

BN SN I S I S

FOFE: &)<= i =
«

4 4 4

[| [

Input 1-of-K: e o e

Figure 1: (Left) Ist-order FOFE FNN-LM; (Center)
2nd-order FOFE FNN-LM; (Right) 3rd-order FOFE
FNN-LM.

The basic architecture for FOFE based FNN-
LMs (called 1st-order) is the standard FNN archi-
tecture with an additional layer for encoding the
input into FOFE code. However, in this work,
we use the 2nd-order and 3rd-order FOFE FNN-
LMs, which are shown to produce slightly better
results (Zhang et al., 2015b). In a 2nd-order FOFE
model, both the current partial sequences FOFE
code (denoted as z;) and the previous partial se-
quences FOFE code (denoted as z;—1) are utilized
to predict next word. In a 3rd-order FOFE model,
all z¢, z;—1 and z;_o are used as inputs to neural
networks.

More recently, the FOFE methods have been
successfully applied to many NLP tasks, including
word embedding (Sanu et al., 2017), named entity
recognition (Xu et al., 2017a), entity discovery and
linking (Xu et al., 2016, 2017b).

4726

3 Dual-FOFE

The main idea of dual-FOFE is to generate aug-
mented FOFE encoding codes by concatenating
two FOFE codes using two different forgetting
factors. Each of these FOFE codes is still com-
puted in the same way as the mathematical for-
mulation shown in Equation (1). The difference
between them is that we may select to use two dif-
ferent values for the forgetting factor (denoted as
«) for additional modeling benefits.

3.1 Intuition behind Dual-FOFE

As mentioned in the subsection 2.1, the values in
a FOFE code are used to encode both the content
and the order information in a sequence. This is
achieved by a recursive encoding method where at
each recursive step the code will be multiplied by
the forgetting factor (ar) whose value is bounded
by 0 < a < 1. In a practical computer with fi-
nite precision, this has an impact on the FOFE’s
abilities to precisely memorize the long-term de-
pendency of past context as well as to properly
represent the positional information.

The FOFE’s ability to represent the positional
information would improve with smaller forget-
ting factors. The reason is that that when « is
small, the FOFE code (z;) for each word vastly
differs from its neighbour in magnitude. If « is
too large (close to 1), the contribution of a word
may not change too much no matter where it is.
This may hamper the following neural networks
to model the positional information. Conversely,
the FOFE’s ability to model the long-term depen-
dency of the older context would improve with
larger forgetting factors. This is because when «
is small, the contribution of a word from the older
history may quickly underflow to become irrele-
vant (i.e. forgotten) when computing the current
word.

In the original FOFE with just a single forget-
ting factor, we would have to determine the best
trade-off between these two benefits. On the other
hand, the dual-FOFE does not face such issues
since it is composed of two FOFE codes: the half
of the dual-FOFE code using a smaller forgetting
factor is solely optimized and responsible for rep-
resenting the positional information of all words
in the sequence; meanwhile the other half of the
dual-FOFE code using a larger forgetting factor
is optimized and responsible for maintaining the
long-term dependency of past context.

3.2 Dual-FOFE based FNN-LM

Output layer: e ye

4 4

Hidden layers: :

he h

t t

Joining FOFEs: JoinTable JoinTable
7 r T

FOFE: i Clm 2 2| me fan Tla [#e 2w 2
mall_a Y large_a s mall_a Y large_a s
l—l '—l

Projection layer: e e

vt vt

Input layer: X Xt

Figure 2: (Left) 2nd-order Dual-FOFE FNN-LM;
(Right) 3rd-order Dual-FOFE FNN-LM.

As shown in Figure 2, the architecture of dual-
FOFE based FNN-LMs is very similar to the orig-
inal FOFE FNN-LMs.! In the Dual-FOFE FNN-
LMs, the input word sequence would have to pass
through two branches of the FOFE layers (using
two different forgetting factors) and each encod-
ing branch will produce a FOFE code represent-
ing the input sequence. These two FOFE codes
are then joined to produce the dual-FOFE code,
which would be fed to FNNs to predict the next
word.

It might also be worth noting that in our imple-
mentation we do not explicitly reset FOFE codes,
i.e. z; value, at sentence boundaries. However, far-
away histories will be gradually forgotten by the
recursive calculation in FOFE due to 0 < o < 1
and finite precision in computers.

3.3 Dual-FOFE vs. Higher Order FOFE

As mentioned previously in the subsection 2.2, the
higer order FOFE codes would utilize both the
current and the previous sequence FOFE codes
for prediction. Hence similar to dual-FOFE, the
higher order FOFE could also maintain the sen-
sitivity to both nearby and faraway context. Ob-
viously a much higher order FOFE code may be
required in order to achieve the same effect as
dual-FOFE in terms of modelling long-term de-
pendency. In this case, the higher order FOFE may
also significantly increase the number of param-
eters in the input layer. At last, the dual FOFE

'The difference in the location of the projection layer
between Figure 1 and 2 simply indicates two equivalent
ways to do word projection. Figure 1 was originally from
Zhang (2015b), but they mentioned in text (without a figure)
that it is more efficient to do projection as in Figure 2 and both

methods are mathematically equivalent since both projection
and FOFE steps are linear.

4727

and the higher order FOFE are largely comple-
mentary since we have observed consistent per-
formance gains when combining dual FOFE with
either 2nd-order or 3rd-order FOFE in our experi-
ments.

4 Experiments

In this work, we have evaluated the proposed
dual-FOFE based FNN-LMs against various tra-
ditional neural language models on two corpora:
i) enwik9 corpus: it consists of the first 1 billion
bytes of English wikipedia dump, having total size
of 170.8 million words; the corpus was divided
into three parts: the training set (153M words),
the test set (8.9M words), and the validation set
(8.9M words); the vocabulary size is limited to
80k words (Zhang et al., 2015b). ii) Google Bil-
lion Words (GBW) corpus: it contains about 800
million words and the corpus is divided into two
parts: the training set (792M words) and the test
set (8M words); the vocabulary size for this cor-
pus is limited to 800k words (Chelba et al., 2013).

4.1 Results on enwiki9

In the experiments on the enwiki9 corpus, we have
trained three dual-FOFE FNN-LMs with differ-
ent forgetting factor pairs, one FOFE FNN-LM,
and one tri-FOFE FNN-LM. All five models adopt
a 2nd-order FOFE structure, employing a word
embeddings of 256 dimensions, three hidden lay-
ers of 400, 600, 600 neurons and an output layer
of 80k words (reflecting the vocabulary). > Note
that the dual-FOFE FNN-LMs have to double the
size of input context windows since dual-FOFE
essentially contain two FOFE codes. But this in-
crease only accounts for a negligible faction of to-
tal model parameters.

As shown in Table 1, all three dual-FOFE FNN-
LMs, using three pairs of forgetting factors as (0.5,
0.7) and (0.7, 0.9) and (0.5, 0.9), can significantly
outperform other traditional models previously re-
ported on this corpus. We also note that it is bene-
ficial to include a relatively large forgetting factor,
such as 0.9, in the dual FOFE models since such
a large alpha may help to memorize much longer
context in the inputs. When compared with the
original FOFE counterpart, the best dual-FOFE
model using forgetting factors (0.5, 0.9) offers a
relative gain of around 8% in test PPL.

>Comparing with Zhang (2015b), our single FOFE FNN-

LM baseline use a slightly larger model, which lead to
slightly better perplexity.

It is worth noting that our dual-FOFE mod-
els can be extended to incorporate more than two
alpha values. In fact after we have obtained a
strong result supporting our dual-FOFE hypoth-
esis, we have performed additional experiments
using three alpha values, the so-called tri-FOFE
model. The result on Table 1 has shown that
the tri-FOFE FNN-LMs still slightly outperforms
the dual-FOFE models. However, the gain is
marginal. This leads us to believing that further
extension of more alpha values in FOFE would be
of limited use.

4.2 Results on Google Billion Words (GBW)

In the experiments on the GBW corpus, we have
trained one dual-FOFE FNN-LM and one FOFE
FNN-LM. Following the best dual-FOFE model
configuration on the previous corpus, this dual-
FOFE FNN-LM uses the same pair of dual for-
getting factors (0.5,0.9). Both models adopt a
3rd-order structure, employing word embeddings
of 256 dimensions, three hidden layers each of
4096 neurons, a compression layer with 720 neu-
rons, and an output layer of 800k words (reflect-
ing the vocabulary). Although dual-FOFE FNN-
LM has doubled the size of input context windows
of FOFE FNN-LM, the total number of model pa-
rameters in both models are almost equal, roughly
0.82 billion parameters.

As shown in Table 2, the dual-FOFE FNN-LM
is able to produce a very competitive performance,
comparable with the best previously reported re-
sults on this task, such as GCNN-13 (Dauphin
et al., 2016) and LSTM-LM (Jozefowicz et al.,
2016). The dual-FOFE FNN-LM are among the
few single-model systems that are able to achieve
test PPL below 40 on this task. Furthermore,
our proposed dual FOFE model can significantly
reduce the computational complexity, e.g., our
model has a relatively smaller number of param-
eter (0.82B parameters) and it requires much less
hardware resource to train (using only 1 GPU in
our experiments). When compared with the orig-
inal FOFE counterpart, the dual-FOFE FNN-LM
is able to provide approximately 11% relative im-
provement in PPL.

5 Conclusions

In this paper, we have proposed a new approach
of utilizing the fixed-size ordinally-forgetting en-
coding (FOFE) method for neural network lan-

4728

Table 1: Test PPL of various LMs on enwiki9.

Model Architecture PPL
KN 3-gram (Zhang et al., 2015b) - 156
KN 5-gram (Zhang et al., 2015b) - 132
FNN-LM 2-gram (Zhang et al., 2015b) [2*200]-600-600-80k 150
FNN-LM 3-gram (Zhang et al., 2015b) [3*200]-400-400-80k 131
FNN-LM 4-gram (Zhang et al., 2015b) [4*%200]-400-400-80k 125
RNN-LM (Zhang et al., 2015b) [1*600]-80k 112
FOFE[a=0.7] FNN-LM (Zhang et al., 2015b) | [2*200]-600-600-80k 107
FOFE[a=0.7] FNN-LM [2*256]-400-600-600-80k 104.8
Dual-FOFE[a=0.5,0.7] FNN-LM [2*2%256]-400-600-600-80k | 101.7
Dual-FOFE[a=0.7,0.9] FNN-LM [2*2%256]-400-600-600-80k | 97.0
Dual-FOFE[a=0.5,0.9] FNN-LM [2*2%256]-400-600-600-80k | 96.6
Tri-FOFE[«=0.5,0.7,0.9] FNN-LM [3*2*256]-400-600-600-80k | 95.9
Table 2: Test PPL of various LMs on Google Billion Words.
model PPL | #param | hardware
Sigmoid-RNN-2048 (Ji et al., 2015) 68.3 | 4.1B 1 CPU
Interpolated KN 5-gram & 1.1B n-grams (Chelba et al., 2013) | 67.6 | 1.8B 100 CPUs
Sparse Non-Negative Matrix LM (Shazeer et al., 2015) 52.9 33B -
RNN-1024 + MaxEnt 9-gram (Chelba et al., 2013) 513 20B 24 GPUs
LSTM-1024-512 (Jozefowicz et al., 2016) 48.2 | 0.82B | 40 GPUs
LSTM-2048-512 (Jozefowicz et al., 2016) 43.7 | 0.83B 40 GPUs
LSTM + CNN input (Jozefowicz et al., 2016) 30.0 | 1.04B | 40 GPUs
GCNN-13 (Dauphin et al., 2016) 38.1 - 1 GPU
FOFE[a=0.7] FNN-LM [3%*256]-4096*3-720-800k 43.6 | 0.82B 1 GPU
Dual-FOFE[a=0.5,0.9] FNN-LM [2*3%256]-4096*3-720-800k | 39.0 | 0.82B 1 GPU

guage models (NN-LMs), known as dual-FOFE.
As the name implies, this approach involves to
produce a new fixed-sized representation for any
variable-length sequence from a concatenation of
two FOFE codes. This would have allowed us to
select two values for the forgetting factors. One
FOFE code with a smaller forgetting factor is re-
sponsible for representing the positional informa-
tion of all words in the sequence while the other
using a larger forgetting factor is responsible for
modelling the even longer term dependency in
far away history. Our experiments on both en-
wiki9 and Google Billion Words (GBW) tasks
have both demonstrated the effectiveness of the
dual-FOFE modeling approach. Experimental re-
sults on the challenging GBW corpus have shown
that the dual-FOFE FNN-LM has achieved over
10% improvement in perplexity over the original
FOFE FNN-LM, without any significant drawback
in model and learning complexity. When com-
pared with other traditional neural language mod-
els, the dual-FOFE FNN-LM has achieved com-

petitive performance with significantly lower com-
putational complexity.

Acknowledgement

This work is supported mainly by a research do-
nation from iFLYTEK Co., Ltd., Hefei, China,
and partially by a discovery grant from Natu-
ral Sciences and Engineering Research Council
(NSERC) of Canada.

References

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent.
2001. A neural probabilistic language model. In
Advances in Neural Information Processing Systems

13, pages 932-938. MIT Press.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3:1137-1155.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, and Phillipp Koehn. 2013. One bil-

4729

lion word benchmark for measuring progress in sta-
tistical language modeling. CoRR, abs/1312.3005.

Yann N. Dauphin, Angela Fan, Michael Auli,
and David Grangier. 2016. Language model-
ing with gated convolutional networks. CoRR,
abs/1612.08083.

Michael Gutmann and Aapo Hyvrinen. 2010. Noise-
contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings
of the 13th International Conference on Artificial In-
telligence and Statistics, pages 297-304. Journal of
Machine Learning Research - Proceedings Track.

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735-1780.

Shihao Ji, S. V. N. Vishwanathan, Nadathur Satish,
Michael J. Anderson, and Pradeep Dubey. 2015.
Blackout: Speeding up recurrent neural network lan-

guage models with very large vocabularies. CoRR,
abs/1511.069009.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring the lim-
its of language modeling. CoRR, abs/1602.02410.

Tomas Mikolov, Martin Karafiat, Lukds Burget, Jan
Cernocky, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In IN-
TERSPEECH.

Tomas Mikolov and Geoffrey Zweig. 2012. Context
dependent recurrent neural network based language
model. In 2012 IEEE Spoken Language Technology
Workshop.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive
estimation. In Proceedings of the 26th International
Conference on Neural Information Processing Sys-
tems - Volume 2, NIPS’13, pages 2265-2273, USA.
Curran Associates Inc.

Andriy Mnih and Yee Whye Teh. 2012. A fast and sim-
ple algorithm for training neural probabilistic lan-
guage models. ArXiv e-prints.

Joseph Sanu, Mingbin Xu, Hui Jiang, and Quan Liu.
2017. Word embeddings based on fixed-size ordi-
nally forgetting encoding. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 310-315, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Noam Shazeer, Joris Pelemans, and Ciprian Chelba.
2015. Sparse non-negative matrix language mod-
eling for skip-grams. In Proceedings of Interspeech
2015, pages 1428-1432. International Speech Com-
munication Association.

Mingbin Xu, Hui Jiang, and Sedtawut Watcharawit-
tayakul. 2017a. A local detection approach for
named entity recognition and mention detection.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1237-1247, Vancouver,
Canada. Association for Computational Linguistics.

Mingbin Xu, Nargiza Nosirova, Kelvin Jiang, Feng
Wei, and Hui Jiang. 2017b. FOFE-based deep neu-
ral networks for entity discovery and linking. In
Proceedings of the Text Analysis Conference (TAC)
2017.

Mingbin Xu, Feng Wei, Sedtawut Watcharawittayakul,
Yuchen Kang, and Hui Jiang. 2016. The YorkNRM
systems for trilingual EDL tasks at TAC KBP 2016.
In Proceedings of the Text Analysis Conference
(TAC) 2016.

Shiliang Zhang, Hui Jiang, Mingbin Xu, Junfeng Hou,
and Li-Rong Dai. 2015a. A fixed-size encoding
method for variable-length sequences with its appli-
cation to neural network language models. CoRR,
abs/1505.01504.

Shiliang Zhang, Hui Jiang, Mingbin Xu, Junfeng Hou,
and Lirong Dai. 2015b. The fixed-size ordinally-
forgetting encoding method for neural network lan-
guage models. In Proceedings of the 53th Annual
Meeting of the Association for Computational Lin-
guistics, pages 495-500. Association for Computa-
tional Linguistics.

4730

