
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4524–4534
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

4524

Word Mover’s Embedding:
From Word2Vec to Document Embedding

Lingfei Wu
IBM Research

wuli@us.ibm.com

Ian En-Hsu Yen
Carnegie Mellon University
eyan@cs.cmu.edu

Kun Xu
IBM Research

kun.xu1@ibm.com

Fangli Xu
College of William and Mary
fxu02@email.wm.edu

Avinash Balakrishnan
IBM Research

avinash.bala@us.ibm.com

Pin-Yu Chen
IBM Research

Pin-yu.chen@ibm.com

Pradeep Ravikumar
Carnegie Mellon University
pradeepr@cs.cmu.edu

Michael J. Witbrock
IBM Research

witbrock@us.ibm.com

Abstract

While the celebrated Word2Vec technique
yields semantically rich representations for in-
dividual words, there has been relatively less
success in extending to generate unsupervised
sentences or documents embeddings. Recent
work has demonstrated that a distance mea-
sure between documents called Word Mover’s
Distance (WMD) that aligns semantically sim-
ilar words, yields unprecedented KNN clas-
sification accuracy. However, WMD is ex-
pensive to compute, and it is hard to extend
its use beyond a KNN classifier. In this pa-
per, we propose the Word Mover’s Embed-
ding (WME), a novel approach to building an
unsupervised document (sentence) embedding
from pre-trained word embeddings. In our ex-
periments on 9 benchmark text classification
datasets and 22 textual similarity tasks, the
proposed technique consistently matches or
outperforms state-of-the-art techniques, with
significantly higher accuracy on problems of
short length.

1 Introduction

Text representation plays an important role in many
NLP-based tasks such as document classification
and clustering (Zhang et al., 2018; Gui et al.,
2016, 2014), sense disambiguation (Gong et al.,
2017, 2018a), machine translation (Mikolov et al.,
2013b), document matching (Pham et al., 2015),
and sequential alignment (Peng et al., 2016, 2015).
Since there are no explicit features in text, much
work has aimed to develop effective text represen-
tations. Among them, the simplest bag of words
(BOW) approach (Salton and Buckley, 1988) and

its term frequency variants (e.g. TF-IDF) (Robert-
son and Walker, 1994) are most widely used due to
simplicity, efficiency and often surprisingly high ac-
curacy (Wang and Manning, 2012). However, sim-
ply treating words and phrases as discrete symbols
fails to take into account word order and the seman-
tics of the words, and suffers from frequent near-
orthogonality due to its high dimensional sparse
representation. To overcome these limitations, La-
tent Semantic Indexing (Deerwester et al., 1990)
and Latent Dirichlet Allocation (Blei et al., 2003)
were developed to extract more meaningful repre-
sentations through singular value decomposition
(Wu and Stathopoulos, 2015) and learning a proba-
bilistic BOW representation.

A recent empirically successful body of research
makes use of distributional or contextual informa-
tion together with simple neural-network models
to obtain vector-space representations of words
and phrases (Bengio et al., 2003; Mikolov et al.,
2013a,c; Pennington et al., 2014). A number of
researchers have proposed extensions of these to-
wards learning semantic vector-space representa-
tions of sentences or documents. A simple but often
effective approach is to use a weighted average over
some or all of the embeddings of words in the doc-
ument. While this is simple, important information
could easily be lost in such a document representa-
tion, in part since it does not consider word order.
A more sophisticated approach (Le and Mikolov,
2014; Chen, 2017) has focused on jointly learning
embeddings for both words and paragraphs using
models similar to Word2Vec. However, these only
use word order within a small context window;
moreover, the quality of word embeddings learned

4525

in such a model may be limited by the size of the
training corpus, which cannot scale to the large
sizes used in the simpler word embedding models,
and which may consequently weaken the quality
of the document embeddings.

Recently, Kusner et al. (Kusner et al., 2015)
presented a novel document distance metric, Word
Mover’s Distance (WMD), that measures the dis-
similarity between two text documents in the
Word2Vec embedding space. Despite its state-
of-the-art KNN-based classification accuracy over
other methods, combining KNN and WMD incurs
very high computational cost. More importantly,
WMD is simply a distance that can be only com-
bined with KNN or K-means, whereas many ma-
chine learning algorithms require a fixed-length
feature representation as input.

A recent work in building kernels from distance
measures, D2KE (distances to kernels and em-
beddings) (Wu et al., 2018a) proposes a general
methodology of the derivation of a positive-definite
kernel from a given distance function, which enjoys
better theoretical guarantees than other distance-
based methods, such as k-nearest neighbor and dis-
tance substitution kernel (Haasdonk and Bahlmann,
2004), and has also been demonstrated to have
strong empirical performance in the time-series
domain (Wu et al., 2018b).

In this paper, we build on this recent innova-
tion D2KE (Wu et al., 2018a), and present the
Word Mover’s Embedding (WME), an unsupervised
generic framework that learns continuous vector
representations for text of variable lengths such
as a sentence, paragraph, or document. In par-
ticular, we propose a new approach to first con-
struct a positive-definite Word Mover’s Kernel via
an infinite-dimensional feature map given by the
Word Mover’s distance (WMD) to random docu-
ments from a given distribution. Due to its use of
the WMD, the feature map takes into account align-
ments of individual words between the documents
in the semantic space given by the pre-trained word
embeddings. Based on this kernel, we can then de-
rive a document embedding via a Random Features
approximation of the kernel, whose inner products
approximate exact kernel computations. Our tech-
nique extends the theory of Random Features to
show convergence of the inner product between
WMEs to a positive-definite kernel that can be in-
terpreted as a soft version of (inverse) WMD.

The proposed embedding is more efficient and

flexible than WMD in many situations. As an
example, WME with a simple linear classifier
reduces the computational cost of WMD-based
KNN from cubic to linear in document length and
from quadratic to linear in number of samples,
while simultaneously improving accuracy. WME
is extremely easy to implement, fully paralleliz-
able, and highly extensible, since its two build-
ing blocks, Word2Vec and WMD, can be replaced
by other techniques such as GloVe (Pennington
et al., 2014; Wieting et al., 2015b) or S-WMD
(Huang et al., 2016). We evaluate WME on 9
real-world text classification tasks and 22 textual
similarity tasks, and demonstrate that it consis-
tently matches or outperforms other state-of-the-
art techniques. Moreover, WME often achieves
orders of magnitude speed-up compared to KNN-
WMD while obtaining the same testing accuracy.
Our code and data is available at https://github.
com/IBM/WordMoversEmbeddings.

2 Word2Vec and Word Mover’s Distance

We briefly introduce Word2Vec and WMD, which
are the key building blocks of our proposed method.
Here are some notations we will use throughout the
paper. Given a total number of documents N with
a vocabulary W of size |W| = n, the Word2vec
embedding gives us a d-dimensional vector space
V ✓ Rd such that any word in the vocabulary set
w 2 W is associated with a semantically rich vec-
tor representation v

w

2 Rd. Then in this work, we
consider each document as a collection of word
vectors x := (v

j

)

L

j=1

and denote X :=

S
L

max

L=1

VL

as the space of documents.

Word2Vec. In the celebrated Word2Vec approach
(Mikolov et al., 2013a,c), two shallow yet effective
models are used to learn vector-space representa-
tions of words (and phrases), by mapping those
that co-occur frequently, and consequently with
plausibly similar meaning, to nearby vectors in the
embedding vector space. Due to the model’s sim-
plicity and scalability, high-quality word embed-
dings can be generated to capture a large number of
precise syntactic and semantic word relationships
by training over hundreds of billions of words and
millions of named entities. The advantage of docu-
ment representations building on top of word-level
embeddings is that one can make full use of high-
quality pre-trained word embeddings. Throughout
this paper we use Word2Vec as our first building
block but other (unsupervised or supervised) word

https://github.com/IBM/WordMoversEmbeddings
https://github.com/IBM/WordMoversEmbeddings

4526

(a) WMD (b) WME

Figure 1: An illustration of the WMD and WME. All non-stop words are marked as bold face. WMD
measures the distance between two documents. WME approximates a kernel derived from WMD with a
set of random documents.

embeddings (Pennington et al., 2014; Wieting et al.,
2015b) could also be utilized.

Word Mover’s Distance. Word Mover’s Distance
was introduced by (Kusner et al., 2015) as a special
case of the Earth Mover’s Distance (Rubner et al.,
2000), which can be computed as a solution of
the well-known transportation problem (Hitchcock,
1941; Altschuler et al., 2017). WMD is a distance
between two text documents x, y 2 X that takes
into account the alignments between words. Let
|x|, |y| be the number of distinct words in x and
y. Let f

x

2 R|x|, f
y

2 R|y| denote the normalized
frequency vectors of each word in the documents
x and y respectively (so that fT

x

1 = fT
y

1 = 1).
Then the WMD distance between documents x and
y is defined as:

WMD(x, y) := min

F2R|x|⇥|y|
+

hC,F i,

s.t., F1 = f
x

, FT1 = f
y

.

(1)

where F is the transportation flow matrix with
F
ij

denoting the amount of flow traveling from
i-th word x

i

in x to j-th word y
j

in y, and C is
the transportation cost with C

ij

:= dist(v
x

i

,v
y

j

)

being the distance between two words measured
in the Word2Vec embedding space. A popular
choice is the Euclidean distance dist(v

x

i

,v
y

j

) =

kv
x

i

� v
y

j

k
2

. When dist(v
x

i

,v
y

j

) is a metric,
the WMD distance in Eq. (1) also qualifies as
a metric, and in particular, satisfies the triangle in-
equality (Rubner et al., 2000). Building on top
of Word2Vec, WMD is a particularly useful and
accurate for measure of the distance between doc-
uments with semantically close but syntactically
different words as illustrated in Figure 1(a).

The WMD distance when coupled with KNN

has been observed to have strong performance in
classification tasks (Kusner et al., 2015). However,
WMD is expensive to compute with computational
complexity of O(L3

log(L)), especially for long
documents where L is large. Additionally, since
WMD is just a document distance, rather than a doc-
ument representation, using it within KNN incurs
even higher computational costs O(N2L3

log(L)).

3 Document Embedding via Word
Mover’s Kernel

In this section, we extend the framework in (Wu
et al., 2018a), to derive a positive-definite kernel
from an alignment-aware document distance met-
ric, which then gives us an unsupervised semantic
embeddings of texts of variable length as a by-
product through the theory of Random Feature Ap-
proximation (Rahimi and Recht, 2007).

3.1 Word Mover’s Kernel

We start by defining the Word Mover’s Kernel:

k(x, y) :=

Z
p(!)�

!

(x)�
!

(y)d!,

where �
!

(x) := exp(��WMD(x,!)).

(2)

where ! can be interpreted as a random docu-
ment {v

j

}D
j=1

that contains a collection of ran-
dom word vectors in V , and p(!) is a distribution
over the space of all possible random documents
⌦ :=

S
D

max

D=1

VD. �
!

(x) is an possibly infinite-
dimensional feature map derived from the WMD
between x and all possible documents ! 2 ⌦.

An insightful interpretation of this kernel (2):

k(x, y) := exp(��softmin

p(!)

f(!))

4527

where

softmin

p(!)

f(!) := �1

�
log

Z
p(!)e��f(!)d!,

and f(!) = {WMD(x,!) + WMD(!, y)}, is
a version of soft minimum function parameter-
ized by p(!) and �. Comparing this with the
usual definition of soft minimum softmin

i

f
i

:=

�softmax (�f
i

) = � log

P
i

e�f

i , it can be seen
that the soft-min-variant in the above Equations
uses a weighting of the objects ! via the probabil-
ity density p(!), and moreover has the additional
parameter � to control the degree of smoothness.
When � is large and f(!) is Lipschitz-continuous,
the value of the soft-min-variant is mostly deter-
mined by the minimum of f(!).

Note that since WMD is a metric, by the triangu-
lar inequality we have

WMD(x, y)  min

!2⌦
(WMD(x,!) + WMD(!, y))

and the equality holds if we allow the length of
random document D

max

to be not smaller than L.
Therefore, the kernel (2) serves as a good approx-
imation to the WMD between any pair of docu-
ments x, y as illustrated in Figure 1(b), while it is
positive-definite by the definition.

3.2 Word Mover’s Embedding
Given the Word-Mover’s Kernel in Eq. (2), we can
then use the Monte-Carlo approximation:

k(x, y) ⇡ hZ(x), Z(y)i = 1

R

RX

i=1

�
!

i

(x)�
!

i

(y)

(3)
where {!

i

}R
i=1

are i.i.d. random documents drawn
from p(!) and Z(x) := (

1p
R

�
!

i

(x))R
i=1

gives a
vector representation of document x. We call this
random approximation Word Mover’s Embedding.
Later, we show that this Random Features approxi-
mation in Eq. (3) converges to the exact kernel (2)
uniformly over all pairs of documents (x, y) .

Distribution p(!). A key ingredient in the Word
Mover’s Kernel and Embedding is the distribution
p(!) over random documents. Note that ! 2 X
consists of sets of words, each of which lies in
the Word2Vec embedding space; the characteris-
tics of which need to be captured by p(!) in order
to generate (sets of) “meaningful” random words.
Several studies have found that the word vectors
v are roughly uniformly dispersed in the word em-
bedding space (Arora et al., 2016, 2017). This is

also consistent with our empirical findings, that the
uniform distribution centered by the mean of all
word vectors in the documents is generally appli-
cable for various text corpora. Thus, if d is the
dimensionality of the pre-trained word embedding
space, we can draw a random word u 2 Rd as
u
j

⇠ Uniform[v
min

, v
max

], for j = 1, . . . , d, and
where v

min

and v
max

are some constants.
Given a distribution over random words, the re-

maining ingredient is the length D of random doc-
uments. It is desirable to set these to a small num-
ber, in part because this length is indicative of the
number of hidden global topics, and we expect the
number of such global topics to be small. In par-
ticular, these global topics will allow short random
documents to align with the documents to obtain
“topic-based” discriminatory features. Since there
is no prior information for global topics, we choose
to uniformly sample the length of random docu-
ments as D ⇠ Uniform[1, D

max

], for some con-
stant D

max

. Stitching the distributions over words,
and over the number of words, we then get a distri-
bution over random documents. We note that our
WME embedding allows potentially other random
distributions, and other types of word embeddings,
making it a flexible and powerful feature learning
framework to utilize state-of-the-art techniques.

Algorithm 1 Word Mover’s Embedding: An Unsu-
pervised Feature Representation for Documents

Input: Texts {x
i

}N
i=1

, D
max

, R.
Output: Matrix Z

N⇥R

, with rows correspond-
ing to text embeddings.

1: Compute v
max

and v
min

as the maximum and
minimum values, over all coordinates of the
word vectors v of {x

i

}N
i=1

, from any pre-
trained word embeddings (e.g. Word2Vec,
GloVe or PSL999).

2: for j = 1, . . . , R do
3: Draw D

j

⇠ Uniform[1, D
max

].
4: Generate a random document !

j

consist-
ing of D

j

number of random words drawn as
!
j`

⇠ Uniform[v
min

, v
max

]

d, ` = 1, . . . , D
j

.
5: Compute f

x

i

and f
!

j

using a popular
weighting scheme (e.g. NBOW or TF-IDF).

6: Compute the WME feature vector Z
j

=

�
!

j

({x
i

}N
i=1

) using WMD in Equation (2).
7: end for
8: Return Z({x

i

}N
i=1

) =

1p
R

[Z
1

Z
2

. . . Z
R

]

Algorithm 1 summarizes the overall procedure

4528

to generate feature vectors for text of any length
such as sentences, paragraphs, and documents.

KNN-WMD, which uses the WMD distance
together with KNN based classification, requires
O(N2

) evaluations of the WMD distance, which in
turn has O(L3

log(L)) complexity, assuming that
documents have lengths bounded by L, leading
to an overall complexity of O(N2 L3

log(L). In
contrast, our WME approximation only requires
super-linear complexity of O(NRLlog(L)) when
D is constant. This is because in our case each
evaluation of WMD only requires O(D2 L log(L))
(Bourgeois and Lassalle, 1971), due to the short
length D of our random documents. This dramatic
reduction in computation significantly accelerates
training and testing when combined with empiri-
cal risk minimization classifiers such as SVMs. A
simple yet useful trick is to pre-compute the word
distances to avoid redundant computations since a
pair of words may appear multiple times in differ-
ent pairs of documents. Note that the computation
of the ground distance between each pair of word
vectors in documents has a O(L2 d) complexity,
which could be close to one WMD evaluation if
document length L is short and word vector di-
mension d is large. This simple scheme leads to
additional improvement in runtime performance of
our WME method that we show in our experiments.

3.3 Convergence of WME

In this section, we study the convergence of our
embedding (3) to the exact kernel (2) under the
framework of Random Features (RF) approxima-
tion (Rahimi and Recht, 2007). Note that the
standard RF convergence theory applies only to
the shift-invariant kernel operated on two vectors,
while our kernel (2) operates on two documents
x, y 2 X that are sets of word vectors. In (Wu
et al., 2018a), a general RF convergence theory is
provided for any distance-based kernel as long as
a finite covering number is given w.r.t. the given
distance. In the following lemma, we provide the
covering number for all documents of bounded
length under the Word Mover’s Distance. Without
loss of generality, we will assume that the word
embeddings {v} are normalized s.t. kvk  1.

Lemma 1. There exists an ✏-covering E of X under
the WMD metric with Euclidean ground distance,
so that:

8x 2 X , 9x
i

2 E , WMD(x, x
i

)  ✏,

that has size bounded as |E|  (

2

✏

)

dL, where L is
a bound on the length of document x 2 X .

Equipped with Lemma 1, we can derive the fol-
lowing convergence result as a simple corollary of
the theoretical results in (Wu et al., 2018a). We
defer the proof to the appendix A.

Theorem 1. Let �
R

(x, y) be the difference be-
tween the exact kernel (2) and the random approxi-
mation (3) with R samples, we have uniform con-
vergence

P

⇢
max

x,y2X
|�

R

(x, y)| > 2t

�
 2

✓
12�

t

◆
2dL

e�Rt

2

/2.

where d is the dimension of word embedding and L
is a bound on the document length. In other words,
to guarantee |�

R

(x, y)|  ✏ with probability at
least 1� �, it suffices to have

R = ⌦

✓
dL

✏2
log(

�

✏
) +

1

✏2
log(

1

�
)

◆
.

4 Experiments

We conduct an extensive set of experiments to
demonstrate the effectiveness and efficiency of the
proposed method. We first compare its perfor-
mance against 7 unsupervised document embed-
ding approaches over a wide range of text classi-
fication tasks, including sentiment analysis, news
categorization, amazon review, and recipe identifi-
cation. We use 9 different document corpora, with
8 of these drawn from (Kusner et al., 2015; Huang
et al., 2016); Table 1 provides statistics of the dif-
ferent datasets. We further compare our method
against 10 unsupervised, semi-supervised, and su-
pervised document embedding approaches on the
22 datasets from SemEval semantic textual similar-
ity tasks. Our code is implemented in Matlab, and
we use C Mex for the computationally intensive
components of WMD (Rubner et al., 2000).

4.1 Effects of R and D on WME
Setup. We first perform experiments to investigate
the behavior of the WME method by varying the
number of Random Features R and the length D of
random documents. The hyper-parameter � is set
via cross validation on training set over the range
[0.01, 10]. We simply fix the D

min

= 1, and vary
D

max

over the range [3, 21]. Due to limited space,
we only show selected subsets of our results, with
the rest listed in the Appendix B.2.

4529

Table 1: Properties of the datasets

Dataset C:Classes N :Train M :Test BOW Dim L:Length Application
BBCSPORT 5 517 220 13243 117 BBC sports article labeled by sport
TWITTER 3 2176 932 6344 9.9 tweets categorized by sentiment
RECIPE 15 3059 1311 5708 48.5 recipe procedures labeled by origin

OHSUMED 10 3999 5153 31789 59.2 medical abstracts (class subsampled)
CLASSIC 4 4965 2128 24277 38.6 academic papers labeled by publisher
REUTERS 8 5485 2189 22425 37.1 news dataset (train/test split)
AMAZON 4 5600 2400 42063 45.0 amazon reviews labeled by product
20NEWS 20 11293 7528 29671 72 canonical user-written posts dataset

RECIPE_L 20 27841 11933 3590 18.5 recipe procedures labeled by origin

100 101 102 103 104

Varying R

65

70

75

80

85

A
cc

u
ra

cy
 %

Train and Test Accuracy

Train D=21 gamma=1.12

Test D=21 gamma=1.12

(a) TWITTER

100 101 102 103 104

Varying R

50

60

70

80

90

100

A
cc

u
ra

cy
 %

Train and Test Accuracy

Train D=3 gamma=1.12

Test D=3 gamma=1.12

(b) CLASSIC

Figure 2: Train (Blue) and Test (Red) accuracy
when varying R with fixed D.

0 5 10 15 20 25

Varying DMax

72

74

76

78

80

82

84

A
cc

u
ra

cy
 %

Train and Test Accuracy

Train R=1024

Test R=1024

(a) TWITTER

0 5 10 15 20 25

Varying DMax

94

95

96

97

98

99

A
cc

u
ra

cy
 %

Train and Test Accuracy

Train R=1024

Test R=1024

(b) CLASSIC

Figure 3: Train (Blue) and Test (Red) accuracy
when varying D with fixed R.

Effects of R. We investigate how the performance
changes when varying the number of Random Fea-
tures R from 4 to 4096 with fixed D. Fig. 2 shows
that both training and testing accuracies gener-
ally converge very fast when increasing R from
a small number (R = 4) to a relatively large num-
ber (R = 1024), and then gradually reach to the
optimal performance. This confirms our analysis
in Theory 1 that the proposed WME can guarantee
the fast convergence to the exact kernel.

Effects of D. We further evaluate the training and
testing accuracies when varying the length of ran-
dom document D with fixed R. As shown in Fig. 3,
we can see that near-peak performance can usually
be achieved when D is small (typically D  6).
This behavior illustrates two important aspects: (1)
using very few random words (e.g. D = 1) is
not enough to generate useful Random Features

when R becomes large; (2) using too many random
words (e.g. D � 10) tends to generate similar and
redundant Random Features when increasing R.
Conceptually, the number of random words in a
random document can be thought of as the number
of the global topics in documents, which is gen-
erally small. This is an important desired feature
that confers both a performance boost as well as
computational efficiency to the WME method.

4.2 Comparison with KNN-WMD

Baselines. We now compare two WMD-based
methods in terms of testing accuracy and total train-
ing and testing runtime. We consider two variants
of WME with different sizes of R. WME(LR)
stands for WME with large rank that achieves the
best accuracy (using R up to 4096) with more com-
putational time, while WME(SR) stands for WME
with small rank that obtains comparable accuracy
in less time. We also consider two variants of both
methods where +P denotes that we precompute
the ground distance between each pair of words to
avoid redundant computations.

Setup. Following (Kusner et al., 2015; Huang et al.,
2016), for datasets that do not have a predefined
train/test split, we report average and standard devi-
ation of the testing accuracy and average run-time
of the methods over five 70/30 train/test splits. For
WMD, we provide the results (with respect to ac-
curacy) from (Kusner et al., 2015); we also reran
the experiments of KNN-WMD and found them
to be consistent with the reported results. For all
methods, we perform 10-fold cross validation to
search for the best parameters on the training docu-
ments. We employ a linear SVM implemented us-
ing LIBLINEAR (Fan et al., 2008) on WME since
it can isolate the effectiveness of the feature repre-
sentation from the power of the nonlinear learning
solvers. For additional results on all KNN-based
methods, please refer to Appendix B.3.

Results. Table 2 corroborates the significant advan-

4530

Table 2: Test accuracy, and total training and testing time (in seconds) of WME against KNN-WMD.
Speedups are computed between the best numbers of KNN-WMD+P and these of WME(SR)+P when
achieving similar testing accuracy. Bold face highlights the best number for each dataset.

Classifier KNN-WMD KNN-WMD+P WME(SR) WME(SR)+P WME(LR) WME(LR)+P
Dataset Accu Time Time Accu Time Time Accu Time Time Speedup

BBCSPORT 95.4 ± 1.2 147 122 95.5 ± 0.7 3 1 98.2 ± 0.6 92 34 122
TWITTER 71.3 ± 0.6 25 4 72.5 ± 0.5 10 2 74.5 ± 0.5 162 34 2
RECIPE 57.4 ± 0.3 448 326 57.4 ± 0.5 18 4 61.8 ± 0.8 277 61 82

OHSUMED 55.5 3530 2807 55.8 24 7 64.5 757 240 401
CLASSIC 97.2 ± 0.1 777 520 96.6 ± 0.2 49 10 97.1 ± 0.4 388 70 52
REUTERS 96.5 814 557 96.0 50 24 97.2 823 396 23
AMAZON 92.6 ± 0.3 2190 1319 92.7 ± 0.3 31 8 94.3 ± 0.4 495 123 165
20NEWS 73.2 37988 32610 72.9 205 69 78.3 1620 547 472

RECIPE_L 71.4 ± 0.5 5942 2060 72.5 ± 0.4 113 20 79.2 ± 0.3 1838 330 103

Table 3: Testing accuracy of WME against Word2Vec and Doc2Vec-based methods.

Dataset SIF(GloVe) Word2Vec+nbow Word2Vec+tf-idf PV-DBOW PV-DM Doc2VecC WME
BBCSPORT 97.3 ± 1.2 97.3 ± 0.9 96.9 ± 1.1 97.2 ± 0.7 97.9 ± 1.3 90.5 ± 1.7 98.2 ± 0.6
TWITTER 57.8 ± 2.5 72.0 ± 1.5 71.9 ± 0.7 67.8 ± 0.4 67.3 ± 0.3 71.0 ± 0.4 74.5 ± 0.5

OHSUMED 67.1 63.0 60.6 55.9 59.8 63.4 64.5
CLASSIC 92.7 ± 0.9 95.2 ± 0.4 93.9± 0.4 97.0 ± 0.3 96.5 ± 0.7 96.6 ± 0.4 97.1 ± 0.4
REUTERS 87.6 96.9 95.9 96.3 94.9 96.5 97.2
AMAZON 94.1 ± 0.2 94.0 ± 0.5 92.2 ± 0.4 89.2 ± 0.3 88.6 ± 0.4 91.2 ± 0.5 94.3 ± 0.4
20NEWS 72.3 71.7 70.2 71.0 74.0 78.2 78.3

RECIPE_L 71.1 ± 0.5 74.9 ± 0.5 73.1 ± 0.6 73.1 ± 0.5 71.1 ± 0.4 76.1 ± 0.4 79.2 ± 0.3

tages of WME compared to KNN-WMD in terms
of both accuracy and runtime. First, WME(SR)
can consistently achieve better or similar accuracy
compared to KNN-WMD while requiring order-of-
magnitude less computational time on all datasets.
Second, both methods can benefit from precom-
putation of the ground distance between a pair of
words but WME gains much more from prefetch
(typically 3-5x speedup). This is because the typ-
ical length D of random documents is very short
where computing ground distance between word
vectors may be even more expensive than the corre-
sponding WMD distance. Finally, WME(LR) can
achieve much higher accuracy compared to KNN-
WMD while still often requiring less computational
time, especially on large datasets like 20NEWS and
relatively long documents like OHSUMED.

4.3 Comparisons with Word2Vec & Doc2Vec

Baselines. We compare against 6 document repre-
sentations methods: 1) Smooth Inverse Frequency
(SIF) (Arora et al., 2017): a recently proposed sim-
ple but tough to beat baseline for sentence embed-
dings, combining a new weighted scheme of word
embeddings with dominant component removal;
2) Word2Vec+nbow: a weighted average of word
vectors using NBOW weights; 3) Word2Vec+tf-
idf : a weighted average of word vectors using
TF-IDF weights; 4) PV-DBOW (Le and Mikolov,
2014): distributed bag of words model of Para-

graph Vectors; 5) PV-DM (Le and Mikolov, 2014):
distributed memory model of Paragraph Vectors;
6) Doc2VecC (Chen, 2017): a recently proposed
document-embedding via corruptions, achieving
state-of-the-art performance in text classification.

Setup. Word2Vec+nbow, Word2Vec+tf-idf and
WME use pre-trained Word2Vec embeddings while
SIF uses its default pre-trained GloVe embeddings.
Following (Chen, 2017), to enhance the perfor-
mance of PV-DBOW, PV-DM, and Doc2VecC these
methods are trained transductively on both train
and test, which is indeed beneficial for generating
a better document representation (see Appendix
B.4). In contrast, the hyperparameters of WME are
obtained through a 10-fold cross validation only on
training set. For a fair comparison, we run a linear
SVM using LIBLINEAR on all methods.

Results. Table 3 shows that WME consistently out-
performs or matches existing state-of-the-art doc-
ument representation methods in terms of testing
accuracy on all datasets except one (OHSUMED).
The first highlight is that simple average of word
embeddings often achieves better performance than
SIF(Glove), indicating that removing the first prin-
ciple component could hurt the expressive power
of the resulting representation for some of clas-
sification tasks. Surprisingly, these two methods
often achieve similar or better performance than
PV-DBOW and PV-DM, which may be because of
the high-quality pre-trained word embeddings. On

4531

Table 4: Pearson’s scores of WME against other unsupervised, semi-supervised, and supervised methods
on 22 textual similarity tasks. Results are collected from (Arora et al., 2017) except our approach.

Approaches Supervised Unsupervised Semi-supervised
WordEmbeddings PSL GloVe PSL

Tasks PP Dan RNN iRNN LSTM(no) LSTM(o.g.) ST nbow tf-idf SIF WME SIF WME
STS’12 58.7 56.0 48.1 58.4 51.0 46.4 30.8 52.5 58.7 56.2 60.6 59.5 62.8
STS’13 55.8 54.2 44.7 56.7 45.2 41.5 24.8 42.3 52.1 56.6 54.5 61.8 56.3
STS’14 70.9 69.5 57.7 70.9 59.8 51.5 31.4 54.2 63.8 68.5 65.5 73.5 68.0
STS’15 75.8 72.7 57.2 75.6 63.9 56.0 31.0 52.7 60.6 71.7 61.8 76.3 64.2

SICK’14 71.6 70.7 61.2 71.2 63.9 59.0 49.8 65.9 69.4 72.2 68.0 72.9 68.1
Twitter’15 52.9 53.7 45.1 52.9 47.6 36.1 24.7 30.3 33.8 48.0 41.6 49.0 47.4

the other hand, Doc2VecC achieves much better
testing accuracy than these previous methods on
two datasets (20NEWS, and RECIPE_L). This is
mainly because that it benefits significantly from
transductive training (See Appendix B.4). Finally,
the better performance of WME over these strong
baselines stems from fact that WME is empow-
ered by two important building blocks, WMD and
Word2Vec, to yield a more informative representa-
tion of the documents by considering both the word
alignments and the semantics of words.

We refer the readers to additional results on the
Imdb dataset in Appendix B.4, which also demon-
strate the clear advantage of WME even compared
to the supervised RNN method as well as the afore-
mentioned baselines.

4.4 Comparisons on textual similarity tasks

Baselines. We compare WME against 10 super-
vised, simi-sepervised, and unsupervised methods
for performing textual similarity tasks. Six su-
pervised methods are initialized with Paragram-
SL999(PSL) word vectors (Wieting et al., 2015b)
and then trained on the PPDB dataset, includ-
ing: 1) PARAGRAM-PHRASE (PP) (Wieting et al.,
2015a): simple average of refined PSL word vec-
tors; 2) Deep Averaging Network (DAN) (Iyyer
et al., 2015); 3) RNN: classical recurrent neural
network; 4) iRNN: a variant of RNN with the acti-
vation being the identify; 5) LSTM(no) (Gers et al.,
2002): LSTM with no output gates; 6) LSTM(o.g.)
(Gers et al., 2002): LSTM with output gates. Four
unsupervised methods are: 1) Skip-Thought Vectors
(ST) (Kiros et al., 2015): an encoder-decoder RNN
model for generalizing Skip-gram to the sentence
level; 2) nbow: simple averaging of pre-trained
GloVe word vectors; 3) tf-idf : a weighted average
of GloVe word vecors using TF-IDF weights; 4)
SIF (Arora et al., 2017): a simple yet strong method
on textual similarity tasks using GloVe word vecors.
Two semi-supervised methods use PSL word vec-

tors, which are trained using labeled data (Wieting
et al., 2015b).

Setup. There are total 22 textual similarity datasets
from STS tasks (2012-2015) (Agirre et al., 2012,
2013, 2014, 2015), SemEval 2014 Semantic Relat-
edness task (Xu et al., 2015), and SemEval 2015
Twitter task (Marelli et al., 2014). The goal of these
tasks is to predict the similarity between two input
sentences. Each year STS usually has 4 to 6 differ-
ent tasks and we only report the averaged Pearson’s
scores for clarity. Detailed results on each dataset
are listed in Appendix B.5.

Results. Table 4 shows that WME consistently
matches or outperforms other unsupervised and su-
pervised methods except the SIF method. Indeed,
compared with ST and nbow, WME improves Pear-
son’s scores substantially by 10% to 33% as a re-
sult of the consideration of word alignments and
the use of TF-IDF weighting scheme. tf-idf also
improves over these two methods but is slightly
worse than our method, indicating the importance
of taking into account the alignments between the
words. SIF method is a strong baseline for tex-
tual similarity tasks but WME still can beat it on
STS’12 and achieve close performance in other
cases. Interestingly, WME is on a par with three su-
pervised methods RNN, LSTM(no), and LSTM(o.g.)
in most cases. The final remarks stem from the fact
that, WME can gain significantly benefit from the
supervised word embeddings similar to SIF, both
showing strong performance on PSL.

5 Related Work

Two broad classes of unsupervised and supervised
methods have been proposed to generate sentence
and document representations. The former primar-
ily generate general purpose and domain indepen-
dent embeddings of word sequences (Socher et al.,
2011; Kiros et al., 2015; Arora et al., 2017); many
unsupervised training research efforts have focused

4532

on either training an auto-encoder to learn the la-
tent structure of a sentence (Socher et al., 2013), a
paragraph, or document (Li et al., 2015); or gen-
eralizing Word2Vec models to predict words in a
paragraph (Le and Mikolov, 2014; Chen, 2017) or
in neighboring sentences (Kiros et al., 2015). How-
ever, some important information could be lost in
the resulting document representation without con-
sidering the word order. Our proposed WME over-
comes this difficulty by considering the alignments
between each pair of words.

The other line of work has focused on developing
compositional supervised models to create a vector
representation of sentences (Kim et al., 2016; Gong
et al., 2018b). Most of this work proposed com-
position using recursive neural networks based on
parse structure (Socher et al., 2012, 2013), deep av-
eraging networks over bag-of-words models (Iyyer
et al., 2015; Wieting et al., 2015a), convolutional
neural networks (Kim, 2014; Kalchbrenner et al.,
2014; Xu et al., 2018), and recurrent neural net-
works using long short-term memory (Tai et al.,
2015; Liu et al., 2015). However, these methods
are less well suited for domain adaptation settings.

6 Conclusion

In this paper, we have proposed an alignment-aware
text kernel using WMD for texts of variable lengths,
which takes into account both word alignments
and pre-trained high quality word embeddings in
learning an effective semantics-preserving feature
representation. The proposed WME is simple, ef-
ficient, flexible, and unsupervised. Extensive ex-
periments show that WME consistently matches or
outperforms state-of-the-art models on various text
classification and textual similarity tasks. WME
embeddings can be easily used for a wide range of
downstream supervised and unsupervised tasks.

References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel M

Cer, Mona T Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Inigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, et al. 2015. Semeval-2015 task 2: Seman-
tic textual similarity, english, spanish and pilot on
interpretability. In SemEval@ NAACL-HLT, pages
252–263.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel M
Cer, Mona T Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. Semeval-2014 task 10: Multilingual

semantic textual similarity. In SemEval@ COLING,
pages 81–91.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. sem 2013 shared
task: Semantic textual similarity, including a pilot
on typed-similarity. In In* SEM 2013: The Second
Joint Conference on Lexical and Computational Se-
mantics. Association for Computational Linguistics.
Citeseer.

Eneko Agirre, Mona Diab, Daniel Cer, and Aitor
Gonzalez-Agirre. 2012. Semeval-2012 task 6: A pi-
lot on semantic textual similarity. In Proceedings of
the First Joint Conference on Lexical and Computa-
tional Semantics-Volume 1: Proceedings of the main
conference and the shared task, and Volume 2: Pro-
ceedings of the Sixth International Workshop on Se-
mantic Evaluation, pages 385–393. Association for
Computational Linguistics.

Jason Altschuler, Jonathan Weed, and Philippe Rigollet.
2017. Near-linear time approximation algorithms
for optimal transport via sinkhorn iteration. In Ad-
vances in Neural Information Processing Systems,
pages 1964–1974.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,
and Andrej Risteski. 2016. A latent variable model
approach to pmi-based word embeddings. Transac-
tions of the Association for Computational Linguis-
tics, 4:385–399.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-
beddings. In ICLR.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3(Feb):1137–1155.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of ma-
chine Learning research, 3(Jan):993–1022.

François Bourgeois and Jean-Claude Lassalle. 1971.
An extension of the munkres algorithm for the as-
signment problem to rectangular matrices. Commu-
nications of the ACM, 14(12):802–804.

Chris Buckley, Gerard Salton, James Allan, and Amit
Singhal. 1995. Automatic query expansion using
smart: Trec 3. NIST special publication sp, pages
69–69.

Minmin Chen. 2017. Efficient vector representation for
documents through corruption. In ICLR.

Minmin Chen, Zhixiang Xu, Kilian Weinberger, and
Fei Sha. 2012. Marginalized denoising autoen-
coders for domain adaptation. Proceedings of the
29th international conference on Machine learning.

4533

Scott Deerwester, Susan T Dumais, George W Fur-
nas, Thomas K Landauer, and Richard Harshman.
1990. Indexing by latent semantic analysis. Jour-
nal of the American society for information science,
41(6):391.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A
library for large linear classification. Journal of ma-
chine learning research, 9(Aug):1871–1874.

Felix A Gers, Nicol N Schraudolph, and Jürgen
Schmidhuber. 2002. Learning precise timing with
lstm recurrent networks. Journal of machine learn-
ing research, 3(Aug):115–143.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In Pro-
ceedings of the 28th international conference on ma-
chine learning (ICML-11), pages 513–520.

Hongyu Gong, Suma Bhat, and Pramod Viswanath.
2018a. Embedding syntax and semantics of prepo-
sitions via tensor decomposition. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), volume 1, pages 896–906.

Hongyu Gong, Jiaqi Mu, Suma Bhat, and Pramod
Viswanath. 2017. Prepositions in context. arXiv
preprint arXiv:1702.01466.

Hongyu Gong, Tarek Sakakini, Suma Bhat, and JinJun
Xiong. 2018b. Document similarity for texts of vary-
ing lengths via hidden topics. In ACL, volume 1,
pages 2341–2351.

Tom Griffiths and Mark Steyvers. 2007. Probabilistic
topic models. Latent Semantic Analysis: A Road to
Meaning.

Jie Gui, Tongliang Liu, Dacheng Tao, Zhenan Sun, and
Tieniu Tan. 2016. Representative vector machines:
a unified framework for classical classifiers. IEEE
transactions on cybernetics, 46(8):1877–1888.

Jie Gui, Zhenan Sun, Jun Cheng, Shuiwang Ji, and
Xindong Wu. 2014. How to estimate the regulariza-
tion parameter for spectral regression discriminant
analysis and its kernel version? IEEE Transac-
tions on Circuits and Systems for Video Technology,
24(2):211–223.

Bernard Haasdonk and Claus Bahlmann. 2004. Learn-
ing with distance substitution kernels. In Joint
Pattern Recognition Symposium, pages 220–227.
Springer.

Frank L Hitchcock. 1941. The distribution of a product
from several sources to numerous localities. Studies
in Applied Mathematics, 20(1-4):224–230.

Gao Huang, Chuan Guo, Matt J Kusner, Yu Sun, Fei
Sha, and Kilian Q Weinberger. 2016. Supervised
word mover’s distance. In Advances in Neural In-
formation Processing Systems, pages 4862–4870.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered com-
position rivals syntactic methods for text classifica-
tion. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and
the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), vol-
ume 1, pages 1681–1691.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. arXiv preprint arXiv:1404.2188.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Thirtieth AAAI Conference on Artificial
Intelligence.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems,
pages 3294–3302.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian
Weinberger. 2015. From word embeddings to docu-
ment distances. In International Conference on Ma-
chine Learning, pages 957–966.

Quoc V Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In ICML,
volume 14, pages 1188–1196.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015.
A hierarchical neural autoencoder for paragraphs
and documents. arXiv preprint arXiv:1506.01057.

Pengfei Liu, Xipeng Qiu, Xinchi Chen, Shiyu Wu,
and Xuanjing Huang. 2015. Multi-timescale long
short-term memory neural network for modelling
sentences and documents. In Proceedings of the
2015 conference on empirical methods in natural
language processing, pages 2326–2335.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raf-
faella Bernardi, Stefano Menini, and Roberto Zam-
parelli. 2014. Semeval-2014 task 1: Evaluation of
compositional distributional semantic models on full
sentences through semantic relatedness and textual
entailment. In SemEval@ COLING, pages 1–8.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

4534

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013b.
Exploiting similarities among languages for ma-
chine translation. arXiv preprint arXiv:1309.4168.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013c. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Xi Peng, Rogerio S Feris, Xiaoyu Wang, and Dim-
itris N Metaxas. 2016. A recurrent encoder-decoder
network for sequential face alignment. In Euro-
pean conference on computer vision, pages 38–56.
Springer, Cham.

Xi Peng, Shaoting Zhang, Yu Yang, and Dimitris N
Metaxas. 2015. Piefa: Personalized incremental and
ensemble face alignment. In Proceedings of the
IEEE international conference on computer vision,
pages 3880–3888.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–
1543.

Hieu Pham, Minh-Thang Luong, and Christopher D
Manning. 2015. Learning distributed representa-
tions for multilingual text sequences. In Proceed-
ings of NAACL-HLT, pages 88–94.

Ali Rahimi and Benjamin Recht. 2007. Random fea-
tures for large-scale kernel machines. In Advances
in Neural Information Processing Systems, page 5.

Stephen E Robertson and Steve Walker. 1994. Some
simple effective approximations to the 2-poisson
model for probabilistic weighted retrieval. In ACM
SIGIR conference on Research and development in
information retrieval.

Stephen E Robertson, Steve Walker, Susan Jones,
Micheline M Hancock-Beaulieu, Mike Gatford, et al.
1995. Okapi at trec-3. Nist Special Publication Sp,
109:109.

Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas.
2000. The earth mover’s distance as a metric for
image retrieval. International journal of computer
vision, 40(2):99–121.

Gerard Salton and Christopher Buckley. 1988. Term-
weighting approaches in automatic text retrieval. In-
formation processing & management, 24(5):513–
523.

Richard Socher, Eric H Huang, Jeffrey Pennin, Christo-
pher D Manning, and Andrew Y Ng. 2011. Dy-
namic pooling and unfolding recursive autoencoders
for paraphrase detection. In Advances in neural in-
formation processing systems, pages 801–809.

Richard Socher, Brody Huval, Christopher D Man-
ning, and Andrew Y Ng. 2012. Semantic composi-
tionality through recursive matrix-vector spaces. In

EMNLP, pages 1201–1211. Association for Compu-
tational Linguistics.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
Christopher Potts, et al. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In EMNLP.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. arXiv preprint arXiv:1503.00075.

Sida Wang and Christopher D Manning. 2012. Base-
lines and bigrams: Simple, good sentiment and topic
classification. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics: Short Papers-Volume 2, pages 90–94. As-
sociation for Computational Linguistics.

John Wieting, Mohit Bansal, Kevin Gimpel, and
Karen Livescu. 2015a. Towards universal para-
phrastic sentence embeddings. arXiv preprint
arXiv:1511.08198.

John Wieting, Mohit Bansal, Kevin Gimpel, Karen
Livescu, and Dan Roth. 2015b. From paraphrase
database to compositional paraphrase model and
back. Transactions of the ACL (TACL).

Lingfei Wu, Eloy Romero, and Andreas Stathopou-
los. 2017. Primme_svds: A high-performance pre-
conditioned svd solver for accurate large-scale com-
putations. SIAM Journal on Scientific Computing,
39(5):S248–S271.

Lingfei Wu and Andreas Stathopoulos. 2015. A pre-
conditioned hybrid svd method for accurately com-
puting singular triplets of large matrices. SIAM Jour-
nal on Scientific Computing, 37(5):S365–S388.

Lingfei Wu, Ian En-Hsu Yen, Fnagli Xu, Pradeep
Ravikumar, and Witbrock Michael. 2018a.
D2ke: From distance to kernel and embedding.
https://arxiv.org/abs/1802.04956.

Lingfei Wu, Ian En-Hsu Yen, Jinfeng Yi, Fangli Xu,
Qi Lei, and Michael Witbrock. 2018b. Random
warping series: A random features method for time-
series embedding. In International Conference on
Artificial Intelligence and Statistics, pages 793–802.

Kun Xu, Lingfei Wu, Zhiguo Wang, and Vadim
Sheinin. 2018. Graph2seq: Graph to sequence learn-
ing with attention-based neural networks. arXiv
preprint arXiv:1804.00823.

Wei Xu, Chris Callison-Burch, and Bill Dolan. 2015.
Semeval-2015 task 1: Paraphrase and semantic sim-
ilarity in twitter (pit). In SemEval@ NAACL-HLT,
pages 1–11.

Yue Zhang, Qi Liu, and Linfeng Song. 2018. Sentence-
state lstm for text representation. arXiv preprint
arXiv:1805.02474.

