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Abstract

Activation functions play a crucial role in
neural networks because they are the non-
linearities which have been attributed to the
success story of deep learning. One of the
currently most popular activation functions
is ReLU, but several competitors have re-
cently been proposed or ‘discovered’, includ-
ing LReLU functions and swish. While
most works compare newly proposed activa-
tion functions on few tasks (usually from im-
age classification) and against few competitors
(usually ReLU), we perform the first large-
scale comparison of 21 activation functions
across eight different NLP tasks. We find that a
largely unknown activation function performs
most stably across all tasks, the so-called pe-
nalized tanh function. We also show that it
can successfully replace the sigmoid and tanh
gates in LSTM cells, leading to a 2 percent-
age point (pp) improvement over the standard
choices on a challenging NLP task.

1 Introduction

Activation functions are a crucial component of
neural networks because they turn an otherwise
linear classifier into a non-linear one, which has
proven key to the high performances witnessed
across a wide range of tasks in recent years. While
different activation functions such as sigmoid or
tanh are often equivalent on a theoretical level, in
the sense that they can all approximate arbitrary
continuous functions (Hornik, 1991), different ac-
tivation functions often show very diverse behav-
ior in practice.

For example, sigmoid, one of the activation
functions dominating in neural network practice
for several decades eventually turned out less suit-
able for learning because (according to accepted
wisdom) of its small derivative which may lead to
vanishing gradients. In this respect, the so-called

ReLU function (Glorot et al., 2011) has proven
much more suitable. It has an identity deriva-
tive in the positive region and is thus claimed to
be less susceptible to vanishing gradients. It has
therefore (arguably) become the most popular ac-
tivation function. The recognition of ReLU’s suc-
cess has led to various extensions proposed (Maas
et al., 2013; He et al., 2015; Klambauer et al.,
2017), but none has reached the same popular-
ity, most likely because of ReLU’s simplicity and
because the gains reported tended to be inconsis-
tent or marginal across datasets and models (Ra-
machandran et al., 2017).

Activation functions have been characterized by
a variety of properties deemed important for suc-
cessful learning, such as ones relating to their
derivatives, monotonicity, and whether their range
is finite or not. However, in recent work, Ra-
machandran et al. (2017) employed automatic
search to find high-performing novel activation
functions, where their search space contained
compositions of elementary unary and binary
functions such as max, min, sin, tanh, or exp.
They found many functions violating properties
deemed as useful, such as non-monotonic activa-
tion functions or functions violating the gradient-
preserving property of ReLU. Indeed, their most
successful function, which they call swish, vio-
lates both of these conditions. However, as with
previous works, they also only evaluated their
newly discovered as well as their (rectifier) base-
line activation functions on few different datasets,
usually taken from the image classification com-
munity such as CIFAR (Krizhevsky, 2009) and
ImageNet (Russakovsky et al., 2015), and using
few types of different networks, such as the deep
convolutional networks abounding in the image
classification community (Szegedy et al., 2016).

To our best knowledge, there exists no large-
scale empirical comparison of different activations
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across a variety of tasks and network architec-
tures, and even less so within natural language
processing (NLP).1 Thus, the question which acti-
vation function really performs best and most sta-
bly across different NLP tasks and popular NLP
models remains unanswered to this date.

In this work, we fill this gap. We compare (i)
21 different activation functions, including the 6
top performers found from automatic search in Ra-
machandran et al. (2017), across (ii) three popu-
lar NLP task types (sentence classification, docu-
ment classification, sequence tagging) comprising
8 individual tasks, (iii) using three different popu-
lar NLP architectures, namely, MLPs, CNNs, and
RNNs. We also (iv) compare all functions across
two different dimensions, namely: top vs. average
performance.

We find that a largely unknown activation func-
tion, penalized tanh (Xu et al., 2016), performs
most stably across our different tasks. We also find
that it can successfully replace tanh and sigmoid
activations in LSTM cells. We further find that
the majority of top performing functions found in
Ramachandran et al. (2017) do not perform well
for our tasks. An exception is swish, which per-
formed well across several tasks, but less stably
than penalized tanh and other functions.2

2 Theory

Activation functions We consider 21 activation
functions, 6 of which are “novel” and proposed in
Ramachandran et al. (2017). The functional form
of these 6 is given in Table 1, together with the
sigmoid function.

The remaining 14 are: tanh, sin, relu, lrelu-
0.01, lrelu-0.30, maxout-2, maxout-3, maxout-
4, prelu, linear, elu, cube, penalized tanh, selu.
We briefly describe them: lrelu-0.01 and lrelu-
0.30 are the so-called leaky relu (LReLU) func-
tions (Maas et al., 2013); the idea behind them is
to avoid zero activations/derivatives in the nega-
tive region of relu. Their functional form is given
in Table 1. prelu (He et al., 2015) generalizes the
LReLU functions by allowing the slope in the neg-
ative region to be a learnable parameter. The max-
out functions (Goodfellow et al., 2013) are dif-

1An exception may be considered Xu et al. (2015), who,
however, only contrast the rectifier functions on image clas-
sification datasets.

2Accompanying code to reproduce our experiments
is available from https://github.com/UKPLab/
emnlp2018-activation-functions.

sigmoid f(x) = σ(x) = 1/(1 + exp(−x))
swish f(x) = x · σ(x)
maxsig f(x) = max{x, σ(x)}
cosid f(x) = cos(x)− x
minsin f(x) = min{x, sin(x)}
arctid f(x) = arctan(x)2 − x
maxtanh f(x) = max{x, tanh(x)}

lrelu-0.01 f(x) = max{x, 0.01x}
lrelu-0.30 f(x) = max{x, 0.3x}

penalized tanh f(x) =

{
tanh(x) x > 0,

0.25 tanh(x) x ≤ 0

Table 1: Top: sigmoid activation function as well as
6 top performing activation functions from Ramachan-
dran et al. (2017). Bottom: the LReLU functions with
different parametrizations as well as penalized tanh.

ferent in that they introduce additional parameters
and do not operate on a single scalar input. For
example, maxout-2 is the operation that takes the
maximum of two inputs: max{xW+b,xV+c},
so the number of learnable parameters is doubled.
maxout-3 is the analogous function that takes the
maximum of three inputs. As shown in Goodfel-
low et al. (2013), maxout can approximate any
convex function. sin is the standard sine func-
tion, proposed in neural network learning, e.g., in
Parascandolo et al. (2016), where it was shown to
enable faster learning on certain tasks than more
established functions. penalized tanh (Xu et al.,
2016) has been defined in analogy to the LReLU
functions, which can be thought of as “penalizing”
the identity function in the negative region. The
reported good performance of penalized tanh on
CIFAR-100 (Krizhevsky, 2009) lets the authors
speculate that the slope of activation functions
near the origin may be crucial for learning. lin-
ear is the identity function, f(x) = x. cube is
the function f(x) = x3, proposed in Chen and
Manning (2014) for an MLP used in dependency
parsing. elu (Clevert et al., 2015) has been pro-
posed as (yet another) variant of relu that assumes
negative values, making the mean activations more
zero-centered. selu is a scaled variant of elu used
in Klambauer et al. (2017) in the context of so-
called self-normalizing neural nets.

Properties of activation functions Many prop-
erties of activation functions have been speculated
to be crucial for successful learning. Some of
these are listed in Table 2, together with brief de-

https://github.com/UKPLab/emnlp2018-activation-functions
https://github.com/UKPLab/emnlp2018-activation-functions
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Property Description Problems Examples

derivative f ′ > 1 exploding gradient (e) sigmoid (v), tanh (v), cube (e)
< 1 vanishing (v)

zero-centered range centered around zero? if not, slower learning tanh (+), relu (−)
saturating finite limits vanishing gradient in the limit tanh, penalized tanh, sigmoid
monotonicity x > y =⇒ f(x) ≥ f(y) unclear exceptions: sin, swish, minsin

Table 2: Frequently cited properties of activation functions
.

scriptions and illustrations.
Graphs of all activation functions can be found

in the appendix.

3 Experiments

We conduct experiments using three neural net-
work types and three types of NLP tasks, de-
scribed in §3.1, §3.2, and §3.3 below.

3.1 MLP & Sentence Classification

Model We experiment with a multi-layer per-
ceptron (MLP) applied to sentence-level classifi-
cation tasks. That is, input to the MLP is a sen-
tence or short text, represented as a fixed-size vec-
tor embedding. The output of the MLP is a label
which classifies the sentence or short text. We use
two sentence representation techniques, namely,
Sent2Vec (Pagliardini et al., 2018), of dimension-
ality 600, and InferSent (Conneau et al., 2017), of
dimensionality 4096. Our MLP has the form:

xi = f(xi−1 ·Wi + bi)

y = softmax(xNWN+1 + bN+1)

where x0 is the input representation, x1, . . . ,xN

are hidden layer representations, and y is the out-
put, a probability distribution over the classes in
the classification task. Vectors b and matrices W
are the learnable parameters of our network. The
activation function is given by f and ranges over
the choices described in §2.

Data We use four sentence classification tasks,
namely: movie review classification (MR), sub-
jectivitiy classification (SUBJ), question type clas-
sification (TREC), and classifying whether a sen-
tence contains an argumentation structure of a cer-
tain type (claim, premise, major claim) or else is
non-argumentative (AM). The first three datasets
are standard sentence classification datasets and
contained in the SentEval framework.3 We choose

3https://github.com/facebookresearch/
SentEval

the AM dataset for task diversity, and derive it by
projecting token-level annotations in the dataset
from Stab and Gurevych (2017) to the sentence
level. In the rare case (<5% of the cases) when
a sentence contains multiple argument types, we
choose one based on the ordering Major Claim
(MC) > Claim (C) > Premise (P). Datasets and
examples are listed in Table 3.

Approach We consider 7 “mini-experiments”:

• (1): MR dataset with Sent2Vec-unigram em-
beddings as input and 1% of the full data as
training data; (2): the same mini-experiment
with 50% of the full data as training data. In
both cases, the dev set comprises 10% of the
full data and the rest is for testing.
• (3,4): SUBJ with InferSent embeddings and

likewise 1% and 50% of the full data as train
data, respectively.
• (5): The TREC dataset with original split in

train and test; 50% of the train split is used as
dev data.
• (6): The AM dataset with original split in

train, dev, and test (Eger et al., 2017), and with
InferSent input embeddings. (7): the same
mini-experiment with Sent2Vec-unigram em-
beddings.

We report accuracy for mini-experiments (1-5)
and macro-F1 for (6-7). We report macro-F1 for
(6-7) because the AM dataset is imbalanced.

The motivation behind choosing different input
embeddings for different tasks was to investigate
a wider variety of conditions. Choosing subsets of
the full data had the same intention.

For all 7 mini-experiments, we draw the same
200 randomly chosen hyperparameters from the
ranges indicated in Table 4. All experiments are
conducted in keras.4

For each of the 21 different activation functions
detailed in §2, we conduct each mini-experiment
with the 200 randomly chosen hyperparameters.

4https://keras.io/

https://github.com/facebookresearch/SentEval
https://github.com/facebookresearch/SentEval
https://keras.io/
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Task Type Size C Example

AM Argumentation 7k 4 Not cooking fresh food will lead to lack of nutrition. (claim)
MR Sentiment 11k 2 Too slow for a younger crowd , too shallow for an older one. (neg)
SUBJ Subjectivity 10k 2 A movie that doesnt aim too high , but doesnt need to. (subj)
TREC Question-types 6k 6 What’s the Olympic Motto? (description)

NG Doc classification 18k 20 [...] You can add ”dark matter” and quarks [...] (sci.space)
R8 Doc classification 7k 8 bowater industries profit exceed [...] (earn)

POS POS tagging 204k 17 What/PRON to/PART feed/VERB my/PRON dog/NOUN [...]
TL-AM Token-level AM 148k 7 [...] I/O firmly/O believe/O that/O we/B-MC should/I-MC [...]

Table 3: Evaluation tasks used in our experiments, grouped by task type (sentence classification, document classi-
fication, sequence tagging), with statistics and examples. C is the number of classes to predict.

All activation functions use the same hyperparam-
eters and the same train, dev, and test splits.

We store two results for each mini-experiment,
namely: (i) the test result corresponding to the
best (best) dev performance; (ii) the average
(mean) test result across all hyperparameters. The
best result scenario mirrors standard optimiza-
tion in machine learning: it indicates the score one
can obtain with an activation function when the
MLP is well-optimized. The mean result scenario
is an indicator for what one can expect when hy-
perparameter optimization is ‘shallow’ (e.g., be-
cause computing times are prohibitive): it gives
the average performance for randomly chosen hy-
perparameters. We note that we run each hyper-
parameter combination with 5 different random
weight initializations and all the reported scores
(best dev score, best best, best mean) are aver-
ages over these 5 random initializations.

Finally, we set the following hyperparameters
for all MLP experiments: patience of 10 for early
stopping, batch size 16, 100 epochs for training.

Results Figure 1 shows best and mean results,
averaged over all 7 mini-experiments, for each ac-
tivation function. To make individual scores com-
parable across mini-experiments, we perform max
normalization and divide each score by the maxi-
mum score achieved in any given mini-experiment
(for best and mean, respectively) before averag-
ing.5

For best, the top performers are the rectifier
functions (relu, lrelu-0.01, prelu) as well as max-
out and penalized tanh. The newly discovered

5We chose max normalization so that certain tasks/mini-
experiments would not unduly dominate our averaged scores.
Overall, our averaged scores are not (much) affected by this
decision, however: the Spearman correlation of rankings of
activation functions under max normalization and under no
max normalization are above 0.98 in all our three classifica-
tion scenarios considered in §3.1,§3.2,§3.3.

activation functions lag behind, with the best of
them being minsin and swish. linear is worst,
together with elu and cube. Overall, the differ-
ence between the best activation function, relu,
and the worst, linear, is only roughly 2pp, how-
ever. This means that if hyperparameter search
is done carefully, the choice of activation func-
tion is less important for these sentence classifica-
tion tasks. Particularly the (binary) tasks MR and
SUBJ appear robust against the choice of activa-
tion function, with the difference between the best
and worst function being always less than 1pp, in
all settings. For TREC and AM, the situation is
slightly different: for TREC, the difference is 2pp
(swish vs. maxsig) and for AM, it is 3pp using
InferSent embeddings (swish vs. cube) and 12pp
using Sent2Vec embeddings (relu vs. linear). It
is noteworthy that swish wins 2 out of 3 cases in
which the choice of activation function really mat-
ters.
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Figure 1: Sentence Classification. Left y-axis: best.
Right y-axis: mean. Score on y-axes is the average
over all mini-experiments.

mean results are very different from best re-
sults. Here, somewhat surprisingly, the oscillating
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Model Hyperparameter Range

(a) MLP (1) optimizer {Adam,RMSprop,Adagrad,Adadelta,Adamax,Nadam,sgd}
(2) #hidden layers N {1, 2, 3, 4}
(3) dropout value [0.1, 0.75]
(4) hidden units [30, 500]
(5) learning rate N (m,m/5)
(6) weight initializer {random-n, random-u, varscaling, orthogonal,

lecun-u, glorot-n, glorot-u, he-n, he-u}

(b) CNN (a) (1,3,5,6) same as MLP
embedding dimension [40, 200]
number of filters nk [30, 500]
#hidden layers N {1, 2, 3}
filter size h {1, 2, 2, 3, 3, 3, 4}

(c) RNN/LSTM (a) (1-5) same as MLP
recurrent initializer same as (a) (6) plus identity matrix

Table 4: Hyperparameter ranges for each network type. Hyperparameters are drawn using a discrete or continuous
uniform distribution from the indicated ranges. Repeated values indicate multi-sets. N (µ, s) is the normal distri-
bution with mean µ and std s; µ = m is the default value from keras for the specific optimizer (if drawn learning
rate is < 0, we choose it to be m).

sin function wins, followed by penalized tanh,
maxout and swish. The difference between the
best mean function, sin, and the worst, cube, is
more than 30pp. This means that using cube is
much riskier and requires more careful hyperpa-
rameter search compared to sin and the other top
performers.

3.2 CNN & Document Classification
Model Our second paradigm is document clas-
sification using a CNN. This approach has been
popularized in NLP by the ground-breaking work
of Kim (2014). Even though shallow CNNs do
not reach state-of-the-art results on large datasets
anymore (Johnson and Zhang, 2017), simple ap-
proaches like (shallow) CNNs are still very com-
petitive for smaller datasets (Joulin et al., 2016).

Our model operates on token-level and first
embeds a sequence of tokens x1, . . . , xn, repre-
sented as 1-hot vectors, into learnable embed-
dings x1, . . . ,xn. The model then applies 1D-
convolution on top of these embeddings. That is,
a filter w of size h takes h successive embeddings
xi:i+h−1, performs a scalar product and obtains a
feature ci:

ci = f(w · xi:i+h−1 + b).

Here, f is the activation function and b is a bias
term. We take the number nk of different filters as
a hyperparameter. When our network has multiple
layers, we stack another convolutional layer on top
of the first (in total we have nk outputs at each time
step), and so on. Our penultimate layer is a global

max pooling layers that selects the maximum from
each feature map. A final softmax layer terminates
the network.

Data We use two document classification tasks,
namely: 20 Newsgroup (NG) and Reuters-21578
R8 (R8). Both datasets are standard document
classification datasets. In NG, the goal is to
classify each document into one of 20 newsgroup
classes (alt.atheism, sci.med, sci.space, etc.). In
R8, the goal is to classify Reuters news text into
one of eight classes (crude, earn, grain, inter-
est, etc.). We used the preprocessed files from
https://www.cs.umb.edu/˜smimarog/
textmining/datasets/ (in particular,
stopwords are removed and the text is stemmed).

Approach We consider 4 mini-experiments:

• (1,2) NG dataset with 5% and 50%, respec-
tively of the full data as train data. In both
cases, 10% of the full data is used as dev data,
and the rest as test data.
• (3,4) Same as (1,2) for R8.

We report accuracy for all experiments. We use a
batch size of 64, 50 epochs for training, and a pa-
tience of 10. For all mini-experiments, we again
draw 200 randomly chosen hyperparameters from
the ranges indicated in Table 4. The hyperparam-
eters and train/dev/test splits are the same for all
activation functions.

Results Figure 2 shows best and mean results,
averaged over all mini-experiments. This time,

https://www.cs.umb.edu/~smimarog/textmining/datasets/
https://www.cs.umb.edu/~smimarog/textmining/datasets/
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the winners for best are elu, selu (again two
members from the rectifier family), and maxout-
3, but the difference between maxout-3 and sev-
eral lower ranked functions is minimal. The
cube function is again worst and sigmoid and
cosid have similarly bad performance. Except for
minsin, the newly proposed activation functions
from Ramachandran et al. (2017) again consider-
ably lag behind. The most stable activation func-
tions are the maxout functions as well as penal-
ized tanh, tanh and sin.
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Figure 2: Doc classification.

3.3 RNN & Sequence Tagging

Model Our third paradigm is sequence tagging,
a ubiquitous model type in NLP. In sequence tag-
ging, a sequence of input tokens w1, . . . , wK is
mapped to a sequence of labels y1, . . . , yK . Clas-
sical sequence tagging tasks include POS tagging,
chunking, NER, discourse parsing (Braud et al.,
2017), and argumentation mining (Eger et al.,
2017; Schulz et al., 2018). We use a standard re-
current net for sequence tagging, whose form is:

hi = f(hi−1W +wi ·U+ b)

yi = softmax(hiV + c)

Here, wi are (pre-trained) word embeddings of
words wi. Vectors b, c and matrices U,V,W
are parameters to be learned during training. The
above describes an RNN with only one hidden
layer, hi, at each time step, but we consider the
generalized form with N ≥ 1 hidden layers; we
also choose a bidirectional RNN in which the hid-
den outputs of a forward RNN and a backward
RNN are combined. RNNs are particularly deep

networks—indeed, the depth of the network corre-
sponds to the length of the input sequence—which
makes them particularly susceptible to the vanish-
ing gradient problem (Pascanu et al., 2012).

Initially, we do not consider the more popular
LSTMs here for reasons indicated below. How-
ever, we include a comparison after discussing the
RNN performance.

Data We use two sequence tagging tasks,
namely: English POS tagging (POS), and token-
level argumentation mining (TL-AM) using the
same dataset (consisting of student essays) as for
the sentence level experiments. In token-level
AM, we tag each token with a BIO-label plus
the component type, i.e., the label space is Y =
{B, I} × {MC,C,P} ∪ {O}, where ‘O” is a la-
bel for non-argumentative tokens. The motivation
for using TL-AM is that, putatively, AM has more
long-range dependencies than POS or similar se-
quence tagging tasks such as NER, because argu-
ment components are much longer than named en-
tities and component labels also depend less on the
current token.

Approach We consider 6 mini-experiments:

• (1): TL-AM with Glove-100d word embed-
dings and 5% of the original training data as
train data; (2) the same with 30% of the origi-
nal training data as train data. In both cases,
dev and test follow the original train splits
(Eger et al., 2017).
• (3,4) Same as (1) and (2) but with 300d Levy

word embeddings (Levy and Goldberg, 2014).
• (5,6): POS with Glove-100d word embed-

dings and 5% and 30%, respectively, of the
train data of a pre-determined train/dev/test
split (13k/13k/178k tokens). Dev and test are
fixed in both cases.

We report macro-F1 for mini-experiments (1-4)
and accuracy for (5-6). For our RNN implemen-
tations, we use the accompanying code of (the
state-of-the-art model of) Reimers and Gurevych
(2017), which is implemented in keras. The net-
work uses a CRF layer as an output layer. We use
a batch size of 32, train for 50 epochs and use a
patience of 5 for early stopping.

Results Figure 3 shows best and mean results,
averaged over all 6 mini-experiments, for each ac-
tivation function. We exclude prelu and the max-
out functions because the keras implementation
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does not natively support these activation func-
tions for RNNs. We also exclude the cube func-
tion because it performed very badly.
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Figure 3: Sequence tagging.

Unlike for sentence classification, there are
much larger differences between the activation
functions. For example, there is almost 20pp dif-
ference between the best best activation func-
tions: relu, lrelu-0.01, swish, penalized tanh,
and the worst ones: linear, cosid, and sig-
moid (the differences were larger had we included
cube). Interestingly, this difference is mostly due
to the TL-AM task: for POS, there is only 3pp dif-
ference between the best function (sigmoid (sic!),
though with almost zero margin to the next best
ones) and the worst one (linear), while this differ-
ence is almost 40pp for TL-AM. This appears to
confirm our concerns regarding the POS tagging
task as not being challenging enough due to lack
of, e.g., long-range dependencies.

The four best best activation functions in Fig-
ure 3 are also the functions with the best mean
results, i.e., they are most stable over different hy-
perparameters. The clear winner in this category
is penalized tanh with 100% mean score, fol-
lowed by swish with 91%. Worst is cosid with
30%. It is remarkable how large the difference be-
tween tanh and penalized tanh is both for best
and mean—7pp and 20pp, respectively, which is
much larger than the differences between the anal-
ogous pair of LReLU and relu. This appears to
make a strong case for the importance of the slope
around the origin, as suggested in Xu et al. (2016).

LSTM vs. RNN Besides an RNN, we also im-
plemented a more popular RNN model with (bidi-
rectional) LSTM blocks in place of standard hid-

den layers. Standard LSTM units follow the equa-
tions (simplified):

ft = σ([ht−1;xt] ·Wf ),

it = σ([ht−1;xt] ·Wi),

ot = σ([ht−1;xt] ·Wo)

ct = ft � ct−1 + it � τ([ht−1;xt] ·Wc)

ht = ot � τ(ct),

where ft and it are perceived of as gates that con-
trol information flow, xt is the input at time t and
ht is the hidden layer activation. In keras (and
most standard references), σ is the (hard) sigmoid
function, and τ is the tanh function.

We ran an LSTM on the TL-AM dataset with
Levy word embeddings and 5% and 30% data size
setup. We varied σ and τ independently, keeping
the respective other function at its default.

We find that the top two choices for τ are penal-
ized tanh and tanh (margin of 10pp), given that σ
is sigmoid. For τ = tanh, the best choices are σ =
penalized tanh, sigmoid, and tanh. All other
functions perform considerably worse. Thus, the
top-performers are all saturating functions, indi-
cating the different roles activation functions play
in LSTMs—those of gates—compared to standard
layers. It is worth mentioning that choosing σ or
τ as penalized tanh is on average better than the
standard choices for σ and τ . Indeed, choosing
τ = σ = penalized tanh is on average 2pp better
than the default choices of τ, σ.

It is further worth mentioning that the best
best results for the LSTM are roughly 5pp better
(absolute) than the best corresponding choices for
the simple RNN.

4 Analysis & Discussion

Winner statistics Each of the three meta-tasks
sentence classification, document classification,
and sequence tagging was won, on average, by
a member from the rectifier family, namely, relu
(2) and elu, for best. Also, in each case, cube
and cosid were among the worst performing ac-
tivation functions. The majority of newly pro-
posed functions from Ramachandran et al. (2017)
ranked somewhere in the mid-field, with swish
and minsin performing best in the best cate-
gory. For the mean category, we particulary had
the maxout functions as well as penalized tanh
and sin regularly as top performers.

To get further insights, we computed a winner
statistic across all 17 mini-experiments, counting
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how often each activation function was among the
top 3. Table 5 shows the results, excluding prelu
and the maxout functions because they were not
considered in all mini-experiments.

best penalized tanh (6), swish (6),
elu (4), relu (4), lrelu-0.01 (4)

mean penalized tanh (16), tanh (13)
sin (10)

Table 5: Top-3 winner statistics. In brackets: number
of times within top-3, keeping only functions with four
or more top-3 rankings.

We see that penalized tanh and swish win here
for best, followed by further rectifier functions.
The mean category is clearly won by saturating
activation functions with finite range. If this com-
parison were restricted to sentence and document
classification, where we also included the maxout
functions, then penalized tanh would have been
outperformed by maxout for mean.

This appears to yield the conclusion that
functions with limited range behave more sta-
bly across hyperparameter settings while non-
saturating functions tend to yield better top-
performances. The noteworthy exception to this
rule is penalized tanh which excels in both cat-
egories (the more expensive maxout functions
would be further exceptions). If the slope around
the origin of penalized tanh is responsible for
its good performance, then this could also explain
why cube is so bad, since it is very flat close to
the origin.

Influence of hyperparameters To get some in-
tuition about how hyperparameters affect our dif-
ferent activation functions, we regressed the score
of the functions on the test set on all the employed
hyperparameters. For example, we estimated:

y = αl · log(nl) + αd · d+ · · · (1)

where y is the score on the test set, nl is the num-
ber of layers in the network, d is the dropout value,
etc. The coefficients αk for each regressor k is
what we want to estimate (in particular, their size
and their sign). We logarithmized certain variables
whose scale was substantially larger than those
of others (e.g., number of units, number of fil-
ters). For discrete regressors such as the optimizer
we used binary dummy variables. We estimated
Eq. (1) independently for each activation function

and for each mini-experiment. Overall, there was
a very diverse pattern of outcomes, preventing us
from making too strong conclusions. Still, we ob-
served that while all models performed on average
better with fewer hidden layers, particularly swish
was robust to more hidden layers (small negative
coefficient αl), but also, to a lesser degree, penal-
ized tanh. In the sentence classification tasks, sin
and the maxout functions were particulary robust
to an increase of hidden layers. Since penalized
tanh is a saturating function and sin even an oscil-
lating one, we therefore conclude that preserving
the gradient (derivative close to one) is not a nec-
essary prerequisite to successful learning in deeper
neural networks.

5 Concluding remarks

We have conducted the first large scale compar-
ison of activation functions across several differ-
ent NLP tasks (and task types) and using differ-
ent popular neural network types. Our main focus
was on so-called scalar activation functions, but
we also partly included the more costly ‘many-to-
one’ maxout functions.

Our findings suggest that the rectifier functions
(and the similarly shaped swish) can be top per-
formers for each task, but their performance is un-
stable and cannot be predicted a priori. One of
our major findings is that, in contrast, the saturat-
ing penalized tanh function performs much more
stably in this respect and can with high probabil-
ity be expected to perform well across tasks as
well as different choices of hyperparameters. This
appears to make it the method of choice particu-
larly when hyperparameter optimization is costly.
When hyperparameter optimization is cheap, we
recommend to consider the activation function as
another hyperparameter and choose it, e.g., from
the range of functions listed in Table 5 along with
maxout.

Another major advantage of the penalized
tanh function is that it may also take the role of
a gate (because of its finite range) and thus be
employed in more sophisticated neural network
units such as LSTMs, where the rectifiers fail com-
pletely. In this context, we noticed that replacing
sigmoid and tanh in an LSTM cell with penal-
ized tanh leads to a 2pp increase on a challenging
NLP sequence tagging task. Exploring whether
this holds across more NLP tasks should be scope
for future work. Additionally, our research sug-
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gests it is worthwhile to further explore penal-
ized tanh, an arguably marginally known activa-
tion function. For instance, other scaling factors
than 0.25 (default value from Xu et al. (2016))
should be explored. Similarly as for prelu, the
scaling factor can also be made part of the opti-
mization problem.

Finally, we found that except for swish none of
the newly discovered activation functions found in
Ramachandran et al. (2017) made it in our top cat-
egories, suggesting that automatic search of acti-
vation functions should be made across multiple
tasks in the future.
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