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Abstract

In this paper, we propose a novel deep at-
tentive sentence ordering network (referred as
ATTOrderNet) which integrates self-attention
mechanism with LSTMs in the encoding of in-
put sentences. It enables us to capture global
dependencies among sentences regardless of
their input order and obtains a reliable rep-
resentation of the sentence set. With this
representation, a pointer network is exploited
to generate an ordered sequence. The pro-
posed model is evaluated on Sentence Order-
ing and Order Discrimination tasks. The ex-
tensive experimental results demonstrate its
effectiveness and superiority to the state-of-
the-art methods.

1 Introduction

Modeling a coherent text is one of the key prob-
lems in natural language processing. A well-
organized text with a logical structure is much
easier for people to read and understand. Sen-
tence ordering task (Barzilay and Lapata, 2008)
has been proposed to cope with this problem. It
aims to organize a set of sentences into a coherent
text with a logically consistent order and has wide
applications in natural language generation such
as concept-to-text generation (Konstas and Lap-
ata, 2012a,b, 2013), retrieval-based question an-
swering (Yu et al., 2018; Verberne, 2011), and ex-
tractive multi-document summarization (Barzilay
and Elhadad, 2002; Galanis et al., 2012; Nallap-
ati et al., 2017), where the improper ordering of
sentences would introduce ambiguity and degrade
readability. An example of this task is shown in
Table 1.

Traditional methods developed for this task em-
ploy handcrafted linguistic features to model the
document structure such as Entity Grid (Barzi-
lay and Lapata, 2008), Content Model (Barzilay
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We first describe the older one. Finally, the parser is evaluated.

Table 1: An example to illustrate the sentence ordering
task. The set of sentences is confusing in its current
order. We aim to reorganize them with a more coherent
order.

and Lee, 2004), and Probabilistic Model (Lap-
ata, 2003). However, manual feature engineer-
ing heavily relies on linguistic knowledge and
also limits these systems to be domain specific.
Inspired by the success of deep learning, data-
driven approaches based on neural networks have
been proposed including Pairwise Ranking Model
(Chen et al., 2016) which learns the relative order
of sentence pairs to predict the pairwise ordering
of sentences, and Window network (Li and Hovy,
2014) sliding a window over the text to evaluate
the coherence.

Recently, hierarchical RNN-based approaches
(Gong et al., 2016; Logeswaran et al., 2018) have
been proposed to deal with this task. Such meth-
ods exploit LSTMs based paragraph encoder to
compute a context representation for the whole se-
quential sentences and then adopt a pointer net-
work (Vinyals et al., 2015) as the decoder to pre-
dict their order. However, since LSTM works
sequentially, paragraph encoder only based on
LSTMs suffers from the incorrect input sentence
order and has difficulty in capturing a logically re-
liable representation through the recurrent connec-
tions, which makes trouble for the decoder to find
the correct order.

To overcome the above limitation, in this work,
we develop a novel deep attentive sentence order-
ing network (referred as ATTOrderNet) by inte-
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Figure 1: Architecture of deep attentive Sentence Or-
dering Network.

grating self-attention mechanism (Vaswani et al.,
2017) with LSTMs to learn a relatively reliable
paragraph representation for subsequent sentence
ordering. In particular, the bidirectional LSTM is
first adopted as a sentence encoder to map the in-
put sentences to the corresponding distributed vec-
tors, and then a self-attention based paragraph en-
coder is introduced to capture structural relation-
ships across sentences and to obtain a hierarchi-
cal context representation of the entire set of sen-
tences. Consequently, based on the learned para-
graph vector, a pointer network is applied to per-
form sentence ordering by decoding an ordered se-
quence. Figure 1 shows the architecture of AT-
TOrderNet, where self-attention mechanism is in-
troduced to capture the dependencies among sen-
tences.

In contrast to the previous paragraph encoders
with LSTMs, self-attention mechanism is less sen-
sitive to the input order of sentence sequence and
is effective in modeling the accurate relationships
across sentences, which reduces the influence of
the original order of the input sentences and per-
fectly meets the requirement of our task. Further,
unlike Transformer (Vaswani et al., 2017), we do
not add any positional encodings in our model to
minimize the influence of the unclear order infor-
mation.

Extensive evaluations are conducted on the sen-
tence ordering task and order discrimination task
to investigate the performances of ATTOrderNet.
The experimental results on seven public sentence
ordering datasets show the superior performances
of the framework to the competing models. Mean-
while, the visualization of the attention layer in

paragraph encoder is provided for better under-
standing of the effectivity of self-attention mecha-
nism. Besides, in the Order Discrimination task,
our model also achieves the state-of-the-art per-
formance with remarkable improvements on two
benchmark datasets.

2 Deep Attentive Sentence Ordering
Network

In this section, we first formulate the sentence
ordering problem and then describe the pro-
posed model ATTOrderNet, which is based on
the encoder-decoder architecture applying self-
attention mechanism as paragraph encoder and a
pointer network as the decoder. This combination
effectively captures the intrinsic relations across a
set of sentences with the desirable property of be-
ing invariant to the sentence order, which directly
helps address the difficulty of this task.

2.1 Problem formulation

The sentence ordering task aims to order a set of
sentences as a coherent text. Specifically, a set
of n sentences with the order 0 = [0y, 07, , 0]
can be described as s = [$,,, 50, " »50,]. The
goal is to find the correct order o* for them, 0* =
[0*1‘, 05 s o, ], with which the whole sentences
have the highest coherence probability:

P(o*|s) > P(o|s), Vo € ¢ (D

where o indicates any order of these sentences and
Y denotes the set of all possible orders. For in-
stance, in Table 1, the current order o is [4, 1, 3, 2]
and 0" = [1,2,3,4] is the correct order for these
sentences.

2.2 Intuition and Model architecture

Given a set of sentences, the existing hierarchical
RNN-based models first transform each sentence
into a distributed vector with a sentence encoder
and then these sentence embeddings are fed to a
LSTMs-based paragraph encoder. Consequently,
based on the learned paragraph vector, a pointer
network is exploited to decode the order of the in-
put sentences. However, since LSTM works se-
quentially while the order of these sentences is un-
known and quite possibly wrong in this problem,
LSTMs-based paragraph encoder has difficulty in
capturing a convincing representation through the
recurrent connections, which influences the per-
formance of sentence ordering.
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In this paper, we use self-attention mechanism
for paragraph encoder instead. In particular, we
employ this mechanism without encoding any po-
sitional information of the sentences. Ignoring
the current order of the sentences, self-attention
based paragraph encoder perfectly meets the re-
quirement of the sentence ordering task and learns
a logically reliable representation of the whole
paragraph by globally capturing the relationships
across sentences. With this learned representation
vector, a decoder is then designed to generate a
coherent order assignment for the input sentences.

In the following, we elaborate on the main
building blocks of our ATTOrderNet in details:
a sentence encoder, a self-attention mechanism
based paragraph encoder, and a decoder.

2.3 Sentence Encoder

For a sentence, we first apply word embedding
matrix to translate the raw words in the sentence
into distributional representations, and then adopt
bidirectional LSTMs to learn a sentence-level rep-
resentation for summarizing its high level seman-
tic concepts.

Specifically, assume that a sentence s, contain-
ing n,, raw words as s,, = [wy,- -, wy, |, these
words are transformed to dense vectors through
a word embedding matrix W,.: x, = Wow,, t €
[1,n,]. The sequence of vectors [Xy, -, X, ] is
then fed into bidirectional LSTMs sequentially to
compute a semantic representation of the sentence.

Long Short-term Memory networks (LSTMs)
(Hochreiter and Schmidhuber, 1997) is capable
of learning long-term dependencies and alleviat-
ing the problems of gradient vanishment and ex-
ploding. Here, we adopt bidirectional LSTMs
(Bi-LSTMs) to take full advantages of additional
backward information and enhance the memory
capability. In particular, the Bi-LSTMs contain
the forward LSTMs which process the sentence
So, from wy to w,, and backward LSTMs which
read s,, in the reversed direction:

i>t,—c>t = LSTM(it—l,—C)t—l, X¢)
— —
h,, ¢, =LSTM(h, Crrnx) (2

—
h; =[h,, h/]
where h; denotes the representation of position
H
t by concatenating the forward hidden state h,

and backward hidden state (h_t together. The out-
put of the last hidden state of the Bi-LSTMs is

taken to be the sentence representation vector as
So; = h,,,, which incorporates the contextual in-
formation from both directions in the sentence.

So far, we have obtained a syntactic and seman-
tic representation for a single sentence. In the fol-
lowing, a self-attention based paragraph encoder is
proposed to obtain a high level representation for
all given sentences by capturing sequential struc-
tures and logical relationships among them.

2.4 Paragraph Encoder
2.4.1 Self-attention mechanism

We start by introducing the scaled dot-product at-
tention, which is the foundation of self-attention
mechanism used in ATTOrderNet. Given a matrix
of n query vectors Q € R"™*¢ keys K € R, and
values V € R™4 the scaled dot-product attention

computes the output matrix as:
T

QK
vV @
\/5) (3)

Attention(Q, K, V) = softmax(

The multi-head attention with / parallel heads
is employed, where each head is an independent
scaled dot-product attention. The mathematical
formulation is shown below:

M, = Attention(QWS, KWK, VWY)  (4)
MH(Q.K, V) = Concat(My, - - -, M)W (5)

where WE, WK, WY € R¥*%a with d, = d/h are
the projection matrices for the i-th head and W €
Rhdaxd

Self-attention (Vaswani et al., 2017; Tan et al.,
2017; Shen et al., 2017) is a special case of
attention mechanism that only requires a sin-
gle sequence to compute its representation where
queries, keys, and values are all from the same
place.

2.4.2 Self-attention based Paragraph
Encoder

The paragraph encoder is composed of multiple
self-attention layers followed by an average pool-
ing layer.

Sentence vectors encoded by the sentence en-
coder are first packed together into a paragraph
matrix S = [So,» S0, """ »S0,] as E. This para-
graph matrix S € R™¢ is then fed forward to
L self-attention layers, where each layer learns a
representation E/*! = U(E') by taking the output
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from the previous layer /:

U(E') = ©(FN(D(E')), D(E)) (6)
D(E!) = ®(MH(E,, E}, E!), E!) (7)
®(v, w) = LayerNorm(v + w) (8)

FN(x) = ReLUW/ + bYW, + b (9)

where @(-) performs layer normalization (Ba et al.,
2016) on the residual output to preserve the auto-
regressive property, and FN(-) represents the fully
connected feed-forward networks which consists
of two linear layers with ReLU nonlinearity in the
middle. W! € R4, bl € R, W, € R4, and
b, € R? are trainable parameters. We set dy =
1024 in all our experiments.

Self-attention mechanism adopted in the para-
graph encoder directly relate sentences at different
positions from the text by computing the attention
score (relevance) between each pair of sentences.
This allows each sentence to build links with all
other sentences in the text, which enables the en-
coder to exploit latent dependency relationships
among sentences without regarding to their input
order. Then, attention mechanism uses weighted
sum operation to establish a higher level repre-
sentation for the entire sentence set. As we see,
there is no order information used in the encoding
process which prevents the model from being af-
fected by the incorrect sentence order. Therefore,
self-attention based paragraph encoder is efficient
in modeling of dependencies while being invariant
to the sentence order.

The final paragraph representation v is obtained
in the average pooling layer by averaging the out-
put matrix EX € R from the last self-attention
layer: v = 1 3 eli, where n is the number of
sentences and e’ denotes the i-th row in EZ. This
learned representation vector can be viewed as a
hierarchical encoding of the entire set of sentences
which will then be used as the input of the decoder
to perform sentence ordering.

2.5 Decoder

The aim of decoder is to predict a consistent order
for the input set of sentences.

Following the previous approaches (Gong et al.,
2016; Logeswaran et al., 2018), the coherence
probability of given sentences s with the order o
is formalized as:

P(ols) = [ | P(oiloi-1,-+01,9)  (10)
i=1

The higher the probability, the more coherent sen-
tences assignment is.

To calculate P(ol|s), we employ the pointer net-
work architecture (Vinyals et al., 2015) as our de-
coder which consists of LSTMs cells (Equation
11-13). The LSTM takes the embedding of the
previous sentence as the input to decoder step.
During training, the correct order of sentences o*
is known, so the input sequence [X},Xp, - - ,X,]| =
[SOT’ So3, ,So:, ]. For step i, the input to the de-
coder is x;_| = So1_,- At test time, the predicted
sentence assignment Sy, , is used instead.

The initial state of the decoder LSTM is initial-
ized with the final paragraph vector from the en-
coder: hg = v7'. And the input at the first step in
decoder x¢ € R? is a vector of zeros. The mathe-
matical formulation for the i-th step in decoder is
as follows:

h;, ¢; = LSTM(h;_1, ¢;_1,X;_1) (1D
u;. = g’ tanh(Ws,, + Wrh;) (12)
P(oi|oj_1,- - ,01,8) = softmax(u’)  (13)

where g € R4, W, € R4 and W, e R4
are learnable parameters and j € (1,---,n). The
softmax function normalizes the vector u* € R”"
to produce an output distribution over all input
sentences. And P(o;|0;_1,- -, 01,8) can be inter-
preted as the coherence probability for the cur-
rent output sequence when s,, being the sentence
choice at position i conditioned on the previous
sentences assignment.

Order Prediction: The predicted order 6 =
[61, 02, - -+, 0,] is the one with the highest coher-
ence probability:

0 = argmax P(o|s) (14)
(W]

In this work, we use beam search strategy to find
a sub optimal result.

2.6 Training

For each ordered document, we use one random
permutation of sentences as the input sample at
each epoch during the training and testing process.
Assume that there are K documents in the training
set. We define (g;, yj)JI.(:l, where y; is in the cor-
rect order 0" of original document j and ¢g; denotes
the set of sentences with a specific permutation of
yj- P(yjlg;) = P(o*|s = g;) can be interpreted as
the probability that sentences are assigned in the
correct order when given sentences g;.
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Dataset Length statistics Data split Vocabulary
min mean max train valid test

Accident 6 11.5 19 100 - 100 4501
Earthquake 3 10.4 32 100 - 99 3022
NIPS abstract 2 6 15 2248 409 402 16721
AAN abstract 1 5 20 8569 962 2626 34485
NSF abstract 2 8.9 40 96070 10185 21580 334090
arXiv abstract 2 5.38 35 884912 110614 110615 64557
SIND caption 5 5 5 40155 4990 5055 30861

Table 2: Statistics of seven datasets used in our experiments.

We aim to train the overall model to maximize
this probability by minimizing the loss function:

K
1 A s
L=-% JZ‘ log P(yjlq;:6) + Sllell;  (15)
where 6 represents all trainable parameters in the
networks and A is a regularization parameter.

3 Experiments

3.1 Datasets

Accident, Earthquake: two datasets obtained
from (Barzilay and Lapata, 2008). The first one
is a collection of aviation accident reports from
the National Transportation Safety Board and the
second one comprises Associated Press articles re-
lated to earthquake. Since the original datasets
do not provide validation samples, we follow the
setup in (Louis and Nenkova, 2012; Li and Hovy,
2014) and use 10-fold cross validation on the train-
ing data.
NIPS abstract, AAN abstract, NSF abstract:
these three datasets are from (Logeswaran et al.,
2018) containing abstracts from NIPS papers,
ACL papers, and the NSF Research Award Ab-
stracts dataset respectively.
arXiv abstract, SIND caption: we further con-
sider two datasets used in (Gong et al., 2016). The
former consists of abstracts from papers on arXiv
website (Chen et al., 2016) and the other contains
captions from SIND dataset (Huang et al., 2016).
Further statistics about seven datasets are illus-
trated in Table 2.

3.2 Training setup

We use pre-trained 100 dimensional GloVe word
embeddings (Pennington et al., 2014). And all
the out-of-vocabulary words are replaced with
<UNK>, whose embeddings are updated during
training process. The nltk sentence tokenizer is

used for word tokenization.! Parameter optimiza-
tion is performed using stochastic gradient de-
scent. We adopt Adadelta (Zeiler, 2012) as the op-
timizer with € = 10° and p = 0.95. The learning
rate is initialized to 1.0, the batch size is 16, and
the beam size is set to 64. The hidden layer size
of LSTMs in sentence encoder is 256, and is 512
in the decoder. The number of attention layers in
the paragraph encoder is 6 for AAN abstract, 4 for
NSF abstract and arXiv abstract, and 2 for the rest
of datasets. We employ 8 parallel heads through-
out all self-attention layers and use L2 weight de-
cay on the trainable variables with regularization
parameter 1 = 107>. The model is implemented
with TensorFlow?. Hyperparameters are chosen
using the validation set.

3.3 Sentence Ordering

We first evaluate our model on the sentence or-
dering task, as proposed by Barzilay and Lapata
(2008). Given a set of permuted sentences, our
goal is to return the original order for them which
is considered to be the most coherent.

3.3.1 Baselines

We compare ATTOrderNet against a random base-
line and all the competing models. These baseline
methods can be categorized into three classes and
results are reported in (Soricut and Marcu, 2006;
Gong et al., 2016; Logeswaran et al., 2018).

(1) Traditional approaches: Probabilistic Model
(Lapata, 2003); Content Model (Barzilay and Lee,
2004); Utility-Trained model (Soricut and Marcu,
2006); Entity Grid (Barzilay and Lapata, 2008).
These four methods employ handcrafted features
in modeling the document structure.

(2) Data-driven methods: Window network (Li
and Hovy, 2014); Seq2seq (Li and Jurafsky,

INLTK implementation: http://www.nltk.org/
2https://www.tensorﬂow.org/
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Models

Accident Earthquake NIPS abstract AAN abstract NSF abstract arXiv abstract SIND caption

T T Acc T Acc T Acc T PMR T PMR T
Random 0 0 15.59 0 19.36 0 9.46 0 8.07 0 6.05 0
Probabilistic Model 0.07 0.48 - - - - - - - - - -
Content Model 0.44 0.81 - - - - - - - - - -
Utility-Train Model 0.50 0.47 - - - - - - - - - -
Entity Grid 0.12 0.19 20.10 0.09 21.82 0.10 - - - - - -
Seq2seq - - 27.18 0.27 36.62 040 13.68 0.10 - - - -
Window network - - 4176 0.59 50.87 0.65 18.67 0.28 - - - -
Pairwise Ranking Model - - - - - - - - 3343 0.66 - -
RNN Decoder - - 4822 0.67 52.06 0.66 2579 048 - - - -
Varient-LSTM+PtrNet - - 51.55 0.72 58.06 0.73 28.33 0.51 - - - -
CNN+PtrNet 0.58 0.84 48.64 0.66 5821 0.69 3322 052 39.28 0.71 1232 048
LSTM+PtrNet 0.58 0.85 50.87 0.67 5820 0.69 3245 0.52 4044 0.72 1234 048
ATTOrderNet (ATT) 0.59 0.87 52.17 0.71 6095 0.70 37.07 0.52 41.03 0.72 12.77 048
ATTOrderNet (CNN) 0.61 0.89 5469 0.72 6297 0.72 3759 0.54 42.09 0.73 1395 049
ATTOrderNet 0.64 0.92 56.09 0.72 63.24 0.73 37.72 0.55 42.19 0.73 14.01 049

Table 3: Experimental results for different methods on the Sentence Ordering task.

2017); Pairwise Ranking Model (Chen et al.,
2016). These three approaches capture the local
coherence of text based on the neural networks.
(3) Hierarchical RNN-based models: Varient-
LSTM+PtrNet, RNN Decoder (Logeswaran et al.,
2018); CNN+PtrNet, LSTM+PtrNet (Gong et al.,
2016). These architectures adopt RNN based ap-
proaches to obtain the representation for the input
set of sentences and employ the pointer network
as the decoder to predict order. The main differ-
ence between ATTOrderNet and these models lies
in the design of paragraph encoder.

For thorough comparison, besides the models

proposed in the existing literature, we further im-
plement two variants of ATTOrderNet.
ATTOrderNet (ATT): The sentence encoder in
this model is also entirely based on self-attention
mechanism with 4 self-attention layers and 5
heads. Different from the paragraph encoder, the
positional encoding method proposed by Vaswani
et al. (2017) is applied here to encode temporal in-
formation of each input word.
ATTOrderNet (CNN): This model employs con-
volutional neural networks to model sentences. In
experiment, the number of feature maps is set to
512 and the width of convolution filter is 4.

3.3.2 Evaluation Metrics

To provide assessments on the quality of the order-
ings we predict in this task, we use the following
three metrics:

Kendall’s tau (7): Kendall’s tau is one of the most

frequently used metrics for the automatic evalu-
ation of document coherence (Lapata, 2003; Lo-
geswaran et al., 2018; Li and Jurafsky, 2017). It
could be formalized as: 7 = 1 — 2X (number of
inversions) /(3), where n is the length of the se-
quence and the number of inversions denotes the
number of pairs in the predicted sequence with in-
correct relative order. This metric ranges from -1
(the worst) to 1 (the best).

Accuracy (Acc): We follow (Logeswaran et al.,
2018) in employing Accuracy to measure how of-
ten the absolute position of a sentence was cor-
rectly predicted. Compared to 7, it penalizes cor-
rectly predicted subsequences that are shifted.
Perfect Match Ratio (PMR): Perfect match ra-
tio (Gong et al., 2016) is the most stringent mea-
surement in this task. It calculates the radio of ex-
actly matching orders: PMR:% Zf:] 1(0' = 0™),
where o' and o'* are predicted and correct orders
of the i-th text respectively.

3.3.3 Results

The experimental results on all datasets are re-
ported in Table 3. Results show that ATTOrderNet
gives the best performance across most datasets
and under most evaluation measurements.

The improvement is regardless of data sizes.
In particular, for smaller datasets such as Acci-
dent and Earthquake datasets, ATTOrderNet out-
performs the previous best baseline methods by
6% and 7% tau score respectively. As for medium
size datasets including NIPS abstract and AAN
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abstract, ATTOrderNet shows absolute improve-
ments of 4.54% and 5.03% accuracy score over
the previous state-of-the-art. Such finding is con-
sistent across larger datasets. ATTOrderNet out-
performs the previous state-of-the-art systems by
4.50% accuracy score with 3% tau score on NSF
abstract, 1.75% PMR score with 1% tau score on
arXiv abstract, and 1.67% PMR score with 1% tau
score on SIND caption. Interestingly, ATTOrder-
Net reaches 42.19% PMR score on arXiv abstract,
which means that more than 2/5 texts in the test
set can be ordered exactly right. This performance
clearly demonstrates the adaptability and flexibil-
ity of the proposed model.

As shown in Table 3, ATTOrderNet performs
much better than data-driven methods by a sig-
nificant margin on all corresponding datasets. It
proves the importance of exploiting the context by
self-attention mechanism as these competing mod-
els only consider the local coherence in the text.
Among the traditional ordering approaches, Con-
tent Model (Barzilay and Lee, 2004) representing
topics as states and capturing possible orderings
for global coherence performs better than other
methods with the tau score of 0.81 on Earthquake
dataset, which also demonstrates that global con-
text is important to sentence ordering. However,
Content Model requires manual feature engineer-
ing that costs great human efforts. In contrast,
the self-attention mechanism used in ATTOrder-
Net directly captures the global dependences for
the whole text while requiring no linguistic knowl-
edge anymore and enables ATTOrderNet to fur-
ther improve tau score to 0.92 on the same dataset.

In addition, hierarchical RNN-based models
capture the global coherence among sentences
with LSTMs and outperform the traditional meth-
ods and data-driven approaches in most cases.
However, these models still suffer from the per-
mutation of sentences within the document since
LSTM works sequentially. ATTOrderNet achieves
superior performances to them by adopting the
self-attention mechanism to reduce the influence
of the permutation of sentences.

Further, ATTOrderNet (CNN) has better per-
formances than ATTOrderNet (ATT) on most of
the datasets. We conjecture that this is due to
the limitation of data size. Since ATTOrderNet
(ATT) applies self-attention mechanism in both
sentence and paragraph encoders requiring more
data to train the model, however the size of the

Models arXiv abstract ~ SIND caption
head tail head tail
Random 23.06 23.16 22778 22.56
Pairwise Ranking Model  84.85  62.37 - -
CNN+PtrNet 89.43 6536 73.53 53.26
LSTM+PtrNet 9047 66.49 74.66 53.30
ATTOrderNet (ATT) 89.68 65.75 75.88 54.30
ATTOrderNet (CNN) 90.86 67.85 7595 5437
ATTOrderNet 91.00 68.08 76.00 54.42

Table 4: The performance of correctly predicting the
first and the last sentences on arXiv abstract and SIND
caption datasets.

datasets used in this task is smaller than those in
other tasks such as document classification (Yang
et al., 2016). Given larger datasets in the future,
we believe ATTOrderNet (ATT) would perform
much better. Among three sentence encoders, AT-
TOrderNet presents a superior performance across
the board. This indicates that LSTM is more effi-
cient in learning semantic representation for sen-
tence level in this task. ATTOrderNet becomes
more competitive through combining both advan-
tages of LSTMs and self-attention mechanism.
Since the first and the last sentences of the text
are more special to discern (Chen et al., 2016;
Gong et al., 2016), we also evaluate the ratio of
correctly predicting the first and the last sentences.
Table 4 summarizes our performances on arXiv
abstract and SIND caption. As we see, all models
show fair well in predicting the first sentence, and
the prediction accuracy declines for the last one.
It is observed that ATTOrderNet still achieves a
boost in predicting two positions compared to the
previous state-of-the-art system on both datasets.

3.3.4 Visualization of attention

The aim of this section is to visualize the relation-
ship between sentences captured by self-attention
mechanism and understand how it helps perform
the sentence ordering task. A technique for vi-
sualizing attention mechanism in neural networks
is proposed by Vaswani et al. (2017) 3. Inspired
by this work, we select a text from AAN abstract
dataset to visualize the hierarchical attention layer
from the paragraph encoder of ATTOrderNet in
Figure 2. Different from visualizing the depen-
dencies of one word with the other words in the
sentence (Vaswani et al., 2017), our visualization

3 https://github.com/tensorflow/tensor2tensor
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However , text use changes with time , which can affect many applications .
We use this to forecast the volume of hashtag based on past data .
Temporal variations of text are usually ignored in NLP applications .

Focusing on hashtag frequency in Twitter , we identify periodic patterns .

We use Gaussian Processes , a state-of-art bayesian non-parametric model .
This method shows significant improvements over competitive baselines .

In this paper we model periodic distributions of words over time .

However , text use changes with time , which can affect many applications .
We use this to forecast the volume of hashtag based on past data .
Temporal variations of text are usually ignored in NLP applications .
Focusing on hashtag frequency in Twitter , we identify periodic patterns .

We use Gaussian Processes , a state-of-art bayesian non-parametric model .
This method shows significant improvements over competitive baselines .

In this paper we model periodic distributions of words over time .

AN

Figure 2: An example of the attention mechanism describing sentence dependencies in the encoder self-attention
in layer 5 of 6 for the text from AAN abstract. Four attention heads attend to a dependency of the selected sentence
“Temporal variations of text are ...”, providing important clues for the correct order prediction. Attention here
shown is only for this sentence. Different color indicate different heads. Best viewed in color.

shows the dependencies between each sentence
and all other sentences in the text.

For the example in Figure 2, the left text is the
input sample to our model which contains a set
of permuted sentences with the correct order be-
sides it. The right side is a copy of the input text,
which is presented for showing the relevance be-
tween each pair of sentences more clearly. The
line with grey color on the right text is an example
sentence chosen to visualize the attention weights
with other sentences. On the top of the text are
8 colored squares representing 8 different atten-
tion heads used in the paragraph encoder. Colored
columns on the left text show the performance of
their corresponding heads. The darkness of the
color in column denotes the normalized distribu-
tion of the attention weight for the example sen-
tence in the head. Sentences in darker shades show
more attention weight which reflects stronger links
they have with the example sentence.

In particular, Figure 2 shows the attention dis-
tribution for the first sentence in the original doc-
ument. We present the weight distribution in
four heads as an instance. It is interesting to see
that all of them showing significant higher atten-
tion weights on the true second sentence “How-
ever, text use changes ...” than other sentences in
the text. This indicates that these heads are able
to learn the latent dependency relationships from
sentences and can successfully distinguish which
one is the true next following among all sentence
candidates. These heads build much stronger links
between this sentence with the chosen one in order
to keep structural information for higher level rep-
resentation, such as paragraph representation.

3.4 Order Discrimination

In this section, we assess ATTOrderNet on an-
other common evaluation task which is usually

adopted in the existing literature: order discrim-
ination task.

Order discrimination (Barzilay and Lapata,
2008; Elsner and Charniak, 2011, 2008) aims to
compare a document to a randomly permuted ver-
sion of it. Models are evaluated with Pairwise Ac-
curacy: the ratio of correctly identifying the orig-
inal document with higher coherence probability
(defined in Equation 10) than the probability of its
permutation.

Among seven datasets mentioned above, we
use two of them to assess the performance of
ATTOrderNet on the order discrimination task:
Accident and Earthquake datasets. These two
have been widely used for this task in the pre-
vious literature (Li and Hovy, 2014; Logeswaran
et al., 2018). This gives us the convenience of di-
rectly comparing the result of the proposed model
against the reported results. Following the setup
in (Barzilay and Lapata, 2008), a maximum of
20 random permutations were generated for each
training and testing article to create the pairwise
data. There are 1986 and 1956 test pairs in Acci-
dent and Earthquake datasets respectively.

3.4.1 Baselines

To demonstrate that ATTOrderNet truly improves
the order discrimination performance, we com-
pare ATTOrderNet with the following representa-
tive models: Graph from (Guinaudeau and Strube,
2013), HMM and HMM-+Entity from (Louis and
Nenkova, 2012), Entity Grid from (Barzilay and
Lapata, 2008), Recurrent and Recursive from
(Li and Hovy, 2014), Discriminative model from
(Li and Jurafsky, 2017), Varient-LSTM+PtrNet
from (Logeswaran et al., 2018), CNN+PtrNet and
LSTM+PtrNet from (Gong et al., 2016). The re-
sults of the last two methods were obtained by
training their models on two datasets.
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Models Accident Earthquake
Random 50.0 50.0
Graph 84.6 63.5
HMM-+Entity 84.2 91.1
HMM 82.2 93.8
Entity Grid 90.4 87.2
Recurrent 84.0 95.1
Recursive 86.4 97.6
Discriminative Model 93.0 99.2
Varient-LSTM+PtrNet 94.4 99.7
CNN-+PtrNet 93.5 99.4
LSTM+PtrNet 93.7 99.5
ATTOrderNet (ATT) 95.4 99.6
ATTOrderNet (CNN) 95.8 99.7
ATTOrderNet 96.2 99.8

Table 5: Experimental results of Pairwise Accuracy for
different approaches on two datasets in the Order Dis-
crimination task.

3.4.2 Results

Table 5 reports the results of ATTOrderNet and
currently competing architectures in this evalua-
tion task. ATTOrderNet also achieves the state-
of-the-art performance, showing a remarkable ad-
vancement of about 1.8% gain on Accident dataset
and further improving the pairwise accuracy to
99.8 on Earthquake dataset.

LSTM+PtrNet and CNN+ PtrNet (Gong et al.,
2016) fall short of Varient-LSTM+PtrNet (Lo-
geswaran et al., 2018) in performance. This could
also be blamed for their paragraph encoder. Docu-
ments in both datasets are much longer than those
in others, which brings more trouble for LSTMs in
paragraph encoder to build logical representations.
Compared to the result in the sentence order-
ing task, Entity Grid (Barzilay and Lapata, 2008)
achieves a good performance in this task and even
outperforms Recurrent neural networks and Re-
cursive neural networks (Li and Hovy, 2014) on
Accident dataset. However, Entity Grid requires
hand-engineered features and heavily relies on lin-
guistic knowledge which restrain the model to be
adapted to other tasks.

4 Conclusion

In this paper, we develop a novel deep attentive
sentence ordering model (referred as ATTOrder-
Net) integrating self-attention mechanism with
LSTMs. It enables us to directly capture logical
relationships among sentences regardless of their

input order and obtain a reliable representation
of the sentence set. With this representation, a
pointer network is applied to generate an ordered
sequence. ATTOrderNet is evaluated on Sentence
Ordering and Order Discrimination tasks. The
experimental results demonstrate its effectiveness
and show promising improvements over existing
models across most datasets.
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