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Abstract

Sequence-to-Sequence (seq2seq) models have
become overwhelmingly popular in build-
ing end-to-end trainable dialogue systems.
Though highly efficient in learning the back-
bone of human-computer communications,
they suffer from the problem of strongly fa-
voring short generic responses. In this pa-
per, we argue that a good response should
smoothly connect both the preceding dialogue
history and the following conversations. We
strengthen this connection through mutual in-
formation maximization. To sidestep the non-
differentiability of discrete natural language
tokens, we introduce an auxiliary continuous
code space and map such code space to a learn-
able prior distribution for generation purpose.
Experiments on two dialogue datasets validate
the effectiveness of our model, where the gen-
erated responses are closely related to the dia-
logue context and lead to more interactive con-
versations.

1 Introduction

With the availability of massive online conver-
sational data, there has been a surge of in-
terest in building open-domain chatbots with
data-driven approaches. Recently, the neural
network based sequence-to-sequence (seq2seq)
framework (Sutskever et al., 2014; Cho et al.,
2014) has been widely adopted. In such a model,
the encoder, which is typically a recurrent neu-
ral network (RNN), maps the source tokens into a
fixed-sized continuous vector, based on which the
decoder estimates the probabilities on the target
side word by word. The whole model can be effi-
ciently trained by maximum likelihood (MLE) and
has demonstrated state-of-the-art performance in
various domains. However, this architecture is not

∗Indicates equal contribution. X. Shen focuses on algo-
rithm and H. Su is responsible for experiments.

A1: Do you know the movie Star Wars?
B1: Only a bit. You can tell me about it!
A2: Of course! This is about ...

Figure 1: A conversation in real life

suitable for modeling dialogues. Recent research
has found that while the seq2seq model gener-
ates syntactically well-formed responses, they are
prone to being off-context, short, and generic.
(e.g., “I dont know” or “I am not sure”) (Li et al.,
2016a; Serban et al., 2016). The reason lies in the
one-to-many alignments in human conversations,
where one dialogue context is open to multiple po-
tential responses. When optimizing with the MLE
objective, the model tends to have a strong bias to-
wards safe responses as they can be literally paired
with arbitrary dialogue context without semanti-
cal or grammatical contradictions. These safe re-
sponses break the dialogue flow without bringing
any useful information and people will easily lose
interest in continuing the conversation.

In this paper, we propose NEXUS Network
which aims at producing more on-topic responses
to maintain an interactive conversation flow. Our
assumption is that a good response should serve
as a “nexus”: connecting and being informative
to both the preceding dialogue context and the
follow-up conversations. For example, in Figure
1, the response from B1 is a smooth connection,
where the first half indicates the preceding context
is a “Do you know” question and the second half
informs that the follow-up would be an introduc-
tion about Star Wars. We establish this connection
by maximizing the mutual information (MMI) of
the current utterance with both the past and fu-
ture contexts. In this way, generic responses can
be largely discouraged as they contain no valuable
information and thus have only weak correlations
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with the surrounding context. To enable efficient
training, two challenges exist.

The first challenge comes from the discrete na-
ture of language tokens, hindering efficient gradi-
ent descent. One strategy is to estimate the gradi-
ent by methods like Gumbel-Softmax (Maddison
et al., 2017; Jang et al., 2017) or REINFORCE
algorithm (Williams, 1992), which has been ap-
plied in many NLP tasks (He et al., 2016; Shetty
et al., 2017; Gu et al., 2018; Paulus et al., 2018),
but the trade-off between bias and variance of the
estimated gradient is hard to reconcile. The re-
sulting model usually strongly relies on sensitive
hyper-parameter tuning, careful pre-train and task-
specific tricks. Li et al. (2016a); Wang et al. (2017)
avoid this non-differentiability problem by learn-
ing a separate backward model to rerank candidate
responses in the testing phase while still adhering
to the MLE objective for training. However, the
candidate set normally suffers from low diversity
and a huge sample size is needed for good perfor-
mance (Li et al., 2016b).

The second challenge relates to the unknown fu-
ture context in the testing phase. In our frame-
work, both the history and future context need to
be explicitly observed in order to compute the mu-
tual information. When applying it to generating
tasks where only the history context is given, there
is no way to explicitly take into account the future
information. Therefore, reranking-based models
do not apply here. (Li et al., 2016c) addresses fu-
ture information by policy learning, but the model
suffers from high variance due to the enormous
sequential search space. Serban et al. (2017);
Zhao et al. (2017); Shen et al. (2017) adopt the
variational inference strategy to reduce the train-
ing variance by optimizing over latent continuous
variables. However, they all stick to the original
MLE objective and no connection with the sur-
rounding context is considered.

In this work, we address both challenges by
introducing an auxiliary continuous code space
which is learned from the whole dialogue flow. At
each time step, instead of directly optimizing dis-
crete utterances, the current, past and future utter-
ances are all trained to maximize the mutual in-
formation with this code space. Furthermore, a
learnable prior distribution is simultaneously opti-
mized to predict the corresponding code space, en-
abling efficient sampling in the testing phase with-
out getting access to the ground-truth future con-

versation. Extensive experiments have been con-
ducted to validate the superiority of our frame-
work. The generated responses clearly demon-
strate better performance with respect to both co-
herence and diversity.

2 Model Structure

2.1 Motivation

Let ui be the ith utterance within a dialogue flow.
The dialogue historyHi−1 contains all the preced-
ing context u1, u2, . . . , ui−1 and Fi+1 denotes the
future conversations ui+1, . . . , uT . The objective
of our model is to find the decoding probability
pθ(ui|Hi−1, Fi+1) that maximizes the mutual in-
formation I(Hi−1, ui) and I(ui, Fi+1). Formally,
the objective is:

max
θ
λ1I(Hi−1, ui) + λ2I(ui, Fi+1)

ui ∼ pθ(ui|Hi−1, Fi+1)
(1)

λ1 and λ2 adjusts the relative weight. Mutual in-
formation is defined over pθ(ui|Hi−1, Fi+1) and
the empirical distribution p(Hi−1, Fi+1). Now we
assume the future context Fi+1 is known to us
when training the decoding probability, we will
address the unknown future problem later.

Directly optimizing with this objective is unfor-
tunately infeasible because the exact computation
of mutual information is intractable, and back-
propagating through sampled discrete sequences
is notoriously difficult to train. The discontinuity
prevents the direct application of the reparameter-
ization trick (Kingma and Welling, 2014). Low-
variance relaxations like Gumbel-Softmax (Jang
et al., 2017), semantic hashing (Kaiser et al., 2018)
or vector quantization (van den Oord et al., 2017)
lead to biased gradient estimations, which are ac-
cumulated as the sequence becomes longer. The
Monte-Carlo-Simulation is unbiased but suffers
from high variances. Designing a reasonable con-
trol variate for variance reduction is an extremely
tricky task (Mnih and Gregor, 2014; Tucker et al.,
2017). For this sake, we propose replacing ui with
a continuous code space c learned from the whole
dialogue flow.

2.2 Continuous Code Space

We define the continuous code space c to follow
the Gaussian probability distribution with a diag-
onal covariance matrix conditioning on the whole
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Figure 2: Framework of NEXUS Networks. Full line indicates the generative model to generate the continuous
code and corresponding responses. Dashed line indicates the inference model where the posterior code is trained
to infer the history, current and future utterances. Both parts are simultaneously trained by gradient descent.

dialogue:

c ∼ pφ(c|Hi−1, Fi) = N (µc, σ
2
c I|Hi−1, Fi) (2)

The dialogue history Hi−1 is encoded into vector
˜Hi−1 by a forward hierarchical GRU model Ef as

in (Serban et al., 2016). The future conversation,
including the current utterance, is encoded into F̃i
by a backward hierarchical GRU Eb. ˜Hi−1 and
F̃i are concatenated and a multi-layer perceptron
is built on top of them to estimate the Gaussian
mean and covariance parameters. The code space
is trained to infer the encoded history ˜Hi−1 and
future ˜Fi+1. The full optimizing objective is:

L(c) = max
φ

Epφ(Hi−1,Fi,c)[λ1 log pφ(
˜Hi−1|c)

+λ2 log pφ( ˜Fi+1|c)]
pφ(Hi−1, Fi, c) = p(Hi−1, Fi)pφ(c|Hi−1, Fi)

pφ( ˜Hi−1|c) = N (µHi , σ
2
HiI|c)

pφ( ˜Fi+1|c) = N (µFi+1 , σ
2
Fi+1

I|c)
(3)

where ˜Hi−1 and ˜Fi+1 are also assumed to be
Gaussian distributed given c with mean and co-
variance estimated from multi-layer perceptrons.
We infer the encoded vectors instead of the orig-
inal sequences for three reasons. Firstly, infer-
ring dense vectors is parallelizable and computa-
tionally much cheaper than autoregressive decod-
ing, especially when the context sequences could

be unlimitedly long. Secondly, sequence vectors
can capture more holistic semantic-level similar-
ity than individual tokens. Lastly, It can also
help alleviate the posterior collapsing issue (Bow-
man et al., 2016) when training variational in-
ference models on text (Chen et al., 2017; Shen
et al., 2018), which we will use later. It can
be shown that the above objective maximizes
a lower bound of λ1I(Hi−1, c) + λ2I(c, Fi+1),
given the conditional probability pφ(c|Hi−1, Fi).
The proof is a direct extension of the derivation
in (Chen et al., 2016), followed by the Data Pro-
cessing Inequality (Beaudry and Renner, 2012)
that the encoding function can only reduce the
mutual information. As the sampling process
contains only Gaussian continuous variables, the
above objective can be trained through the repa-
rameterization trick (Kingma and Welling, 2014),
which is a low-variance, unbiased gradient estima-
tor (Burda et al., 2015). After training, samples
from pφ(c|Hi−1, Fi) hold high mutual information
with both the history and future context. The next
step is then transferring the continuous code space
to reasonable discrete natural language utterances.

2.3 Decoding from Continuous Space

Our decoder transfers the code space c into the
ground-truth utterance ui by defining the proba-
bility distribution p(ui|Hi−1, c), which is imple-
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mented as a GRU decoder going through ui word
by word to estimate the output probability. The
encoded history ˜Hi−1 and code space c are con-
catenated as an extra input at each time step. The
loss function for the decoder is then:

L(d) = max
φ

Epφ(Hi−1,Fi,c) log pφ(ui|Hi−1, c)

pφ(Hi−1, Fi, c) = p(Hi−1, Fi)pφ(c|Hi−1, Fi)
(4)

which can be proved to be the lower bound of
the conditional mutual information I(ui, c|Hi−1).
By maximizing the conditional mutual informa-
tion, ci is trained to maintain as much information
about the target sequence ui as possible.

Combining Eq. 3 and 4, our model until now
can be viewed as optimizing a lower bound of the
following objective:

max
φ

λ1I(Hi−1, c) + λ2I(c, Fi+1) + I(ui, c|Hi−1)

c ∼ pφ(c|Hi−1, Fi)
(5)

Compared with the original motivation in Eq. 1,
we sidestep the non-differentiability problem by
replacing ui with a continuous code space c, then
forcing ui to contain the same information as
maintained in c by additionally maximizing the
mutual information between them.

Nonetheless, Eq. 5 and Eq. 1 might lead to dif-
ferent optimums as mutual information does not
satisfy the transitive law. In the extreme case, dif-
ferent dimensions of c could individually maintain
information about history, current and future con-
versations and the conversations themselves do not
share any dependency relation. To avoid this issue,
we restrict the dimension of c to be smaller than
that of the encoded vectors. In this case, optimiz-
ing Eq. 5 will favor utterances having stronger cor-
relations with the surrounding context to achieve a
higher total mutual information.

2.4 Learnable Prior Distribution for
Unknown Future

The last problem is the sampling mechanism of c
in Eq. 2, which conditions on the ground-truth fu-
ture conversation. In the testing phase, when we
have no access to it, we cannot perform the de-
coding process as in Eq. 4. To allow for decoding
with only the history context, we need to learn an
appropriate prior distribution pθ(c|Hi−1) for c. In

the ideal case, we would like

pθ(c|Hi−1) =
∑
Fi

pφ(c|Hi−1, Fi) = pφ(c|Hi−1)

(6)
However, pφ(c|Hi−1) is intractable as it integrates
over all possible future conversations. We apply
variational inference on c to maximize the varia-
tional lower bound (Jordan et al., 1999):

L(p) = max
θ,φ

Epφ(c|Hi−1,Fi) log pθ(F̃i|Hi−1, c)

−KL(pφ(c|Hi−1, Fi)||pθ(c|Hi−1))

pθ(F̃i|Hi−1, c) ∼ N (µFi , σ
2
FiI|Hi−1, c)

pθ(c|Hi−1) ∼ N (µprior, σ
2
priorI|Hi−1))

(7)
It can be reformulated as maximizing:

Epφ(c|Hi−1)KL(pφ(F̃i|Hi−1, c)||pθ(F̃i|Hi−1, c))

−KL(pφ(c|Hi−1)||pθ(c|Hi−1))
(8)

We can see it implicitly matches pφ(c|Hi−1) to
a tractable Gaussian distribution pθ(c|Hi−1) by
minimizing the KL divergence between them. It
also functions as a regularizer to prevent overfit-
ting when learning pφ(c|Hi−1, Fi). In the test-
ing phase, we can sample c from the learned prior
distribution pθ(c|Hi−1), then generate a response
based on it.

2.5 Summary

To sum up, the total objective function of our
model is:

L = L(c) + L(d) + L(p) (9)

Weighting can be added to individual loss func-
tions for better performance, but we find it enough
to maintain equal weights and avoid extra hyper-
parameters. All the parameters are simultaneously
updated by gradient descent except for the en-
coders Ef and Eb, which only accept gradients
from L(d) since otherwise the model can easily
learn to encode no information for a lower recon-
struction loss in L(c) and L(p). An overview of
our training procedure is depicted in Fig. 2.

3 Relationship to Existing Methods

MMI decoding MMI decoder was proposed by
(Li et al., 2016a) and further extended in (Wang
et al., 2017). The basic idea is the same as our
model by maximizing the mutual information with
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the dialogue context. However, the MMI principle
is applied only at the testing phase rather than the
training phase. As a result, it can only be used to
evaluate the quality of a generation by estimating
its mutual information with the context. To apply
it in a generative task, we have to first sample some
candidate responses with the seq2seq model, then
rerank them by accounting for the MMI score. Our
model differs from it in that we directly estimate
the decoding probability thus no post-sampling
rerank is needed. Moreover, we further include the
future context to strengthen the connection role of
the current utterances.

Conditional Variational Autoencoder The
idea of learning an appropriate prior distribution
in Eq. 7 is essentially a conditional variational
autoencoder (Sohn et al., 2015) where the accu-
mulated posterior distribution is trained to stay
close to a prior distribution. It has also been ap-
plied in dialogue generation (Serban et al., 2017;
Zhao et al., 2017). However, all the above meth-
ods stick to the MLE objective function and do not
optimize with respect to the mutual information.
As we will show in the experiment, they fail to
learn the correlation between the utterance and
its surrounding context. The generation diversity
of these models comes more from the sampling
randomness of the prior distribution rather than
from the correct understanding of context corre-
lation. Moreover, they suffer from the posterior
collapsing problem (Bowman et al., 2016) and
require special tricks like KL-annealing, BOW
loss or word drop-out (Shen et al., 2018). Our
model does not have such problems.

Deep Reinforcement Learning Dialogue Gener-
ation (Li et al., 2016c) first considered future
success in dialogue generation and applied deep
reinforcement learning to encourage more interac-
tive conversations. However, the reward functions
are intuitively hand-crafted. The relative weight
for each reward needs to be carefully tuned and the
training stage is unstable due to the huge search
space. In contrast, our model maximizes the mu-
tual information in the continuous space and trains
the prior distribution through the reparamateriza-
tion trick. As a result, our model can be more eas-
ily trained with a lower variance. Throughout our
experiment, the training process of NEXUS net-
work is rather stable and much less data-hungry.
The MMI objective of our model is theoretically

more sound and no manually-defined rules need
to be specified.

4 Experiments

4.1 Dataset and Training Details

We run experiments on the DailyDialog (Li et al.,
2017b) and Twitter corpus (Ritter et al., 2011).
DailyDialog contains 13118 daily conversations
under ten different topics. This dataset is crawled
from various websites for English learner to prac-
tice English in daily life, which is high-quality,
less noisy but relatively smaller. In contrast, the
Twitter corpus is significantly larger but contains
more noise. We obtain the dataset as used in Ser-
ban et al. (2017) and filter out tweets that have
already been deleted, resulting in about 750,000
multi-turn dialogues. The contents have more in-
formal, colloquial expressions which makes the
generation task harder. These two datasets are ran-
domly separated into training/validation/test sets
with the ratio of 10:1:1.

In order to keep our model comparable with the
state-of-the-art, we keep most parameter values
the same as in (Serban et al., 2017). We build our
vocabulary dictionary based on the most frequent
20,000 words for both corpus and map other words
to a UNK token. The dimensionality of the code
space c is 100. We use a learning rate of 0.001 for
DailyDialog and 0.0002 for Twitter corpus. The
batch size is fixed to 128. The word vector di-
mension is 300 and is initialized with the pub-
lic Word2Vec (Mikolov et al., 2013) embeddings
trained on the Google News Corpus. The prob-
ability estimators for the Gaussian distributions
are implemented as 3-layer perceptrons with the
hyperbolic tangent activation function. As men-
tioned above, when training NEXUS models, we
block the gradient from L(c) and L(p) with re-
spect to Ef and Eb to encourage more meaningful
encodings. The UNK token is prevented from be-
ing generated in the test phase. We implemented
all the models with the open-sourced Python li-
brary Pytorch (Paszke et al., 2017) and optimized
using the Adam optimizer (Kingma and Ba, 2015).

4.2 Compared Models

We conduct extensive experiments to compare our
model against several representative baselines.

Seq2Seq: Following the same implementation
as in (Vinyals and Le, 2015), the seq2seq model
serves as a baseline. We try both greedy decoding
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Model DailyDialog Twitter

Average Greedy Extreme Average Greedy Extreme

Greedy 0.443 0.376 0.328 0.510 0.341 0.356
Beam 0.437 0.350 0.369 0.505 0.345 0.352
MMI 0.457 0.371 0.371 0.518 0.353 0.365
RL 0.405 0.329 0.305 0.460 0.349 0.323
VHRED 0.491 0.375 0.313 0.525 0.389 0.372
NEXUS-H 0.479 0.381* 0.385* 0.558* 0.392 0.373
NEXUS-F 0.476 0.383* 0.373 0.549* 0.393 0.386*
NEXUS 0.488 0.392* 0.384* 0.556* 0.397* 0.391*

Table 1: Results of embedding-based metrics. * indicates statistically significant difference (p < 0.05) from the
best baselines. The same mark is used in Table 2

and beam search (Graves, 2012) with beam size
set to 5 when testing.

MMI: We implemented the bidirectional-MMI
decoder as in Li et al. (2016a), which showed bet-
ter performance over the anti-LM model. The hy-
perparameter λ is set to 0.5 as suggested. 200 can-
didates per context are sampled for re-ranking.

VHRED: The VHRED model is essentially a
conditional variational autoencoder with hierar-
chical encoders (Serban et al., 2017; Zhao et al.,
2017). To alleviate the posterior collapsing prob-
lem, we apply the KL-annealing trick and early
stop with the step set as 12,000 for the DailyDia-
log and 75,000 for the Twitter corpus.

RL: Deep reinforcement learning chatbot as in
(Li et al., 2016c). We use all the three reward func-
tions mentioned in the paper and keep the relative
weights the same as in the original paper. Policy
network is initialized with the above-mentioned
MMI model.

NEXUS-H: NEXUS network maximizing mu-
tual information only with the history (λ2 = 0).

NEXUS-F: NEXUS network maximizing mu-
tual information only with the future (λ1 = 0).

NEXUS: NEXUS network maximizing mutual
information with both the history and future.

NEXUS-H and NEXUS-F are implemented to
help us better analyze the effects of different com-
ponents in our model. The hyperparameters λ1
and λ2 in NEXUS are set to be 0.5 and 1 respec-
tively as we find history vector is consistently eas-
ier to be reconstructed than the future vector (A.6).

4.3 Metric-based Performance

Embedding Score We conducted three
embedding-based evaluations (average, greedy

and extrema) (Liu et al., 2016), which map
responses into vector space and compute the
cosine similarity (Rus and Lintean, 2012). The
embedding-based metrics can to a large extent
capture the semantic-level similarity between
generated responses and ground truth. We repre-
sent words using Word2Vec embeddings trained
on the Google News Corpus. We also measure
the uncertainty of the score by assuming each
data point is independently Gaussian distributed.
The standard deviation yields the 95% confidence
interval (Barany et al., 2007). Table 1 reports
the embedding scores on both datasets. NEXUS
network significantly outperforms the best base-
line model in most cases. Notably, NEXUS can
absorb the advantages from both NEXUS-H and
NEXUS-F. The history and future information
seem to help the model from different perspec-
tives. Taking into account both of them does
not create a conflict and the combination leads
to an overall improvement. RL performs rather
poorly on this metric, which is understandable
as it does not target the ground-truth responses
during training (Li et al., 2016c).

BLEU Score BLEU is a popular metric that
measures the geometric mean of the modified n-
gram precision with a length penalty (Papineni
et al., 2002). Table 2 reports the BLEU 1-3
scores. Compared with embedding-based metrics,
the BLEU score quantifies the word-overlap be-
tween generated responses and the ground-truth.
One challenge of evaluating dialogue generation
by BLEU score is the difficulty of accessing mul-
tiple references for the one-to-many alignment re-
lation. Following Sordoni et al. (2015); Zhao et al.
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Model DailyDialog Twitter

BLEU-1 BLEU-2 BLEU-3 BLEU-1 BLEU-2 BLEU-3

Greedy 0.394 0.245 0.157 0.340 0.203 0.116
Beam 0.386 0.251 0.163 0.338 0.205 0.112
MMI 0.407 0.269 0.172 0.347 0.208 0.118
RL 0.298 0.186 0.075 0.314 0.199 0.103
VHRED 0.395 0.281 0.190 0.355 0.211 0.124
NEXUS-H 0.418 0.279 0.199* 0.366* 0.212 0.126
NEXUS-F 0.399 0.260 0.167 0.359 0.213 0.123
NEXUS 0.424* 0.276 0.198* 0.363* 0.220* 0.131*

Table 2: Results of BLEU score. It is computed based on the smooth BLEU algorithm (Lin and Och, 2004).
p-value interval is computed base on the altered bootstrap resampling algorithm (Riezler and Maxwell, 2005)

(2017); Shen et al. (2018), for each context, 10
more candidate references are acquired by using
information retrieval methods (see Appendix A.4
for more details). All candidates are then passed to
human annotators to filter unsuitable ones, result-
ing in 6.74 and 5.13 references for DailyDialog
and Twitter dataset respectively. The human an-
notation is costly, so we evaluate it on 1000 sam-
pled test cases for each dataset. As the BLEU
score is not the simple mean of individual sen-
tence scores, we compute the 95% significance in-
terval by bootstrap resampling (Koehn, 2004; Rie-
zler and Maxwell, 2005). As can be seen, NEXUS
network achieves best or near-best performances
with only greedy decoders. NEXUS-H gener-
ally outperforms NEXUS-F as the connection with
future context is not explicitly addressed by the
BLEU score metric. MMI and VHRED bring mi-
nor improvements over the seq2seq model. Even
when evaluated on multiple references, RL still
performs worse than most models.

Connecting the preceding We define two met-
rics to evaluate the model’s capability of “connect-
ing the preceding context”: AdverSuc and Neg-
PMI. AdverSuc measures the coherence of gener-
ated responses with the provided context by learn-
ing an adversarial discriminator (Li et al., 2017a)
on the same corpus to distinguish coherent re-
sponses from randomly sampled ones. We encode
the context and response separately with two dif-
ferent LSTM neural networks and output a binary
signal indicating coherent or not1. The Adver-

1We apply the same architecture as in Lu et al. (2017). In
our experiment, the discriminator performs reasonably well
in the 4 scenarios outlined in Li et al. (2017a) and thus can be
used as a fair evaluation metric.

Suc value is reported as the success rate that the
model fools the classifier into believing its false
generations (p(generated = coherent) > 0.5).
Neg-PMI measures the negative pointwise mutual
information value − log p(c|r)/p(c) between the
generated response r and the dialogue context c.
p(c|r) is estimated by training a separate back-
ward seq2seq model. As p(c) is a constant, we
ignore it and only report the value of − log p(c|r).
A good model should achieve a higher Adver-
Suc and a lower Neg-PMI. The results are listed
in Table 3. We can see there is still a big gap
between ground-truth and synthesized responses.
As expected, NEXUS-H leads to the most signifi-
cant improvement. MMI model also performs re-
markably well, but it requires post-reranking thus
the sampling process is much slower. VHRED
and NEXUS-F do not help much here, sometimes
even slightly degrade the performance. We also
tried removing the history context when comput-
ing the posterior distribution in VHRED, the re-
sulting model has similar performance among all
metrics, which suggests VHRED itself cannot ac-
tually learn the correlation pattern with the preced-
ing context. Surprisingly, though RL explicitly set
the coherence score as a reward function, its per-
formance is far from satisfying. We assume RL
requires much more data to learn the appropriate
policy than other models and the training process
suffers from a higher variance. The result is thus
hard to be guaranteed.

Connecting the following We measure the
model’s capability of “connecting the following
context” from two perspectives: number of the
simulated turns and diversity of generated re-
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Model AdverSuc Neg-PMI #Turns Distinct-1 Distinct-2 Pri Post Flu
Greedy 0.21|0.13 47.4|45.8 0.2|0.6 .019|.017 .096|.072 0.45 0.04 0.92
Beam 0.16|0.12 47.2|45.3 0.2|0.7 .026|.019 .103|.086 0.52 0.06 0.90
MMI 0.30|0.19 45.6|43.2 1.1|1.6 .042|.025 .247|.117 0.56 0.13 0.89
RL 0.13|0.11 45.0|42.6 2.3|2.3 .048|.033 .324|.287 0.46 0.15 0.69
VHRED 0.19|0.16 46.8|44.7 1.7|1.1 .255|.106 .431|.311 0.42 0.22 0.92
NEXUS-H 0.36|0.21 44.1|41.8 2.0|1.8 .263|.108 .454|.306 0.66 0.20 0.92
NEXUS-F 0.22|0.12 47.1|45.9 2.6|2.2 .288|.117 .466|.325 0.51 0.31 0.94
NEXUS 0.35|0.18 44.6|41.4 2.8|2.5 .282|.119 .470|.329 0.70 0.33 0.93
GROUND 0.87|0.73 40.5|38.1 4.8|4.0 .390|.215 .522|.495 0.92 0.67 0.97

Table 3: Coherence, diversity and human evaluations. Left: DailyDialog results, right: Twitter results

sponses. We apply all models to generate multi-
ple turns until a generic response is reached. The
set of generic responses is manually examined to
include all utterances providing only passive dull
replies2. The number of generated turns can re-
flect the time that a model can maintain an inter-
active conversation. The results are reflected in the
#Turns column in Table 3. As in (Li et al., 2016a),
we measure the diversity by the percentage of dis-
tinct unigrams (Distinct-1) and bigrams (Distinct-
2) in all generated responses. Intuitively a higher
score on these three metrics implies a more inter-
active generation system that can better connect
the future context. Again, NEXUS network dom-
inates most fields. NEXUS-F brings more impact
than NEXUS-H as it explicitly encourages more
interactive turns. Most seq2seq models fail to pro-
vide an informative response in the first turn. The
MMI-decoder does not change much, possibly be-
cause the sampling space is not large enough, a
more diverse sampling mechanism (Vijayakumar
et al., 2018) might help. NEXUS network can ef-
fectively continue the conversation for 2.8 turns
for DailyDialog and 2.5 turns for Twitter, which
is closest to the ground truth (4.8 and 4.0 turns
respectively). It also achieves the best diversity
score in both datasets. It is worth mentioning that
NEXUS-H also improves over baselines, though
not as significantly as NEXUS-F, so NEXUS is not
a trade-off but more like an enhanced version from
NEXUS-H and NEXUS-F.

In summary, NEXUS network clearly generates
higher-quality responses in both coherence and di-
versity, even in a rather small dataset like Daily-
Dialog. NEXUS-H contributes more to the coher-

2We use a simple rule matching method (see Appendix
A.5). We manually inspect it on a validation subset and find
the accuracy is more than 90%. Similar methods are adopted
in (Li et al., 2016c).

ence and NEXUS-F more to the diversity.

4.4 Human Evaluation

We also employed crowdsourced judges to pro-
vide evaluations for a random sample of 500 items
in the DailyDialog test dataset. Participants are
asked to assign a binary score to each context-
response pair from three perspectives: whether
the response coincides with its preceding context
(Pri), whether the response is interesting enough
for people to continue (Post) and whether the re-
sponse itself is a fluent natural sentence (Flu).
Each sample gets one point if judged as yes and
zero otherwise. Each pair is judged by three par-
ticipants and the score supported by most people
is adopted. We also evaluated the inter-annotator
consistency by Fleiss’k score(Fleiss, 1971) and
obtained k scores of 0.452 for Pri, 0.459 for Post
(moderate agreement) and 0.621 for Flu (sub-
stantial agreement), which implies most context-
response pairs reach a consensus on the evaluation
task. We compute the average human score for
each model. Unlike metric-based scores, the hu-
man evaluation is conducted only on the DailyDia-
log corpus as it contains less noise and can be more
fairly evaluated by human judges. Table 3 shows
the result in the last three columns. As can be seen,
the pri and post human scores are highly correlated
with the automatic evaluation metric “coherence”
and “#turns”, verifying the validity of these two
metrics. As for fluency, there is no significant dif-
ference among most models. As we also manu-
ally examined, fluency is not a major problem and
all models produce mostly well-formed sentences.
Overall, NEXUS network does produce responses
that are more acceptable to human judges.

Table 4 presents some randomly sampled
context-response pairs provided by MMI,
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Context Response
Hi , Alice , what are you
going to do this sunday ?

eou

MMI: Oh , that’ s great !
VHRED : Well , it seems that i’m going to be late .
RL : How long he it be ?
NEXUS: Nothing really , what ’ s up ?

Did you watch the Oscars
on Sunday night ? eou

MMI: I have no idea .
VHRED: That’s not too bad .
RL : It’s my mum’s birthday on Sunday .
NEXUS: No , nothing much. Could you help me ?

Let’s go for a drink !
eou

MMI: Thanks .
VHRED: all right . let me see you then .
RL : Thank you inviting me .
NEXUS: Sounds good . Where are we going ?

You won’t want to miss our
webinar tomorrow ! eou

MMI: lol !
VHRED: That ’ s terrific !
RL : Sure, where where ?
NEXUS: Thanks for your invitation! I’m free !

How I read the article ?
eou

MMI: there!!!
VHRED: What ’ s good with it ?
RL : : I dont know what to do with it !
NEXUS: Maybe the force is yourself !

Table 4: Examples of context-response pairs. eou denotes end-of-utterance. First three rows are from DailyDi-
alog and the last two rows are from Twitter

VHRED, RL and NEXUS model. We see
NEXUS network does generate more interactive
outputs than the other three. Though reranked by
the bidirectional language model, the MMI de-
coder still produces quite a few generic responses.
VHRED’s utterances are more diverse, but it only
cares about answering to the immediate query and
makes no efforts to bring about further topics.
Moreover, it also generates more inappropriate
responses than the others. RL provides diverse
responses but sometimes not fluent or coherent
enough. We do observe that NEXUS sometimes
generate over-complex questions which are not
very natural, as in the second example. But in
most cases, it outperforms the others.

5 Conclusion

In this paper, we propose “NEXUS Network”
to enable more interactive human-computer con-
versations. The main goal of our model is to
strengthen the “nexus” role of the current utter-
ance, connecting both the preceding and the fol-
lowing dialogue context. We compare our model
with MMI, reinforcement learning and CVAE-
based models. Experiments show that NEXUS
network consistently produces higher-quality re-

sponses. The model is easier to train, requires no
special tricks and demonstrates remarkable gener-
alization capability even in a very small dataset.

Our model can be considered as combining the
objective of MMI and CVAE and is compatible
with current improving techniques. For exam-
ple, mutual information can be maximized un-
der a tighter bound using Donsker-Varadhan or
f-divergence representation (Donsker and Varad-
han, 1983; Nowozin et al., 2016; Belghazi et al.,
2018). Extending the code space distribution to
more than Gaussian by importance weighted au-
toencoder (Burda et al., 2015), inverse autoregres-
sive flow (Kingma et al., 2016) or VamPrior (Tom-
czak and Welling, 2018) should also help with the
performance.
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