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Abstract

Open Domain Question Answering (QA) is
evolving from complex pipelined systems to
end-to-end deep neural networks. Specialized
neural models have been developed for ex-
tracting answers from either text alone or
Knowledge Bases (KBs) alone. In this paper
we look at a more practical setting, namely
QA over the combination of a KB and entity-
linked text, which is appropriate when an in-
complete KB is available with a large text
corpus. Building on recent advances in graph
representation learning we propose a novel
model, GRAFT-Net, for extracting answers
from a question-specific subgraph containing
text and KB entities and relations. We con-
struct a suite of benchmark tasks for this prob-
lem, varying the difficulty of questions, the
amount of training data, and KB complete-
ness. We show that GRAFT-Net is competitive
with the state-of-the-art when tested using ei-
ther KBs or text alone, and vastly outperforms
existing methods in the combined setting.

1 Introduction

Open domain Question Answering (QA) is the
task of finding answers to questions posed in nat-
ural language. Historically, this required a spe-
cialized pipeline consisting of multiple machine-
learned and hand-crafted modules (Ferrucci et al.,
2010). Recently, the paradigm has shifted towards
training end-to-end deep neural network models
for the task (Chen et al., 2017; Liang et al., 2017;
Raison et al., 2018; Talmor and Berant, 2018;
Iyyer et al., 2017). Most existing models, how-
ever, answer questions using a single information
source, usually either text from an encyclopedia,
or a single knowledge base (KB).

Intuitively, the suitability of an information
source for QA depends on both its coverage and
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Figure 1: To answer a question posed in natural
language, GRAFT-Net considers a heterogeneous
graph constructed from text and KB facts, and thus
can leverage the rich relational structure between
the two information sources.

the difficulty of extracting answers from it. A large
text corpus has high coverage, but the information
is expressed using many different text patterns. As
a result, models which operate on these patterns
(e.g. BiDAF (Seo et al., 2017)) do not generalize
beyond their training domains (Wiese et al., 2017;
Dhingra et al., 2018) or to novel types of reason-
ing (Welbl et al., 2018; Talmor and Berant, 2018).
KBs, on the other hand, suffer from low cover-
age due to their inevitable incompleteness and re-
stricted schema (Min et al., 2013), but are easier
to extract answers from, since they are constructed
precisely for the purpose of being queried.

In practice, some questions are best answered
using text, while others are best answered using
KBs. A natural question, then, is how to effec-
tively combine both types of information. Surpris-
ingly little prior work has looked at this problem.
In this paper we focus on a scenario in which a
large-scale KB (Bollacker et al., 2008; Auer et al.,
2007) and a text corpus are available, but neither
is sufficient alone for answering all questions.
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A naı̈ve option, in such a setting, is to take state-
of-the-art QA systems developed for each source,
and aggregate their predictions using some heuris-
tic (Ferrucci et al., 2010; Baudiš, 2015). We call
this approach late fusion, and show that it can
be sub-optimal, as models have limited ability to
aggregate evidence across the different sources
(§ 5.4). Instead, we focus on an early fusion strat-
egy, where a single model is trained to extract an-
swers from a question subgraph (Fig 1) containing
relevant KB facts as well as text sentences. Early
fusion allows more flexibility in combining infor-
mation from multiple sources.

To enable early fusion, in this paper we propose
a novel graph convolution based neural network,
called GRAFT-Net (Graphs of Relations Among
Facts and Text Networks), specifically designed
to operate over heterogeneous graphs of KB facts
and text sentences. We build upon recent work on
graph representation learning (Kipf and Welling,
2016; Schlichtkrull et al., 2017), but propose two
key modifications to adopt them for the task of
QA. First, we propose heterogeneous update rules
that handle KB nodes differently from the text
nodes: for instance, LSTM-based updates are used
to propagate information into and out of text nodes
(§ 3.2). Second, we introduce a directed propaga-
tion method, inspired by personalized Pagerank in
IR (Haveliwala, 2002), which constrains the prop-
agation of embeddings in the graph to follow paths
starting from seed nodes linked to the question
(§ 3.3). Empirically, we show that both these ex-
tensions are crucial for the task of QA.

We evaluate these methods on a new suite of
benchmark tasks for testing QA models when
both KB and text are present. Using WikiMovies
(Miller et al., 2016) and WebQuestionsSP (Yih
et al., 2016), we construct datasets with a varying
amount of training supervision and KB complete-
ness, and with a varying degree of question com-
plexity. We report baselines for future comparison,
including Key Value Memory Networks (Miller
et al., 2016; Das et al., 2017c), and show that our
proposed GRAFT-Nets have superior performance
across a wide range of conditions (§ 5). We also
show that GRAFT-Nets are competitive with the
state-of-the-art methods developed specifically for
text-only QA, and state-of-the art methods devel-
oped for KB-only QA (§ 5.4)1.

1Source code and data are available at https://
github.com/OceanskySun/GraftNet

2 Task Setup

2.1 Description

A knowledge base is denoted as K = (V, E ,R),
where V is the set of entities in the KB, and the
edges E are triplets (s, r, o) which denote that re-
lation r ∈ R holds between the subject s ∈ V
and object o ∈ V . A text corpus D is a set of doc-
uments {d1, . . . , d|D|} where each document is a
sequence of words di = (w1, . . . , w|di|). We fur-
ther assume that an (imperfect) entity linking sys-
tem has been run on the collection of documents
whose output is a set L of links (v, dp) connect-
ing an entity v ∈ V with a word at position p
in document d, and we denote with Ld the set of
all entity links in document d. For entity mentions
spanning multiple words in d, we include links to
all the words in the mention in L.

The task is, given a natural language question
q = (w1, . . . , w|q|), extract its answers {a}q from
G = (K,D,L). There may be multiple correct an-
swers for a question. In this paper, we assume that
the answers are entities from either the documents
or the KB. We are interested in a wide range of set-
tings, where the KB K varies from highly incom-
plete to complete for answering the questions, and
we will introduce datasets for testing our models
under these settings.

To solve this task we proceed in two steps. First,
we extract a subgraph Gq ⊂ G which contains the
answer to the question with high probability. The
goal for this step is to ensure high recall for an-
swers while producing a graph small enough to
fit into GPU memory for gradient-based learning.
Next, we use our proposed model GRAFT-Net to
learn node representations in Gq, conditioned on q,
which are used to classify each node as being an
answer or not. Training data for the second step
is generated using distant supervision. The entire
process mimics the search-and-read paradigm for
text-based QA (Dhingra et al., 2017).

2.2 Question Subgraph Retrieval

We retrieve the subgraph Gq using two parallel
pipelines – one over the KB K which returns a set
of entities, and the other over the corpus D which
returns a set of documents. The retrieved entities
and documents are then combined with entity links
to produce a fully-connected graph.

KB Retrieval. To retrieve relevant entities from
the KB we first perform entity linking on the ques-

https://github.com/OceanskySun/GraftNet
https://github.com/OceanskySun/GraftNet
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tion q, producing a set of seed entities, denoted
Sq. Next we run the Personalized PageRank (PPR)
method (Haveliwala, 2002) around these seeds to
identify other entities which might be an answer
to the question. The edge-weights around Sq are
distributed equally among all edges of the same
type, and they are weighted such that edges rel-
evant to the question receive a higher weight than
those which are not. Specifically, we average word
vectors to compute a relation vector v(r) from the
surface form of the relation, and a question vector
v(q) from the words in the question, and use co-
sine similarity between these as the edge weights.
After running PPR we retain the top E entities
v1, . . . , vE by PPR score, along with any edges be-
tween them, and add them to Gq.

Text Retrieval. We use Wikipedia as the corpus
and retrieve text at the sentence level, i.e. docu-
ments in D are defined along sentences bound-
aries2. We perform text retrieval in two steps: first
we retrieve the top 5 most relevant Wikipedia
articles, using the weighted bag-of-words model
from DrQA (Chen et al., 2017); then we populate
a Lucene3 index with sentences from these arti-
cles, and retrieve the top ranking ones d1, . . . , dD,
based on the words in the question. For the
sentence-retrieval step, we found it beneficial to
include the title of the article as an additional field
in the Lucene index. As most sentences in an arti-
cle talk about the title entity, this helps in retriev-
ing relevant sentences that do not explicitly men-
tion the entity in the question. We add the retrieved
documents, along with any entities linked to them,
to the subgraph Gq.

The final question subgraph is Gq =
(Vq, Eq,R+), where the vertices Vq consist
of all the retrieved entities and documents, i.e.
Vq = {v1, . . . , vE} ∪{d1, . . . , dD}. The edges are
all relations from K among these entities, plus the
entity-links between documents and entities, i.e.

Eq ={(s, o, r) ∈ E : s, o ∈ Vq, r ∈ R}
∪ {(v, dp, rL) : (v, dp) ∈ Ld, d ∈ Vq},

where rL denotes a special “linking” relation.
R+ = R ∪ {rL} is the set of all edge types in
the subgraph.

2The term document will always refer to a sentence in the
rest of this paper.

3https://lucene.apache.org/

3 GRAFT-Nets

The question q and its answers {a}q induce a
labeling of the nodes in Vq: we let yv = 1 if
v ∈ {a}q and yv = 0 otherwise for all v ∈
Vq . The task of QA then reduces to perform-
ing binary classification over the nodes of the
graph Gq. Several graph-propagation based mod-
els have been proposed in the literature which
learn node representations and then perform clas-
sification of the nodes (Kipf and Welling, 2016;
Schlichtkrull et al., 2017). Such models follow the
standard gather-apply-scatter paradigm to learn
the node representation with homogeneous up-
dates, i.e. treating all neighbors equally.

The basic recipe for these models is as follows:

1. Initialize node representations h(0)v .

2. For l = 1, . . . , L update node representations

h(l)v = φ

h(l−1)v ,
∑

v′∈Nr(v)

h
(l−1)
v′

 ,

where Nr(v) denotes the neighbours of v
along incoming edges of type r, and φ is a
neural network layer.

Here L is the number of layers in the model and
corresponds to the maximum length of the paths
along which information should be propagated in
the graph. Once the propagation is complete the
final layer representations h(L)v are used to per-
form the desired task, for example link prediction
in knowledge bases (Schlichtkrull et al., 2017).

However, there are two differences in our set-
ting from previously studied graph-based clas-
sification tasks. The first difference is that, in
our case, the graph Gq consists of heterogeneous
nodes. Some nodes in the graph correspond to KB
entities which represent symbolic objects, whereas
other nodes represent textual documents which are
variable length sequences of words. The second
difference is that we want to condition the repre-
sentation of nodes in the graph on the natural lan-
guage question q. In §3.2 we introduce heteroge-
neous updates to address the first difference, and
in §3.3 we introduce mechanisms for conditioning
on the question (and its entities) for the second.

3.1 Node Initialization
Nodes corresponding to entities are initialized us-
ing fixed-size vectors h(0)v = xv ∈ Rn, where

https://lucene.apache.org/
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xv can be pre-trained KB embeddings or random,
and n is the embedding size. Document nodes in
the graph describe a variable length sequence of
text. Since multiple entities might link to differ-
ent positions in the document, we maintain a vari-
able length representation of the document in each
layer. This is denoted by H(l)

d ∈ R|d|×n. Given the
words in the document (w1, . . . , w|d|), we initial-
ize its hidden representation as:

H
(0)
d = LSTM(w1, w2, . . . ),

where LSTM refers to a long short-term memory
unit. We denote the p-th row of H(l)

d , correspond-
ing to the embedding of p-th word in the document
d at layer l, as H(l)

d,p.

3.2 Heterogeneous Updates
Figure 2 shows the update rules for entities and
documents, which we describe in detail here.

Entities. Let M(v) = {(d, p)} be the set of po-
sitions p in documents d which correspond to a
mention of entity v. The update for entity nodes in-
volves a single-layer feed-forward network (FFN)
over the concatenation of four states:

h(l)v = FFN




h
(l−1)
v

h
(l−1)
q∑

r

∑
v′∈Nr(v)

αv′
r ψr(h

(l−1)
v′ )∑

(d,p)∈M(v)H
(l−1)
d,p


 .

(1)
The first two terms correspond to the entity repre-
sentation and question representation (details be-
low), respectively, from the previous layer.

The third term aggregates the states from the
entity neighbours of the current node, Nr(v), af-
ter scaling with an attention weight αv′

r (described
in the next section), and applying relation specific
transformations ψr. Previous work on Relational-
Graph Convolution Networks (Schlichtkrull et al.,
2017) used a linear projection for ψr. For a
batched implementation, this results in matrices of
size O(B|Rq||Eq|n), where B is the batch size,
which can be prohibitively large for large sub-
graphs4. Hence in this work we use relation vec-
tors xr for r ∈ Rq instead of matrices, and com-
pute the update along an edge as:

ψr(h
(l−1)
v′ ) = pr

(l−1)
v′ FFN

(
xr, h

(l−1)
v′

)
. (2)

4This is because we have to use adjacency matrices of size
|Rq| × |Eq| × |Eq| to aggregate embeddings from neighbours
of all nodes simultaneously.

Here pr(l−1)v′ is a PageRank score used to control
the propagation of embeddings along paths start-
ing from the seed nodes, which we describe in de-
tail in the next section. The memory complexity of
the above isO(B(|Fq|+ |Eq|)n), where |Fq| is the
number of facts in the subgraph Gq.

The last term aggregates the states of all tokens
that correspond to mentions of the entity v among
the documents in the subgraph. Note that the up-
date depends on the positions of entities in their
containing document.

Documents. Let L(d, p) be the set of all entities
linked to the word at position p in document d.
The document update proceeds in two steps. First
we aggregate over the entity states coming in at
each position separately:

H̃
(l)
d,p = FFN

H(l−1)
d,p ,

∑
v∈L(d,p)

h(l−1)v

 . (3a)

Here h(l−1)v are normalized by the number of out-
going edges at v. Next we aggregate states within
the document using an LSTM:

H
(l)
d = LSTM(H̃

(l)
d ). (3b)

3.3 Conditioning on the Question
For the parts described thus far, the graph learner
is largely agnostic of the question. We introduce
dependence on question in two ways: by attention
over relations, and by personalized propagation.

To represent q, let wq
1, . . . , w

q
|q| be the words

in the question. The initial representation is com-
puted as:

h(0)q = LSTM(wq
1, . . . , w

q
|q|)|q| ∈ Rn, (4)

where we extract the final state from the out-
put of the LSTM. In subsequent layers the
question representation is updated as h

(l)
q =

FFN
(∑

v∈Sq
h
(l)
v

)
, where Sq denotes the seed en-

tities mentioned in the question.

Attention over Relations. The attention weight
in the third term of Eq. (1) is computed using the
question and relation embeddings:

αv′
r = softmax(xTr h

(l−1)
q ),

where the softmax normalization is over all outgo-
ing edges from v′, and xr is the relation vector for
relation r. This ensures that embeddings are prop-
agated more along edges relevant to the question.



4235

Chabertvoiced by Lacey during ...

LSTM -- layer l-1

LSTM -- layer l

Lacey Chabert

...

FFN

...Chabert

Lacey Chabert

Q. Who voiced Meg in Family Guy?

voiced... by Lacey during ...

LSTM

CVT1

Entity Update Text Update 

Figure 2: Illustration of the heterogeneous update rules for entities (left) and text documents (right)

Directed Propagation. Many questions require
multi-hop reasoning, which follows a path from
a seed node mentioned in the question to the tar-
get answer node. To encourage such a behaviour
when propagating embeddings, we develop a tech-
nique inspired from personalized PageRank in IR
(Haveliwala, 2002). The propagation starts at the
seed entities Sq mentioned in the question. In ad-
dition to the vector embeddings h(l)v at the nodes,
we also maintain scalar “PageRank” scores pr(l)v

which measure the total weight of paths from a
seed entity to the current node, as follows:

pr(0)v =

{
1
|Sq | if v ∈ Sq
0 o.w.

,

pr(l)v = (1− λ)pr(l−1)v + λ
∑
r

∑
v′∈Nr(v)

αv′
r pr

(l−1)
v′ .

Notice that we reuse the attention weights αv′
r

when propagating PageRank, to ensure that nodes
along paths relevant to the question receive a high
weight. The PageRank score is used as a scal-
ing factor when propagating embeddings along the
edges in Eq. (2). For l = 1, the PageRank score
will be 0 for all entities except the seed entities,
and hence propagation will only happen outward
from these nodes. For l = 2, it will be non-zero
for the seed entities and their 1-hop neighbors, and
propagation will only happen along these edges.
Figure 3 illustrates this process.

3.4 Answer Selection
The final representations h(L)v ∈ Rn, are used for
binary classification to select the answers:

Pr (v ∈ {a}q|Gq, q) = σ(wTh(L)v + b), (5)

Figure 3: Directed propagation of embeddings in
GRAFT-Net. A scalar PageRank score pr

(l)
v is

maintained for each node v across layers, which
spreads out from the seed node. Embeddings are
only propagated from nodes with pr(l)v > 0.

where σ is the sigmoid function. Training uses bi-
nary cross-entropy loss over these probabilities.

3.5 Regularization via Fact Dropout

To encourage the model to learn a robust classi-
fier, which exploits all available sources of infor-
mation, we randomly drop edges from the graph
during training with probability p0. We call this
fact-dropout. It is usually easier to extract an-
swers from the KB than from the documents, so
the model tends to rely on the former, especially
when the KB is complete. This method is similar
to DropConnect (Wan et al., 2013).

4 Related Work

The work of Das et al. (2017c) attempts an early
fusion strategy for QA over KB facts and text.
Their approach is based on Key-Value Memory
Networks (KV-MemNNs) (Miller et al., 2016)
coupled with a universal schema (Riedel et al.,
2013) to populate a memory module with repre-
sentations of KB triples and text snippets indepen-
dently. The key limitation for this model is that
it ignores the rich relational structure between the
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facts and text snippets. Our graph-based method,
on the other hand, explicitly uses this structure for
the propagation of embeddings. We compare the
two approaches in our experiments (§5), and show
that GRAFT-Nets outperform KV-MemNNs over
all tasks.

Non-deep learning approaches have been also
attempted for QA over both text assertions and
KB facts. Gardner and Krishnamurthy (2017) use
traditional feature extraction methods of open-
vocabulary semantic parsing for the task. Ryu
et al. (2014) use a pipelined system aggregat-
ing evidence from both unstructured and semi-
structured sources for open-domain QA.

Another line of work has looked at learning
combined representations of KBs and text for re-
lation extraction and Knowledge Base Comple-
tion (KBC) (Lao et al., 2012; Riedel et al., 2013;
Toutanova et al., 2015; Verga et al., 2016; Das
et al., 2017b; Han et al., 2016). The key differ-
ence in QA compared to KBC is that in QA the
inference process on the knowledge source has to
be conditioned on the question, so different ques-
tions induce different representations of the KB
and warrant a different inference process. Further-
more, KBC operates under the fixed schema de-
fined by the KB before-hand, whereas natural lan-
guage questions might not adhere to this schema.

The GRAFT-Net model itself is motivated from
the large body of work on graph representation
learning (Scarselli et al., 2009; Li et al., 2016;
Kipf and Welling, 2016; Atwood and Towsley,
2016; Schlichtkrull et al., 2017). Like most other
graph-based models, GRAFT-Nets can also be
viewed as an instantiation of the Message Passing
Neural Network (MPNN) framework of Gilmer
et al. (2017). GRAFT-Nets are also inductive rep-
resentation learners like GraphSAGE (Hamilton
et al., 2017), but operate on a heterogeneous mix-
ture of nodes and use retrieval for getting a sub-
graph instead of random sampling. The recently
proposed Walk-Steered Convolution model uses
random walks for learning graph representations
(Jiang et al., 2018). Our personalization technique
also borrows from such random walk literature,
but uses it to localize propagation of embeddings.

Tremendous progress on QA over KB has been
made with deep learning based approaches like
memory networks (Bordes et al., 2015; Jain, 2016)
and reinforcement learning (Liang et al., 2017;
Das et al., 2017a). But extending them with text,

which is our main focus, is non-trivial. In another
direction, there is also work on producing parsi-
monious graphical representations of textual data
(Krause et al., 2016; Lu et al., 2017); however in
this paper we use a simple sequential representa-
tion augmented with entity links to the KB which
works well.

For QA over text only, a major focus has been
on the task of reading comprehension (Seo et al.,
2017; Gong and Bowman, 2017; Hu et al., 2017;
Shen et al., 2017; Yu et al., 2018) since the intro-
duction of SQuAD (Rajpurkar et al., 2016). These
systems assume that the answer-containing pas-
sage is known apriori, but there has been progress
when this assumption is relaxed (Chen et al., 2017;
Raison et al., 2018; Dhingra et al., 2017; Wang
et al., 2018, 2017; Watanabe et al., 2017). We work
in the latter setting, where relevant information
must be retrieved from large information sources,
but we also incorporate KBs into this process.

5 Experiments & Results

5.1 Datasets

WikiMovies-10K consists of 10K randomly sam-
pled training questions from the WikiMovies
dataset (Miller et al., 2016), along with the origi-
nal test and validation sets. We sample the training
questions to create a more difficult setting, since
the original dataset has 100K questions over only
8 different relation types, which is unrealistic in
our opinion. In § 5.4 we also compare to the exist-
ing state-of-the-art using the full training set.

We use the KB and text corpus constructed from
Wikipedia released by Miller et al. (2016). For en-
tity linking we use simple surface level matches,
and retrieve the top 50 entities around the seeds
to create the question subgraph. We further add
the top 50 sentences (along with their article ti-
tles) to the subgraph using Lucene search over the
text corpus. The overall answer recall in our con-
structed subgraphs is 99.6%.
WebQuestionsSP (Yih et al., 2016) consists of
4737 natural language questions posed over Free-
base entities, split up into 3098 training and 1639
test questions. We reserve 250 training questions
for model development and early stopping. We use
the entity linking outputs from S-MART5 and re-
trieve 500 entities from the neighbourhood around
the question seeds in Freebase to populate the

5https://github.com/scottyih/STAGG

https://github.com/scottyih/STAGG


4237

question subgraphs6. We further retrieve the top 50
sentences from Wikipedia with the two-stage pro-
cess described in §2. The overall recall of answers
among the subgraphs is 94.0%.

Table 1 shows the combined statistics of all
the retreived subgraphs for the questions in each
dataset. These two datasets present varying levels
of difficulty. While all questions in WikiMovies
correspond to a single KB relation, for WebQues-
tionsSP the model needs to aggregate over two KB
facts for ∼30% of the questions, and also requires
reasoning over constraints for ∼7% of the ques-
tions (Liang et al., 2017). For maximum portabil-
ity, QA systems need to be robust across several
degrees of KB availability since different domains
might contain different amounts of structured data;
and KB completeness may also vary over time.
Hence, we construct an additional 3 datasets each
from the above two, with the number of KB facts
downsampled to 10%, 30% and 50% of the orig-
inal to simulate settings where the KB is incom-
plete. We repeat the retrieval process for each sam-
pled KB.

5.2 Compared Models
KV-KB is the Key Value Memory Networks
model from Miller et al. (2016); Das et al. (2017c)
but using only KB and ignoring the text. KV-EF
(early fusion) is the same model with access to
both KB and text as memories. For text we use
a BiLSTM over the entire sentence as keys, and
entity mentions as values. This re-implementation
shows better performance on the text-only and
KB-only WikiMovies tasks than the results re-
ported previously7 (see Table 4). GN-KB is the
GRAFT-Net model ignoring the text. GN-LF is a
late fusion version of the GRAFT-Net model: we
train two separate models, one using text only and
the other using KB only, and then ensemble the
two8. GN-EF is our main GRAFT-Net model with
early fusion. GN-EF+LF is an ensemble over the
GN-EF and GN-LF models, with the same ensem-
bling method as GN-LF. We report Hits@1, which

6A total of 13 questions had no detected entities. These
were ignored during training and considered as incorrect dur-
ing evaluation.

7For all KV models we tuned the number of layers
{1, 2, 3}, batch size {10, 30, 50}, model dimension {50, 80}.
We also use fact dropout regularization in the KB+Text set-
ting tuned between {0, 0.2, 0.4}.

8For ensembles we take a weighted combination of the an-
swer probabilities produced by the models, with the weights
tuned on the dev set. For answers only in text or only in KB,
we use the probability as is.

is the accuracy of the top-predicted answer from
the model, and the F1 score. To compute the F1
score we tune a threshold on the development set
to select answers based on binary probabilities for
each node in the subgraph.

5.3 Main Results
Table 2 presents a comparison of the above models
across all datasets. GRAFT-Nets (GN) shows con-
sistent improvement over KV-MemNNs on both
datasets in all settings, including KB only (-KB),
text only (-EF, Text Only column), and early fu-
sion (-EF). Interestingly, we observe a larger rel-
ative gap between the Hits and F1 scores for the
KV models than we do for our GN models. We
believe this is because the attention for KV is nor-
malized over the memories, which are KB facts
(or text sentences): hence the model is unable to
assign high probabilities to multiple facts at the
same time. On the other hand, in GN, we normal-
ize the attention over types of relations outgoing
from a node, and hence can assign high weights to
all the correct answers.

We also see a consistent improvement of early
fusion over late fusion (-LF), and by ensembling
them together we see the best performance across
all the models. In Table 2 (right), we further show
the improvement for KV-EF over KV-KB, and
GN-LF and GN-EF over GN-KB, as the amount
of KB is increased. This measures how effective
these approaches are in utilizing text plus a KB.
For KV-EF we see improvements when the KB
is highly incomplete, but in the full KB setting,
the performance of the fused approach is worse. A
similar trend holds for GN-LF. On the other hand,
GN-EF with text improves over the KB-only ap-
proach in all settings. As we would expect, though,
the benefit of adding text decreases as the KB be-
comes more and more complete.

5.4 Comparison to Specialized Methods
In Table 4 we compare GRAFT-Nets to state-of-
the-art models that are specifically designed and
tuned for QA using either only KB or only text.
For this experiment we use the full WikiMovies
dataset to enable direct comparison to previously
reported numbers. For DrQA (Chen et al., 2017),
following the original paper, we restrict answer
spans for WebQuestionsSP to match an entity in
Freebase. In each case we also train GRAFT-Nets
using only KB facts or only text sentences. In three
out of the four cases, we find that GRAFT-Nets ei-
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Dataset # train / dev / test # entity nodes # edge types # document nodes # question vocab

WikiMovies-10K 10K / 10K / 10K 43,233 9 79,728 1759
WebQuestionsSP 2848 / 250 / 1639 528,617 513 235,567 3781

Table 1: Statistics of all the retrieved subgraphs ∪qGq for WikiMovies-10K and WebQuestionsSP.

Model Text Only KB + Text

10 % 30% 50% 100%

WikiMovies-10K

KV-KB – 15.8 / 9.8 44.7 / 30.4 63.8 / 46.4 94.3 / 76.1
KV-EF 50.4 / 40.9 53.6 / 44.0 60.6 / 48.1 75.3 / 59.1 93.8 / 81.4
GN-KB – 19.7 / 17.3 48.4 / 37.1 67.7 / 58.1 97.0 / 97.6
GN-LF

73.2 / 64.0


74.5 / 65.4 78.7 / 68.5 83.3 / 74.2 96.5 / 92.0

GN-EF 75.4 / 66.3 82.6 / 71.3 87.6 / 76.2 96.9 / 94.1
GN-EF+LF 79.0 / 66.7 84.6 / 74.2 88.4 / 78.6 96.8 / 97.3

WebQuestionsSP

KV-KB – 12.5 / 4.3 25.8 / 13.8 33.3 / 21.3 46.7 / 38.6
KV-EF 23.2 / 13.0 24.6 / 14.4 27.0 / 17.7 32.5 / 23.6 40.5 / 30.9
GN-KB – 15.5 / 6.5 34.9 / 20.4 47.7 / 34.3 66.7 / 62.4
GN-LF

25.3 / 15.3


29.8 / 17.0 39.1 / 25.9 46.2 / 35.6 65.4 / 56.8

GN-EF 31.5 / 17.7 40.7 / 25.2 49.9 / 34.7 67.8 / 60.4
GN-EF+LF 33.3 / 19.3 42.5 / 26.7 52.3 / 37.4 68.7 / 62.3
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Table 2: Left: Hits@1 / F1 scores of GRAFT-Nets (GN) compared to KV-MemNN (KV) in KB only
(-KB), early fusion (-EF), and late fusion (-LF) settings. Right: Improvement of early fusion (-EF) and
late fusion (-LF) over KB only (-KB) settings as KB completeness increases.

ther match or outperform the existing state-of-the-
art models. We emphasize that the latter have no
mechanism for dealing with the fused setting.

The one exception is the KB-only case for
WebQuestionsSP where GRAFT-Net does 6.2%
F1 points worse than Neural Symbolic Machines
(Liang et al., 2017). Analysis suggested three ex-
planations: (1) In the KB-only setting, the recall
of subgraph retrieval is only 90.2%, which lim-
its overall performance. In an oracle setting where
we ensure the answers are part of the subgraph,
the F1 score increases by 4.8%. (2) We use the
same probability threshold for all questions, even
though the number of answers may vary signifi-
cantly. Models which parse the query into a sym-
bolic form do not suffer from this problem since
answers are retrieved in a deterministic fashion. If
we tune separate thresholds for each question the
F1 score improves by 7.6%. (3) GRAFT-Nets per-
form poorly in the few cases where there is a con-
straint involved in picking out the answer (for ex-
ample, “who first voiced Meg in Family Guy”). If
we ignore such constraints, and consider all enti-
ties with the same sequence of relations to the seed
as correct, the performance improves by 3.8% F1.
Heuristics such as those used by Yu et al. (2017)
can be used to improve these cases. Figure 3 shows

examples where GRAFT-Net fails to predict the
correct answer set exactly.

5.5 Effect of Model Components

Heterogeneous Updates. We tested a non-
heterogeneous version of our model, where in-
stead of using fine-grained entity linking informa-
tion for updating the node representations (M(v)
and L(d, p) in Eqs. 1, 3a), we aggregate the docu-
ment states across all its positions as

∑
pH

(l)
d,p and

use this combined state for all updates. Without the
heterogeneous update, all entities v ∈ L(d, ·) will
receive the same update from document d. There-
fore, the model cannot disambiguate different en-
tities mentioned in the same document. The result
in Table 5 shows that this version is consistently
worse than the heterogeneous model.

Conditioning on the Question. We performed
an ablation test on the directed propagation
method and attention over relations. We observe
that both components lead to better performance.
Such effects are observed in both complete and in-
complete KB scenarios, e.g. on WebQuestionsSP
dataset, as shown in Figure 4 (left).

Fact Dropout. Figure 4 (right) compares the
performance of the early fusion model as we vary
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Question Correct Answers Predicted Answers

what language do most people speak in afghanistan Pashto language,
Farsi (Eastern Language) Pashto language

what college did john stockton go to Gonzaga University Gonzaga University,
Gonzaga Preparatory School

Table 3: Examples from WebQuestionsSP dataset. Top: The model misses a correct answer. Bottom: The
model predicts an extra incorrect answer.

Method
WikiMovies (full) WebQuestionsSP
kb doc kb doc

MINERVA 97.0 / – – – –
R2-AsV – 85.8 / – – –
NSM – – – / 69.0 –
DrQA* – – – 21.5 / –
R-GCN# 96.5 / 97.4 – 37.2 / 30.5 –
KV 93.9 / – 76.2 / – – / – – / –
KV# 95.6 / 88.0 80.3 / 72.1 46.7 / 38.6 23.2 / 13.0
GN 96.8 / 97.2 86.6 / 80.8 67.8 / 62.8 25.3 / 15.3

Table 4: Hits@1 / F1 scores compared to SOTA
models using only KB or text: MINERVA
(Das et al., 2017a), R2-AsV (Watanabe et al.,
2017), Neural Symbolic Machines (NSM) (Liang
et al., 2017), DrQA (Chen et al., 2017), R-
GCN (Schlichtkrull et al., 2017) and KV-MemNN
(Miller et al., 2016). *DrQA is pretrained on
SQuAD. #Re-implemented.

0 KB 0.1 KB 0.3 KB 0.5 KB 1.0 KB
NH 22.7 / 13.6 28.7 / 15.8 35.6 / 23.2 47.2 / 33.3 66.5 / 59.8
H 25.3 / 15.3 31.5 / 17.7 40.7 / 25.2 49.9 / 34.7 67.8 / 60.4

Table 5: Non-Heterogeneous (NH) vs. Heteroge-
neous (H) updates on WebQuestionsSP

the rate of fact dropout. Moderate levels of fact
dropout improve performance on both datasets.
The performance increases as the fact dropout rate
increases until the model is unable to learn the in-
ference chain from KB.

6 Conclusion

In this paper we investigate QA using text com-
bined with an incomplete KB, a task which has
received limited attention in the past. We intro-
duce several benchmark problems for this task by
modifying existing question-answering datasets,
and discuss two broad approaches to solving this
problem—“late fusion” and “early fusion”. We
show that early fusion approaches perform better.

We also introduce a novel early-fusion model,
called GRAFT-Net, for classifying nodes in sub-
graph consisting of both KB entities and text doc-
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Figure 4: Left: Effect of directed propagation and
query-based attention over relations for the We-
bQuestionsSP dataset with 30% KB and 100%
KB. Right: Hits@1 with different rates of fact-
dropout on and WikiMovies and WebQuestionsSP.

uments. GRAFT-Net builds on recent advances
in graph representation learning but includes sev-
eral innovations which improve performance on
this task. GRAFT-Nets are a single model which
achieve performance competitive to state-of-the-
art methods in both text-only and KB-only set-
tings, and outperform baseline models when us-
ing text combined with an incomplete KB. Cur-
rent directions for future work include – (1) ex-
tending GRAFT-Nets to pick spans of text as an-
swers, rather than only entities and (2) improving
the subgraph retrieval process.
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