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Abstract
Reading comprehension QA tasks have seen
a recent surge in popularity, yet most works
have focused on fact-finding extractive QA.
We instead focus on a more challenging multi-
hop generative task (NarrativeQA), which re-
quires the model to reason, gather, and synthe-
size disjoint pieces of information within the
context to generate an answer. This type of
multi-step reasoning also often requires under-
standing implicit relations, which humans re-
solve via external, background commonsense
knowledge. We first present a strong genera-
tive baseline that uses a multi-attention mech-
anism to perform multiple hops of reasoning
and a pointer-generator decoder to synthesize
the answer. This model performs substantially
better than previous generative models, and is
competitive with current state-of-the-art span
prediction models. We next introduce a novel
system for selecting grounded multi-hop re-
lational commonsense information from Con-
ceptNet via a pointwise mutual information
and term-frequency based scoring function.
Finally, we effectively use this extracted com-
monsense information to fill in gaps of reason-
ing between context hops, using a selectively-
gated attention mechanism. This boosts the
model’s performance significantly (also veri-
fied via human evaluation), establishing a new
state-of-the-art for the task. We also show
that our background knowledge enhancements
are generalizable and improve performance on
QAngaroo-WikiHop, another multi-hop rea-
soning dataset.

1 Introduction

In this paper, we explore the task of machine
reading comprehension (MRC) based QA. This
task tests a model’s natural language understand-
ing capabilities by asking it to answer a question

∗ Equal contribution (published at EMNLP 2018).
We publicly release all our code, models, and data at:

https://github.com/yicheng-w/CommonSenseMultiHopQA

based on a passage of relevant content. Much
progress has been made in reasoning-based MRC-
QA on the bAbI dataset (Weston et al., 2016),
which contains questions that require the combi-
nation of multiple disjoint pieces of evidence in
the context. However, due to its synthetic nature,
bAbI evidences have smaller lexicons and sim-
pler passage structures when compared to human-
generated text.

There also have been several attempts at the
MRC-QA task on human-generated text. Large
scale datasets such as CNN/DM (Hermann et al.,
2015) and SQuAD (Rajpurkar et al., 2016) have
made the training of end-to-end neural models
possible. However, these datasets are fact-based
and do not place heavy emphasis on multi-hop rea-
soning capabilities. More recent datasets such as
QAngaroo (Welbl et al., 2018) have prompted a
strong focus on multi-hop reasoning in very long
texts. However, QAngaroo is an extractive dataset
where answers are guaranteed to be spans within
the context; hence, this is more focused on fact
finding and linking, and does not require models
to synthesize and generate new information.

We focus on the recently published Narra-
tiveQA generative dataset (Kočiskỳ et al., 2018)
that contains questions requiring multi-hop rea-
soning for long, complex stories and other nar-
ratives, which requires the model to go beyond
fact linking and to synthesize non-span answers.
Hence, models that perform well on previous rea-
soning tasks (Dhingra et al., 2018) have had lim-
ited success on this dataset. In this paper, we first
propose the Multi-Hop Pointer-Generator Model
(MHPGM), a strong baseline model that uses mul-
tiple hops of bidirectional attention, self-attention,
and a pointer-generator decoder to effectively read
and reason within a long passage and synthesize
a coherent response. Our model achieves 41.49
Rouge-L and 17.33 METEOR on the summary

https://github.com/yicheng-w/CommonSenseMultiHopQA


4221

subtask of NarrativeQA, substantially better than
the performance of previous generative models.

Next, to address the issue that understand-
ing human-generated text and performing long-
distance reasoning on it often involves intermittent
access to missing hops of external commonsense
(background) knowledge, we present an algorithm
for selecting useful, grounded multi-hop relational
knowledge paths from ConceptNet (Speer and
Havasi, 2012) via a pointwise mutual information
(PMI) and term-frequency-based scoring func-
tion. We then present a novel method of insert-
ing these selected commonsense paths between
the hops of document-context reasoning within
our model, via the Necessary and Optional Infor-
mation Cell (NOIC), which employs a selectively-
gated attention mechanism that utilizes common-
sense information to effectively fill in gaps of in-
ference. With these additions, we further improve
performance on the NarrativeQA dataset, achiev-
ing 44.16 Rouge-L and 19.03 METEOR (also ver-
ified via human evaluation). We also provide man-
ual analysis on the effectiveness of our common-
sense selection algorithm.

Finally, to show the effectiveness and gener-
alizability of our multi-hop reasoning and com-
monsense methods, we also tested our MH-
PGM and MHPGM+NOIC models on QAngaroo-
WikiHop (Welbl et al., 2018), which is an extrac-
tive dataset for multi-hop reasoning on human-
generated documents. We found that our back-
ground commonsense knowledge enhanced model
achieved 1.5% higher accuracy than our strong
baseline.

2 Related Work

Machine Reading Comprehension: MRC has
long been a task used to assess a model’s ability
to understand and reason about language. Large
scale datasets such as CNN/Daily Mail (Her-
mann et al., 2015) and SQuAD (Rajpurkar et al.,
2016) have encouraged the development of many
advanced, high performing attention-based neural
models (Seo et al., 2017; Dhingra et al., 2017).
Concurrently, datasets such as bAbI (Weston et al.,
2016) have focused specifically on multi-step rea-
soning by requiring the model to reason with
disjoint pieces of information. On this task,
it has been shown that iteratively updating the
query representation with information from the
context can effectively emulate multi-step reason-

ing (Sukhbaatar et al., 2015).

More recently, there has been an increase in
multi-paragraph, multi-hop inference QA datasets
such as QAngaroo (Welbl et al., 2018) and Narra-
tiveQA (Kočiskỳ et al., 2018). These datasets have
much longer contexts than previous datasets, and
answering a question often requires the synthesis
of multiple discontiguous pieces of evidence. It
has been shown that models designed for previ-
ous tasks (Seo et al., 2017; Kadlec et al., 2016)
have limited success on these new datasets. In
our work, we expand upon Gated Attention Net-
work (Dhingra et al., 2017) to create a baseline
model better suited for complex MRC datasets
such as NarrativeQA by improving its attention
and gating mechanisms, expanding its generation
capabilities, and allowing access to external com-
monsense for connecting implicit relations.

Commonsense/Background Knowledge: Com-
monsense or background knowledge has been
used for several tasks including opinion min-
ing (Cambria et al., 2010), sentiment analy-
sis (Poria et al., 2015, 2016), handwritten text
recognition (Wang et al., 2013), and more re-
cently, dialogue (Young et al., 2018; Ghazvinine-
jad et al., 2018). These approaches add com-
monsense knowledge as relation triples or fea-
tures from external databases. Recently, large-
scale graphical commonsense databases such as
ConceptNet (Speer and Havasi, 2012) use graph-
ical structure to express intricate relations be-
tween concepts, but effective goal-oriented graph
traversal has not been extensively used in previous
commonsense incorporation efforts. Knowledge-
base QA is a task in which systems are asked to
find answers to questions by traversing knowledge
graphs (Bollacker et al., 2008). Knowledge path
extraction has been shown to be effective at the
task (Bordes et al., 2014; Bao et al., 2016). We ap-
ply these techniques to MRC-QA by using them to
extract useful commonsense knowledge paths that
fully utilize the graphical nature of databases such
as ConceptNet (Speer and Havasi, 2012).

Incorporation of External Knowledge: There
have been several attempts at using external
knowledge to boost model performance on a vari-
ety of tasks: Chen et al. (2018) showed that adding
lexical information from semantic databases such
as WordNet improves performance on NLI; Xu
et al. (2017) used a gated recall-LSTM mechanism
to incorporate commonsense information into to-
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ken representations in dialogue.
In MRC, Weissenborn et al. (2017) integrated

external background knowledge into an NLU
model by using contextually-refined word em-
beddings which integrated information from Con-
ceptNet (single-hop relations mapped to unstruc-
tured text) via a single layer bidirectional LSTM.
Concurrently to our work, Mihaylov and Frank
(2018) showed improvements on a cloze-style task
by incorporating commonsense knowledge via a
context-to-commonsense attention, where com-
monsense relations were extracted as triples. This
work represented commonsense relations as key-
value pairs and combined context representation
and commonsense via a static gate.

Differing from previous works, we employ
multi-hop commonsense paths (multiple con-
nected edges within ConceptNet graph that give
us information beyond a single relationship triple)
to help with our MRC model. Moreover, we use
this in tandem with our multi-hop reasoning archi-
tecture to incorporate different aspects of the com-
monsense relationship path at each hop, in order
to bridge different inference gaps in the multi-hop
QA task. Additionally, our model performs syn-
thesis with its external, background knowledge as
it generates, rather than extracts, its answer.

3 Methods

3.1 Multi-Hop Pointer-Generator Baseline

We first rigorously state the problem of genera-
tive QA as follows: given two sequences of input
tokens: the context, XC = {wC

1 , w
C
2 , . . . , w

C
n }

and the query, XQ = {wQ
1 , w

Q
2 , . . . , w

Q
m}, the

system should generate a series of answer tokens
Xa = {wa

1 , w
a
2 , . . . , w

a
p}. As outlined in previous

sections, an effective generative QA model needs
to be able to perform several hops of reasoning
over long and complex passages. It would also
need to be able to generate coherent statements to
answer complex questions while having the abil-
ity to copy rare words such as specific entities
from the reading context. With these in mind, we
propose the Multi-Hop Pointer-Generator Model
(MHPGM) baseline, a novel combination of previ-
ous works with the following major components:

• Embedding Layer: The tokens are embedded
into both learned word embeddings and pre-
trained context-aware embeddings (ELMo (Pe-
ters et al., 2018)).

• Reasoning Layer: The embedded context is
then passed through k reasoning cells, each
of which iteratively updates the context repre-
sentation with information from the query via
BiDAF attention (Seo et al., 2017), emulating a
single reasoning step within the multi-step rea-
soning process.
• Self-Attention Layer: The context representa-

tion is passed through a layer of self-attention
(Cheng et al., 2016) to resolve long-term depen-
dencies and co-reference within the context.
• Pointer-Generator Decoding Layer: A

attention-pointer-generator decoder (See et al.,
2017) that attends on and potentially copies
from the context is used to create the answer.

The overall model is illustrated in Fig. 1, and
the layers are described in further detail below.
Embedding layer: We embed each word from the
context and question with a learned embedding
space of dimension d. We also obtain context-
aware embeddings for each word via the pre-
trained embedding from language models (ELMo)
(1024 dimensions). The embedded representation
for each word in the context or question, eCi or
eQi ∈ Rd+1024, is the concatenation of its learned
word embedding and ELMo embedding.
Reasoning layer: Our reasoning layer is com-
posed of k reasoning cells (see Fig. 1), where each
incrementally updates the context representation.
The tth reasoning cell’s inputs are the previous
step’s output ({ct−1i }ni=1) and the embedded ques-
tion ({eQi }mi=1). It first creates step-specific con-
text and query encodings via cell-specific bidirec-
tional LSTMs:
ut = BiLSTM(ct−1); vt = BiLSTM(eQ)

Then, we use bidirectional attention (Seo et al.,
2017) to emulate a hop of reasoning by focusing
on relevant aspects of the context. Specifically, we
first compute context-to-query attention:

St
ij =W t

1u
t
i +W t

2v
t
j +W t

3(u
t
i � vt

j)

ptij =
exp(St

ij)∑m
k=1 exp(S

t
ik)

(cq)
t
i =

m∑
j=1

ptijv
t
j

where W t
1 , W t

2 , W t
3 are trainable parameters, and

� is elementwise multiplication. We then com-
pute a query-to-context attention vector:

mt
i = max

1≤j≤m
St
ij
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Figure 1: Architecture for our Multi-Hop Pointer-Generator Model, and the NOIC commonsense reasoning cell.

pti =
exp(mt

i)∑n
j=1 exp(m

t
j)

qc
t =

n∑
i=1

ptiu
t
i

We then obtain the updated context representation:

cti = [ut
i; (cq)

t
i;u

t
i � (cq)

t
i;qc

t � (cq)
t
i]

where ; is concatenation, ct is the cell’s output.
The initial input of the reasoning layer is the

embedded context representation, i.e., c0 = eC ,
and the final output of the reasoning layer is the
output of the last cell, ck.
Self-Attention Layer: As the final layer before
answer generation, we utilize a residual static self-
attention mechanism (Clark and Gardner, 2018) to
help the model process long contexts with long-
term dependencies. The input of this layer is the
output of the last reasoning cell, ck. We first pass
this representation through a fully-connected layer
and then a bi-directional LSTM to obtain another
representation of the context cSA. We obtain the
self attention representation c′:

SSA
ij =W4c

SA
i +W5c

SA
j +W6(c

SA
i � cSAj )

pSAij =
exp(SSA

ij )∑n
k=1 exp(S

SA
ik )

c′i =
n∑

j=1

pSAij cSAj

where W4, W5, and W6 are trainable parameters.
The output of the self-attention layer is gener-

ated by another layer of bidirectional LSTM.

c′′ = BiLSTM([c′; cSA; c′ � cSA]

Finally, we add this residually to ck to obtain the
encoded context c = ck + c′′.
Pointer-Generator Decoding Layer: Similar to
the work of See et al. (2017), we use a pointer-
generator model attending on (and potentially
copying from) the context.

At decoding step t, the decoder receives the in-
put xt (embedded representation of last timestep’s
output), the last time step’s hidden state st−1 and
context vector at−1. The decoder computes the
current hidden state st as:

st = LSTM([xt;at−1], st−1)

This hidden state is then used to compute a proba-
bility distribution over the generative vocabulary:

Pgen = softmax(Wgenst + bgen)

We employ Bahdanau attention mecha-
nism (Bahdanau et al., 2015) to attend over the
context (c being the output of self-attention layer):

αi = vᵀ tanh(Wcci +Wsst + battn)
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"What is the connection
between Esther and Lady
Dedlock?"

"Mother and daughter."

"Sir Leicester Dedlock and his 
wife Lady Honoria live on his 
estate at Chesney Wold.."

"..Unknown to Sir Leicester, 
Lady Dedlock had a lover .. 
before she married and had a
daughter with him.."

"..Lady Dedlock believes her 
daughter is dead. The 
daughter, Esther, is in fact 
alive.."

"..Esther sees Lady Dedlock at
church and talks with her later
at Chesney Wod though neither
woman recognizes their 
connection.."

2c

lady

1c 3c 4c 5c1r 2r 3r 4r

Context

AnswersQuestion

ConceptNet

wife marry

mother daughter child

church house child     their

person lover

"Mother and illegitimate
child."

Figure 2: Commonsense selection approach.

α̂i =
exp(αi)∑n
j=1 exp(αj)

at =
n∑

i=1

α̂ici

We utilize a pointer mechanism that allows the
decoder to directly copy tokens from the context
based on α̂i. We calculate a selection distribution
psel ∈ R2, where psel1 is the probability of gener-
ating a token from Pgen and psel2 is the probability
of copying a word from the context:

o = σ(Waat +Wxxt +Wsst + bptr)

psel = softmax(o)

Our final output distribution at timestep t is a
weighted sum of the generative distribution and
the copy distribution:

Pt(w) = psel1 Pgen(w) + psel2

∑
i:wC

i =w

α̂i

3.2 Commonsense Selection and
Representation

In QA tasks that require multiple hops of reason-
ing, the model often needs knowledge of relations
not directly stated in the context to reach the cor-
rect conclusion. In the datasets we consider, man-
ual analysis shows that external knowledge is fre-
quently needed for inference (see Table 1).

Even with a large amount of training data, it
is very unlikely that a model is able to learn ev-
ery nuanced relation between concepts and ap-
ply the correct ones (as in Fig. 2) when reasoning

Dataset Outside Knowledge Required

WikiHop 11%
NarrativeQA 42%

Table 1: Qualitative analysis of commonsense require-
ments. WikiHop results are from Welbl et al. (2018);
NarrativeQA results are from our manual analysis (on
the validation set).

about a question. We remedy this issue by intro-
ducing grounded commonsense (background) in-
formation using relations between concepts from
ConceptNet (Speer and Havasi, 2012)1 that help
inference by introducing useful connections be-
tween concepts in the context and question.

Due to the size of the semantic network and
the large amount of unnecessary information, we
need an effective way of selecting relations which
provides novel information while being grounded
by the context-query pair. Our commonsense se-
lection strategy is twofold: (1) collect potentially
relevant concepts via a tree construction method
aimed at selecting with high recall candidate rea-
soning paths, and (2) rank and filter these paths to
ensure both the quality and variety of added infor-
mation via a 3-step scoring strategy (initial node
scoring, cumulative node scoring, and path selec-
tion). We will refer to Fig. 2 as a running example
throughout this section.2

3.2.1 Tree Construction
Given context C and question Q, we want to con-
struct paths grounded in the pair that emulate rea-
soning steps required to answer the question. In
this section, we build ‘prototype’ paths by con-
structing trees rooted in concepts in the query with
the following branching steps3 to emulate multi-
hop reasoning process. For each concept c1 in the
question, we do:
Direct Interaction: In the first level, we select re-
lations r1 from ConceptNet that directly link c1
to a concept within the context, c2 ∈ C, e.g., in
Fig. 2, we have lady → church, lady → mother,
lady→ person.
Multi-Hop: We then select relations in Concept-
Net r2 that link c2 to another concept in the con-
text, c3 ∈ C. This emulates a potential reason-

1A semantic network where the nodes are individual con-
cepts (words or phrases) and the edges describe directed re-
lations between them (e.g., 〈island, UsedFor, vacation〉).

2We release all our commonsense extraction code and
the extracted commonsense data at: https://github.com/
yicheng-w/CommonSenseMultiHopQA

3If we are unable to find a relation that satisfies the condi-
tion, we keep the steps up to and including the node.

https://github.com/yicheng-w/CommonSenseMultiHopQA
https://github.com/yicheng-w/CommonSenseMultiHopQA
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ing hop within the context of the MRC task, e.g.,
church → house, mother → daughter, person →
lover.
Outside Knowledge: We then allow an uncon-
strained hop into c3’s neighbors in ConceptNet,
getting to c4 ∈ nbh(c3) via r3 (nbh(v) is the set
of nodes that can be reached from v in one hop).
This emulates the gathering of useful external in-
formation to complete paths within the context,
e.g., house→ child, daughter→ child.
Context-Grounding: To ensure that the exter-
nal knowledge is indeed helpful to the task, and
also to explicitly link 2nd degree neighbor con-
cepts within the context, we finish the process by
grounding it again into context by connecting c4
to c5 ∈ C via r4, e.g., child→ their.

3.2.2 Rank and Filter
This tree building process collects a large number
of potentially relevant and useful paths. However,
this step also introduces a large amount of noise.
For example, given the question and full context
(not depicted in the figure) in Fig. 2, we obtain
the path “between→ hard→ being→ cottage→
country” using our tree building method, which is
not relevant to our question. Therefore, to improve
the precision of useful concepts, we rank these
knowledge paths by their relevance and filter out
noise using the following 3-step scoring method:
Initial Node Scoring: We want to select paths
with nodes that are important to the context,
in order to provide the most useful common-
sense relations. We approximate importance and
saliency for concepts in the context by their term-
frequency, under the heuristic that important con-
cepts occur more frequently. Thus we score c ∈
{c2, c3, c5} by: score(c) = count(c)/|C|, where
|C| is the context length and count() is the num-
ber of times a concept appears in the context. In
Fig. 2, this ensures that concepts like daughter are
scored highly due to their frequency in the context.

For c4, we use a special scoring function as it is
an unconstrained hop into ConceptNet. We want
c4 to be a logically consistent next step in reason-
ing following the path of c1 to c3, e.g., in Fig. 2, we
see that child is a logically consistent next step af-
ter the partial path of mother→ daughter. We ap-
proximate this based on the heuristic that logically
consistent paths occur more frequently. Therefore,
we score this node via Pointwise Mutual Informa-
tion (PMI) between the partial path c1−3 and c4:
PMI(c4, c1−3) = log(P(c4, c1−3)/P(c4)P(c1−3)),

where

P(c4, c1−3) =
# of paths connecting c1, c2, c3, c4

# of distinct paths of length 4

P(c4) =
# of nodes that can reach c4

|ConceptNet|

P(c1−3) =
# of paths connecting c1, c2, c3

# of paths of length 3

Further, it is well known that PMI has high
sensitivity to low-frequency values, thus we
use normalized PMI (NPMI) (Bouma, 2009):
score(c4) = PMI(c4, c1−3)/(− logP(c4, c1−3)).

Since the branching at each juncture represents
a hop in the multi-hop reasoning process, and hops
at different levels or with different parent nodes do
not ‘compete’ with each other, we normalize each
node’s score against its siblings:

n-score(c) = softmaxsiblings(c)(score(c)).

Cumulative Node Scoring: We want to add com-
monsense paths consisting of multiple hops of
relevant information, thus we re-score each node
based not only on its relevance and saliency but
also that of its tree descendants.

We do this by computing a cumulative node
score from the bottom up, where at the leaf nodes,
we have c-score = n-score, and for cl not a leaf
node, we have c-score(cl) = n-score(cl) + f(cl)
where f of a node is the average of the c-scores of
its top 2 highest scoring children.

For example, given the paths lady→ mother→
daughter, lady→ mother→ married, and lady→
mother → book, we start the cumulative scoring
at the leaf nodes, which in this case are daugh-
ter, married, and book, where daughter and mar-
ried are scored much higher than book due to their
more frequent occurrences. Then, to cumulatively
score mother , we would take the average score of
its two highest scoring children (in this case mar-
ried and daughter) and compound that with the
score of mother itself. Note that the poor scoring
of the irrelevant concept book does not affect the
scoring of mother, which is quite high due to the
concept’s frequent occurrence and the relevance of
its top scoring children.
Path Selection: We select paths in a top-down
breath-first fashion in order to add information rel-
evant to different parts of the context. Starting at
the root, we recursively take two of its children
with the highest cumulative scores until we reach
a leaf, selecting up to 24 = 16 paths. For example,



4226

if we were at node mother, this allows us to se-
lect the child node daughter and married over the
child node book. These selected paths, as well as
their partial sub-paths, are what we add as exter-
nal information to the QA model, i.e., we add the
complete path 〈lady, AtLocation, church, Relat-
edTo, house, RelatedTo, child, RelatedTo, their〉,
but also truncated versions of the path, including
〈lady, AtLocation, church, RelatedTo, house, Re-
latedTo, child〉. We directly give these paths to the
model as sequences of tokens.4

Overall, our sampling strategy provides the
knowledge that a lady can be a mother and that
mother is connected to daughter. This creates
a logical connection between lady and daughter
which helps highlight the importance of our sec-
ond piece of evidence (see Fig. 2). Likewise,
the commonsense information we extracted cre-
ate a similar connection in our third piece of ev-
idence, which states the explicit connection be-
tween daughter and Esther. We also successfully
extract a more story context-centric connection, in
which commonsense provides the knowledge that
a lady is at the location church, which directs to
another piece of evidence in the context. Addition-
ally, this path also encodes a relation between lady
and child, by way of church, which is how lady
and Esther are explicitly connected in the story.

3.3 Commonsense Model Incorporation

Given the list of commonsense logic paths as se-
quences of words: XCS = {wCS

1 , wCS
2 , . . . ,

wCS
l } where wCS

i represents the list of tokens
that make up a single path, we first embed these
commonsense tokens into the learned embedding
space used by the model, giving us the embedded
commonsense tokens, eCS

ij ∈ Rd. We want to
use these commonsense paths to fill in the gaps
of reasoning between hops of inference. Thus,
we propose Necessary and Optional Information
Cell (NOIC), a variation of our base reasoning
cell used in the reasoning layer that is capable of
incorporating optional helpful information.

NOIC This cell is an extension to the base rea-
soning cell that allows the model to use common-
sense information to fill in gaps of reasoning. An
example of this is on the bottom left of Fig. 1,
where we see that the cell first performs the op-
erations done in the base reasoning cell and then

4In cases where more than one relation can be used to
make a hop, we pick one at random.

adds optional, commonsense information.
At reasoning step t, after obtaining the out-

put of the base reasoning cell, ct, we create a
cell-specific representation for commonsense in-
formation by concatenating the embedded com-
monsense paths so that each path has a single vec-
tor representation, uCS

i . We then project it to the
same dimension as cti: v

CS
i = ReLU(WuCS

i + b)
where W and b are trainable parameters.

We use an attention layer to model the interac-
tion between commonsense and the context:

SCS
ij =WCS

1 cti +WCS
2 vCS

j +WCS
3 (cti � vCS

j )

pCS
ij =

exp(SCS
ij )∑l

k=1 exp(S
CS
ij )

cCS
i =

l∑
j=1

pCS
ij vCS

j

Finally, we combine this commonsense-aware
context representation with the original cti via a
sigmoid gate, since commonsense information is
often not necessary at every step of inference:

zi = σ(Wz[c
CS
i ; cti] + bz)

(co)
t
i = zi � cti + (1− zi)� cCS

i

We use co
t as the output of the current reasoning

step instead of ct. As we replace each base rea-
soning cell with NOIC, we selectively incorporate
commonsense at every step of inference.

4 Experimental Setup

Datasets: We report results on two multi-hop rea-
soning datasets: generative NarrativeQA (Kočiskỳ
et al., 2018) (summary subtask) and extractive
QAngaroo WikiHop (Welbl et al., 2018). For
multiple-choice WikiHop, we rank candidate re-
sponses by their generation probability. Similar to
previous works (Dhingra et al., 2018), we use the
non-oracle, unmasked and not-validated dataset.
Evaluation Metrics: We evaluate NarrativeQA
on the metrics proposed by its original authors:
Bleu-1, Bleu-4 (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005) and Rouge-
L (Lin, 2004). We also evaluate on CIDEr (Vedan-
tam et al., 2015) which emphasizes annotator con-
sensus. For WikiHop, we evaluate on accuracy.5

More dataset, metric, and all other training de-
tails are in the supplementary.

5Due to the 2-week evaluation wait-time on the non-
public test set, we instead train our model on a sub-section
of the training set, pick hyperparameters based on a small
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Model BLEU-1 BLEU-4 METEOR Rouge-L CIDEr

Seq2Seq (Kočiskỳ et al., 2018) 15.89 1.26 4.08 13.15 -
ASR (Kočiskỳ et al., 2018) 23.20 6.39 7.77 22.26 -
BiDAF† (Kočiskỳ et al., 2018) 33.72 15.53 15.38 36.30 -
BiAttn + MRU-LSTM† (Tay et al., 2018) 36.55 19.79 17.87 41.44 -

MHPGM 40.24 17.40 17.33 41.49 139.23
MHPGM+ NOIC 43.63 21.07 19.03 44.16 152.98

Table 2: Results across different metrics on the test set of NarrativeQA-summaries task. † indicates span prediction
models trained on the Rouge-L retrieval oracle.

Model Acc (%)

BiDAF (Welbl et al., 2018) 42.09
Coref-GRU (Dhingra et al., 2018) 56.00

MHPGM 56.74
MHPGM+ NOIC 58.22

Table 3: Results of our models on WikiHop dataset.

5 Results

5.1 Main Experiment

The results of our model on both NarrativeQA and
WikiHop with and without commonsense incorpo-
ration are shown in Table 2 and Table 3. We see
empirically that our model outperforms all gener-
ative models on NarrativeQA, and is competitive
with the top span prediction models. Furthermore,
with the NOIC commonsense integration, we were
able to further improve performance (p < 0.001
on all metrics6), establishing a new state-of-the-art
for the task. We also see that our model performs
well on WikiHop,7 and is further improved via the
addition of commonsense (p < 0.001), demon-
strating the generalizability of both our model and
commonsense addition techniques.8

5.2 Model Ablations

We also tested the effectiveness of each compo-
nent of our architecture as well as the effective-
ness of adding commonsense information on the
NarrativeQA validation set, with results shown in
Table 4. Experiment 1 and 5 are our models pre-

(500 examples) held-out part of the training set, and test on
the original validation set (by treating it as an unseen test
set). We will promptly include the non-public test set results
in the next version and at: https://github.com/yicheng-w/
CommonSenseMultiHopQA

6Stat. significance computed using bootstrap test with
100K iterations (Noreen, 1989; Efron and Tibshirani, 1994).

7Note that we compare our model’s performance to other
models’ tuned performance on the development set and ours
is still equal or better.

8All results here are for the standard (non-oracle) un-
masked and not-validated dataset. Welbl et al. (2018) has
reported higher numbers on different data settings which are
not comparable to our results.

sented in Table 2. Experiment 2 demonstrates the
importance of multi-hop attention by showing that
if we only allow one hop of attention (even with all
other components of the model, including ELMo
embeddings) the model’s performance decreases
by over 12 Rouge-L points. Experiment 3 and 4
demonstrate the effectiveness of other parts of our
model. We see that ELMo embeddings (Peters
et al., 2018) were also important for the model’s
performance and that self-attention is able to con-
tribute significantly to performance on top of other
components of the model. Finally, we see that ef-
fectively introducing external knowledge via our
commonsense selection algorithm and NOIC can
improve performance even further on top of our
strong baseline.

5.3 Commonsense Ablations
We also conducted experiments testing the effec-
tiveness of our commonsense selection and incor-
poration techniques. We first tried to naively add
ConceptNet information by initializing the word
embeddings with the ConceptNet-trained embed-
dings, NumberBatch (Speer and Havasi, 2012)
(we also change embedding size from 256 to
300). Then, to verify the effectiveness of our com-
monsense selection and grounding algorithm, we
test our best model on in-domain noise by giv-
ing each context-query pair a set of random rela-
tions grounded in other context-query pairs. This
should teach the model about general common-
sense relations present in the domain of Narra-
tiveQA but does not provide grounding that fills
in specific hops of inference. We also experi-
mented with a simpler commonsense extraction
method of using a single hop from the query to
the context. The results of these are shown in
Table 5, where we see that neither NumberBatch
nor random-relationships nor single-hop common-
sense offer statistically significant improvements9,

9The improvement in Rouge-L and METEOR for all three
ablation approaches have p ≥ 0.15 with the bootstrap test.

https://github.com/yicheng-w/CommonSenseMultiHopQA
https://github.com/yicheng-w/CommonSenseMultiHopQA
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# Ablation B-1 B-4 M R C

1 - 42.3 18.9 18.3 44.9 151.6
2 k = 1 32.5 11.7 12.9 32.4 95.7
3 - ELMo 32.8 12.7 13.6 33.7 103.1
4 - Self-Attn 37.0 16.4 15.6 38.6 125.6
5 + NOIC 46.0 21.9 20.7 48.0 166.6

Table 4: Model ablations on NarrativeQA val-set.

Commonsense B-1 B-4 M R C

None 42.3 18.9 18.3 44.9 151.6
NumberBatch 42.6 19.6 18.6 44.4 148.1
Random Rel. 43.3 19.3 18.6 45.2 151.2
Single Hop 42.1 19.9 18.2 44.0 148.6
Grounded Rel. 45.9 21.9 20.7 48.0 166.6

Table 5: Commonsense ablations on NarrativeQA val-
set.

whereas our commonsense selection and incorpo-
ration mechanism improves performance signifi-
cantly across all metrics. We also present several
examples of extracted commonsense and its model
attention visualization in the supplementary.

6 Human Evaluation Analysis

We also conduct human evaluation analysis on
both the quality of the selected commonsense re-
lations, as well as the performance of our final
model.
Commonsense Selection: We conducted manual
analysis on a 50 sample subset of the NarrativeQA
test set to check the effectiveness of our common-
sense selection algorithm. Specifically, given a
context-query pair, as well as the commonsense
selected by our algorithm, we conduct two inde-
pendent evaluations: (1) was any external com-
monsense knowledge necessary for answering the
question?; (2) were the commonsense relations
provided by our algorithm relevant to the ques-
tion? The result for these two evaluations as well
as how they overlap with each other are shown in
Table 6, where we see that 50% of the cases re-
quired external commonsense knowledge, and on
a majority (34%) of those cases our algorithm was
able to select the correct/relevant commonsense
information to fill in gaps of inference. We also
see that in general, our algorithm was able to pro-
vide useful commonsense 48% of the time.
Model Performance: We also conduct human
evaluation to verify that our commonsense incor-
porated model was indeed better than MHPGM.
We randomly selected 100 examples from the Nar-
rativeQA test set, along with both models’ pre-
dicted answers, and for each datapoint, we asked

Commonsense Required
Yes No

Relevant CS Extracted 34% 14%
Irrelevant CS Extracted 16% 36%

Table 6: NarrativeQA’s commonsense requirements
and effectiveness of commonsense selection algorithm.

MHPGM+NOIC better 23%
MHPGM better 15%
Indistinguishable (Both-good) 41%
Indistinguishable (Both-bad) 21%

Table 7: Human evaluation on the output quality of the
MHPGM+NOIC vs. MHPGM in terms of correctness.

3 external human evaluators (fluent English speak-
ers) to decide (without knowing which model pro-
duced each response) if one is strictly better than
the other, or that they were similar in quality (both-
good or both-bad). As shown in Table 7, we see
that the human evaluation results are in agreement
with that of the automatic evaluation metrics: our
commonsense incorporation has a reasonable im-
pact on the overall correctness of the model. The
inter-annotator agreement had a Fleiss κ = 0.831,
indicating ‘almost-perfect’ agreement between the
annotators (Landis and Koch, 1977).

7 Conclusion

We present an effective reasoning-generative QA
architecture that is a novel combination of previ-
ous work, which uses multiple hops of bidirec-
tional attention and a pointer-generator decoder to
effectively perform multi-hop reasoning and syn-
thesize a coherent and correct answer. Further, we
introduce an algorithm to select grounded, use-
ful paths of commonsense knowledge to fill in
the gaps of inference required for QA, as well a
Necessary and Optional Information Cell (NOIC)
which successfully incorporates this information
during multi-hop reasoning to achieve the new
state-of-the-art on NarrativeQA.
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