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Abstract
Multimodal summarization has drawn much
attention due to the rapid growth of multime-
dia data. The output of the current multimodal
summarization systems is usually represented
in texts. However, we have found through ex-
periments that multimodal output can signifi-
cantly improve user satisfaction for informa-
tiveness of summaries. In this paper, we pro-
pose a novel task, multimodal summarization
with multimodal output (MSMO). To handle
this task, we first collect a large-scale dataset
for MSMO research. We then propose a multi-
modal attention model to jointly generate text
and select the most relevant image from the
multimodal input. Finally, to evaluate mul-
timodal outputs, we construct a novel multi-
modal automatic evaluation (MMAE) method
which considers both intramodality salience
and intermodality relevance. The experimen-
tal results show the effectiveness of MMAE.

1 Introduction

Text summarization is to extract the important in-
formation from source documents. With the in-
crease of multimedia data on the internet, some
researchers (Li et al., 2016b; Shah et al., 2016;
Li et al., 2017) focus on multimodal summariza-
tion in recent years. Existing experiments (Li
et al., 2017, 2018a) have proven that, compared
to text summarization, multimodal summarization
can improve the quality of generated summary by
using information in visual modality.

However, the output of existing multimodal
summarization systems is usually represented in
a single modality, such as textual or visual (Li
et al., 2017; Evangelopoulos et al., 2013; Madem-
lis et al., 2016). In this paper, we argue that
multimodal output1 is necessary for the follow-
ing three reasons: 1) It is much easier and faster

1Note that in this work, the multimodal output refers to a
pictorial summary which contains one image (for the sake of

Researchers have discovered the fossilized 
remains of a small, lizard- like creature that 
is the missing ancestral link …

summarize
Tiny was one of the first
four-legged creatures to
move …

Figure 1: The illustration of our proposed task –
Multimodal Summarization with Multimodal Output
(MSMO). The image can help better understand the
text in the red font.

for users to get critical information from the im-
ages (Li et al., 2017). 2) According to our ex-
periments, the multimodal output (text+image) in-
creases users’ satisfaction by 12.4% compared to
the single-modality output (text) (more details can
be found in Sec. 4.2). 3) Images help users to
grasp events while texts provide more details re-
lated to the events. Thus the images and text
can complement each other, assisting users to gain
a more visualized understanding of events (Bian
et al., 2013). We give an example in Fig. 1 to il-
lustrate this phenomenon. For the output with only
the text summary, user will be confused about the
description of “four-legged creatures”; while with
a relevant image, user will have a clearer under-
standing of the text.

In recent years, some researchers(Bian et al.,
2013, 2015; Wang et al., 2016) focus on incorpo-
rating multimedia contents into the output of sum-
marization which all treat the image-text pair as
a basic summarization unit. But in our work, our
input comes from a document and a collection of
images where there is no alignment between texts
and images. So our biggest challenge is how to
bridge the semantic gaps between texts and im-
ages. Based on the above discussion, in this work,
we propose a novel task which we refer to as Mul-
timodal Summarization with Multimodal Output
(MSMO). To explore this task, we focus on the

simplicity, we first consider only one image) and a piece of
text. We leave the other multimodal content (like videos) as
future work.
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following three questions: 1) how to acquire the
relevant data; 2) how to generate the multimodal
output; 3) how to automatically evaluate the qual-
ity of the multimodal output in MSMO.

For the first question, similar to Hermann
et al. (2015), we collect a large-scale multimodal
dataset2 from Daily Mail website and annotate
some pictorial summaries. For the second ques-
tion, we propose a multimodal attention model
to jointly generate text and the most relevant im-
age, in which the importance of images is deter-
mined by the visual coverage vector. For the last
question, we construct a novel multimodal auto-
matic evaluation (MMAE) which jointly considers
salience of text, salience of image, and image-text
relevance.

Our main contributions are as follows:

• We present a novel multimodal summariza-
tion task, which takes the news with images
as input, and finally outputs a pictorial sum-
mary. We construct a large-scale corpus for
MSMO studying.

• We propose an abstractive multimodal sum-
marization model to jointly generate sum-
mary and the most relevant image.

• We propose a multimodal automatic evalua-
tion (MMAE) method which mainly consid-
ers three aspects: salience of text, salience of
image, and relevance between text and im-
age.

2 Our Models

2.1 Overview
We begin by defining the MSMO task. The in-
put of the task is a document and a collection
of images and the output is a pictorial summary.
As shown in Fig. 2, our proposed model con-
sists of four modules: text encoder, image en-
coder, multimodal attention layer, and summary
decoder. The text encoder is a BiLSTM used to
encode text. Our image encoder is VGG193 pre-
trained on ImageNet (Simonyan and Zisserman,
2015) used to extract global or local features. The
multimodal attention layer aims to fuse textual and
visual information during decoding. Our summary

2Our dataset has been released to the public, which
can be found in http://www.nlpr.ia.ac.cn/cip/
jjzhang.htm.

3http://www.robots.ox.ac.uk/˜vgg/
research/very_deep

decoder, which is a unidirectional LSTM, makes
use of information from two modalities to gener-
ate the text summary and select the most relevant
image according to visual coverage vector. Our
text encoder and summary decoder are based on
pointer-generator network which we will describe
in Sec. 2.2. We then describe image encoder and
multimodal attention layer in our multimodal at-
tention model (Sec. 2.3).

2.2 Pointer-Generator Network

See et al. (2017) propose a pointer-generator net-
work which allows both copying words from the
source text and generating words from a fixed
vocabulary, achieving the best performance on
CNN/Daily mail dataset. Their model consists
of an encoder (a single-layer bidirectional LSTM)
and an attentive decoder (a unidirectional LSTM).
The encoder maps the article to a sequence of
encoder hidden states hi. During decoding, the
decoder receives the embedding of the previous
word and reaches a new decoder state st. Then
the context vector ct is computed by the attention
mechanism (Bahdanau et al., 2015; Luong et al.,
2015) as calculated in Eq. 1 and 2. To alleviate
the problem of repetition, See et al. (2017) main-
tain a coverage vector covt, which is the sum of
attention distributions over all previous decoding
timesteps (initialized to zero vector at timestep 0):
covt =

∑t−1
t̃=0

αt̃. The coverage vector is used as
an extra input to the attention vector (Eq. 1) and
is also used to calculate the coverage loss (Eq. 6).
Next, the attention distribution is used to calculate
the context vector as follows.

eti = vT tanh(Whhi + Wsst + Wccov
t) (1)

αt = softmax(et) (2)

ct =
∑
i

αt
ihi (3)

The important part in this model is the calcula-
tion of the generation probability pg. It represents
the probability of generating a word from the vo-
cabulary distribution pv, and (1 − pg) represents
the probability of copying a word from the source
by sampling from the attention distribution αt. pg
is determined by ct, st, and the decoder input xt in
Eq. 4. The final probability distribution over the
extended vocabulary, which denotes the union of
the vocabulary and all words in the source, is cal-
culated in Eq. 5. Finally, the loss for timestep t is
the sum of the negative log likelihood of the target

http://www.nlpr.ia.ac.cn/cip/jjzhang.htm
http://www.nlpr.ia.ac.cn/cip/jjzhang.htm
http://www.robots.ox.ac.uk/~vgg/research/very_deep
http://www.robots.ox.ac.uk/~vgg/research/very_deep
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Figure 2: The framework of our model.

word w∗t and the coverage loss (Eq. 6):

pg = σ(W∗hct + W∗sst + Wxxt) (4)

pw = pgpv(w) + (1− pg)
∑
wi=w

αt
i (5)

Lt = −logpw∗
t
+
∑
i

min(αt
i, cov

t
i) (6)

2.3 Multimodal Attention Model
We incorporate visual information into the
pointer-generator network and propose a novel
multimodal attention model. As shown in Fig. 2,
there are three main differences between our
model and pointer-generator network: 1) We have
an extra image encoder and a corresponding visual
attention layer; 2) To achieve the fusion of textual
and visual information, we introduce a multimodal
attention mechanism; 3) We add a visual cover-
age (Li et al., 2018a) to both alleviate visual rep-
etition and measure the salience of image. More
details are as follows.

Image Encoder. We apply the VGG19 to ex-
tract global and local image feature vectors for
all images. The global features g are 4096-
dimensional activations of the pre-softmax fully-
connected layer fc7. The local features l are the
7× 7× 512 feature maps of the last pooling layer
(pool5). We flatten the local feature into a ma-
trix A = (a1, · · · , aL)(L = 49) where al ∈ R512

corresponds to a patch of an image.
Visual Attention. The attention mechanism is

learned to focus on different parts of input text
while decoding. Attention mechanisms have also
shown to work with other modalities, like images,
where they can learn to attend the salient parts of
an image (Xu et al., 2015). We then explore to use
images with a visual attention to learn text-image
alignment. Concretely, we extend attention mech-
anism (Bahdanau et al., 2015; Luong et al., 2015)
to visual attention mechanisms, which attend vi-

sual signals. There are three variants of our visual
attention mechanisms: 1) attention on global fea-
tures (ATG), 2) attention on local features (ATL),
and 3) hierarchical visual attention on local fea-
tures (HAN). We take the calculation of ATG as an
example. To attend to the salient parts of a collec-
tion of images with size M , we flatten the global
feature set g into a matrix g′ = (g1, · · · , gM ). In
addition to calculating the text context vector in
Sec. 2.2, we also obtain a visual context vector.
We first project the image feature into the same
dimension as the text context vector. The visual
attention is calculated as follows:

g∗ = W2
I(W

1
Ig + b1I) + b2I (7)

eta = vTa tanh(Wag
∗
i + Uast + covta) (8)

αt
a = softmax(eta) (9)

where W1
I ∈ R4096×4096 and W2

I ∈ R4096×dh

are the image transformation matrices, b1I ∈ R4096

and b2I ∈ Rdh are bias vectors, and covta denotes
the visual coverage vector and is initialized to zero
vector in the beginning. Then the visual attention
distribution αt

a is used to obtain the visual context
vector ctimg through ctimg =

∑
i α

t
a,ig
∗
i . Similar

is the ATL, we flatten the local feature set A into
a matrix A′ = (a1, · · · , aM×49). The calculation
of attention in ATL is the same as in ATG. There
is a bit difference in the HAN model, which first
attend to the 49 image patches and get an interme-
diate visual context vector to represent the image,
and then attend to the intermediate visual context
vectors to get the visual context vector.

Multimodal Attention. To fuse the text and vi-
sual context information, we add a multimodal at-
tention layer (Li et al., 2018a), as shown in Fig. 2.
And the attention distribution is calculated as fol-
lows:

ettxt = vTtxt(Wtxtc
t
txt + Utxtst) (10)

etimg = vTimg(Wimgc
t
img + Uimgst) (11)

αt
txt = softmax(ettxt) (12)

αt
img = softmax(etimg) (13)

ctmm = αt
txtc

t
txt + αt

imgc
t
img (14)

where αt
txt is the attention weight for text context

vector and αt
img is the attention weight for visual

context vector.
Visual Coverage. In addition to the calculation

of the text coverage vector as in Sec. 2.2, we also
obtain a visual coverage vector covtimg, which is
the sum of visual attention distributions. To help
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reduce repeated attention to multimodal informa-
tion, we incorporate a text coverage loss and a vi-
sual coverage loss into the loss function. The final
loss function is as follows:

Lt = −logpw∗
t
+
∑
i

min(αt
i, cov

t
i)

+
∑
j

min(αt
j , cov

t
img,j) (15)

The attention mechanism can attend the salient
parts of texts or images. Meanwhile, the coverage
mechanism sums up all the historical attention dis-
tributions. Therefore, we regard the coverage vec-
tor as a global salience measure of the source be-
ing attended. We then use the visual coverage vec-
tor in the last decoding timestep to select the most
relevant image. Concretely, we choose the image
whose coverage score is the largest. The process
is a bit different for the local features. An image
corresponds to 49 patches, the coverage scores of
these patches are summed up to get the salience
score of the image as follows:

Sj =
∑
patch

covt
∗
patch,j (16)

where Sj denotes the salience of the j-th image
and covt

∗
patch,j denotes the coverage score of each

corresponding image patch in the last decoding
timestep t∗. For the HAN, we introduce an ex-
tra coverage vector for the image patches attention
and calculate coverage loss for it as follows:

Lt = −logpw∗
t
+
∑
k

min(αt
k, cov

t
patch,k)

+
∑
i

min(αt
i, cov

t
i) +

∑
j

min(αt
j , cov

t
img,j)

(17)

3 Multimodal Automatic Evaluation

To evaluate the quality of a pictorial summary,
we propose the MMAE method which is defined
as y = f(m1,m2,m3). In this definition, m1,
m2, and m3 denote scores measured by three met-
rics which consider salience of text (Sec. 3.1),
salience of image (Sec. 3.2), and image-text rele-
vance (Sec. 3.3) respectively, f(·) denotes a map-
ping function, and y denotes the score of the pic-
torial summary.

In our experiments, the reference pictorial sum-
mary consists of a text summary and a reference

image set4 ref img. In MMAE, m1 is obtained by
comparing the text summary in reference with that
in model output, m2 is obtained by comparing the
image set in reference with the image in model
output, and m3 considers the image-text similar-
ity in model output. To learn MMAE, we choose
three simple methods to fit y with human judg-
ment scores. These methods include Linear Re-
gression (LR), and two nonlinear methods: Logis-
tic Regression (Logis), and Multilayer Perceptron
(MLP).

3.1 Salience of Text

ROUGE (Lin, 2004b) is widely used to automat-
ically assess the quality of text summarization
systems. It has been shown that ROUGE cor-
relates well with human judgments (Lin, 2004a;
Owczarzak et al., 2012; Over and Yen, 2004).
Therefore, we directly apply ROUGE to assess the
salience of the text units.

3.2 Salience of Image

We propose a metric, namely, image precision
(IP), to measure the salience of image. The im-
age precision is defined as follows:

IP =
|{ref img} ∩ {recimg}|

|{recimg}|
(18)

where refimg, recimg denote reference images and
recommended images by MSMO systems respec-
tively. The reasons for this metric are as follows.

A good summary should have good coverage
of the events for both texts and images. The im-
age in the output should be closely related to the
events. So we formulate the image selection pro-
cess as an image recommendation —instead of
recommending items to users as in a recommen-
dation system, we recommend the most salient
image to an event. It can also be viewed as an
image retrieval task, which retrieves the image
most relevant to an event. Precision and recall
are commonly used to evaluate recommendation
systems (Karypis, 2001) and information retrieval
task (Zuva and Zuva, 2012). However, we only
care about whether the image appears in the ref-
erence image set. Thus in our case, we are only
interested in calculating precision metric. There-
fore, we adapt the precision here as IP to measure
image salience.

4More details can be found in Sec. 4.1
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3.3 Image-Text Relevance
A prerequisite for a pictorial summary to help
users accurately acquire information is that the im-
age must be related to the text. Therefore, we re-
gard the image-text relevance as one of metrics to
measure the quality of the pictorial summary. We
consider using visual-semantic embedding (Faghri
et al., 2018; Wang et al., 2018) to calculate the
cosine similarity between visual feature and tex-
tual feature, which we use as image-text relevance.
Visual-semantic embedding has been widely used
in cross-modal retrieval (Kiros et al., 2014) and
image captioning (Karpathy and Fei-Fei, 2015).

We apply VSE0 model of Faghri et al. (2018),
which achieves state-of-the-art performance for
image-caption retrieval task on the Flickr30K
dataset (Young et al., 2014). The difference is
that instead of training a CNN model to encode
the image, we use the pretrained VGG19 to ex-
tract global features. The text is encoded by a uni-
directional Gated Recurrent Unit (GRU) to a se-
quence of vector representations. Then we apply
the max-over-time pooling (Collobert et al., 2011)
to get a single vector representation. Next, the vi-
sual features and text features are projected to a
joint semantic space by two feed-forward neural
networks. The whole network is trained using a
max-margin loss:

L =
∑
ĉ

max(β − s(i, c) + s(i, ĉ), 0)

+
∑
î

max(β − s(i, c) + s(̂i, c), 0) (19)

The loss comprises two symmetric terms, with i
and c being images and captions repectively. The
first term is taken over negative captions ĉ image
i in a batch. The second is over negative images î
given caption c. If i and c are closer to each other
in the joint embedding space than to any other neg-
ative pairs, by a margin β, the loss is zero. We
choose to use image-caption pairs in our dataset to
train the VSE0 model.

4 Experiments

We conduct the following five sets of experiments:
1) To verify our motivation of the multimodal out-
put (pictorial summary), we design an experiment
for user satisfaction test (Sec. 4.2); 2) We compare
our multimodal summarization with text summa-
rization from both ROUGE score and manual eval-
uation (Sec. 4.3); 3) To verify the effectiveness of

our evaluation metrics, we calculate the correla-
tion between these metrics and human judgments
(Sec. 4.4); 4) We conduct two experiments to show
the effectiveness of our proposed MMAE and the
generalization of MMAE respectively (Sec. 4.5);
5) Finally, we evaluate our multimodal attention
model with MMAE (Sec. 4.6).

The hyperparameters in our model are similar to
See et al. (2017), except that we set the maximum
number of images to 10, 7, and 7 for ATG, ATL,
and HAN respectively, because different articles
have the image collection of different sizes. The
images are sorted in the order of the position in
the article.

4.1 Dataset

There is no large-scale benchmark dataset for
MSMO. We follow Hermann et al. (2015) to con-
struct a corpus from Daily Mail website5. Similar
to Hermann et al. (2015), we use the manually-
written highlights offered by Daily Mail as a ref-
erence text summary. From Daily Mail, we ran-
domly select articles within a week and find that
2,917 out of 2,930 articles contain images. More
details are illustrated in Table 1.

train valid test

#Documents 293,965 10,355 10,261
#ImgCaps 1,928,356 68,520 71,509
#AvgTokens(S) 720.87 766.08 730.80
#AvgTokens(R) 70.12 70.02 72.16
#AvgCapTokens 22.07 22.64 22.34
#AvgImgCaps 6.56 6.62 6.97

Table 1: Corpus statistics. Each image on the website
is paired with a caption. #ImgCaps denotes the number
of image-caption pairs. #AvgTokens(S), #AvgTokens(R)
and #AvgCapTokens denote the average number of to-
kens in articles, highlights, and captions respectively.

To get the pictorial reference, we employ 10
graduate students to select the relevant images
from the article for each reference text summary.
We allow annotators to select up to three images
to reduce the difference between different annota-
tors. If the annotators find that there is no relevant
image, they will select none of them. Each arti-
cle is annotated by at least two students6. Since
we use the text reference to guide the generation
of the pictorial summary, we do not use the ref-
erence image during training. Therefore, we only
conduct the annotation on the test set.

5http://www.dailymail.co.uk
6A third annotator will be asked to decide the final anno-

tation for the case of divergence for the first two annotators.

http://www.dailymail.co.uk
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4.2 User Satisfaction Test

We conduct an experiment to investigate whether
a pictorial summary can improve the user satis-
faction for the informativeness of the summary.
For a fair comparison, we propose a novel strat-
egy to compare text summaries and pictorial sum-
maries. We take an example to illustrate our strat-
egy. Given 100 source news pages, we have their
corresponding reference text summaries and picto-
rial summaries. We divide them into two parts of
the same size, part 1 and part 2. In part 1, human
annotator A evaluates the text summaries accord-
ing to the input news, and human annotator B eval-
uates the pictorial summaries. In part 2, annotator
A evaluates the pictorial summaries and annota-
tor B evaluates the text summaries. All annotators
will give a score of 1 to 5. The input news is the
same for annotator A and annotator B.

Format AnnotatorA AnnotatorB Overall

Text 3.67 3.75 3.71
Pictorial 4.14 4.20 4.17

Table 2: User satisfaction test results. In total, we use
the strategy mentioned in Section 4.2 to evaluate 400
randomly selected source news pages. Overall denotes
the average score on these 400 samples.

Table 2 shows our results for user satisfac-
tion test. User ratings of pictorial summaries are
12.4% higher than text summaries. It shows that
users prefer this way of presenting information. It
also confirms our motivation for MSMO.

4.3 Comparison with Text Summarization

Our user satisfaction test in Sec. 4.2 is done in
an ideal situation, comparing the text reference
with the pictorial reference. To show the effec-
tiveness of our model, we also compare our model
with text summarization from ROUGE and human
judgment scores. We compare several abstrac-
tive summarization methods with our multimodal
summarization methods. PGC7 (See et al., 2017)
refers to the pointer-generator network (Sec. 2.2).
AED (Nallapati et al., 2016) uses an attentional
encoder-decoder framework and adds some lin-
guistic features such as POS, named-entities, and
TF-IDF into the encoder. We also implement
a seq2seq model with attention (S2S+attn). To
compare the multimodal output with our multi-
modal model, we propose an extractive method

7https://github.com/abisee/
pointer-generator

based on GuideRank (GR) (Li et al., 2016a,
2018b). GuideRank applies LexRank (Erkan and
Radev, 2004) with guidance strategy. In this strat-
egy, captions recommend the sentences related to
them. The rankings of sentences and captions are
obtained through GR; we extract sentences that
satisfy the length limit as a text summary accord-
ing to the ranking of text. We select an image
whose caption ranks the first in the captions. And
finally, the pictorial summary is obtained. We
evaluate different summarization models with the
standard ROUGE metric, reporting the F1 scores
for ROUGE-1, ROUGE-2, and ROUGE-L. Our
ROUGE results are given in Table 3, and human
judgment scores are given in Table 4.

Model ROUGE-1 ROUGE-2 ROUGE-L

S2S+attn 32.32 12.44 29.65
Base AED 34.78 13.10 32.24

PGC 41.11 18.31 37.74

ATG 40.63 18.12 37.53

MM ATL 40.86 18.27 37.75
HAN 40.82 18.30 37.70
GR 37.13 15.03 30.21

Table 3: ROUGE F1 scores on our test set. All our
ROUGE scores are reported by official ROUGE script.

Model PGC ATG ATL HAN

HS 3.07 3.30 3.22 3.20

Table 4: Human judgment scores for our multimodal
model and PGC. We randomly select 400 articles and
use the same strategy as Sec. 4.2. HS denotes the aver-
age human judgment scores.

From Table 3, all multimodal models lead to
a decrease in ROUGE scores which can attribute
to the following reasons. There are 6.56 images
on average in each article and not every image is
closely related to the event of the article. In other
words, some images are noise. On the other hand,
our text input is long text, and it contains enough
information for text generation. In Table 4, multi-
modal models are better than text model in human
judgments. It further illustrates our motivation,
and also proves the effectiveness of our models.

4.4 Correlation Test

To illustrate the effectiveness of our evaluation
metrics, we conduct an experiment on correla-
tions between these metrics and human judgment
scores. Human annotators give a score which
ranges from 1 to 5 to a pictorial summary accord-

https://github.com/abisee/pointer-generator
https://github.com/abisee/pointer-generator


4160

ing to the reference8. The reference consists of a
text summary and up to three relevant images se-
lected by humans. We randomly extract the pic-
torial summaries from the output of different sys-
tems. In response to the three aspects we proposed
in Section 3, we propose some related metrics re-
spectively. For text salience, we apply ROUGE-1,
ROUGE-2, ROUGE-L, and BLEU. For image-
text relevance of candidate pictorial summaries,
we propose two ways. One is to calculate the
similarity (Img-Sum) between the image and the
whole text summary. The other is to calculate
the similarities between the image and each sen-
tence in the text summary. Then we take the maxi-
mum and average values as two metrics: MAXsim
and AVGsim. For image salience, in addition to
the IP metric mentioned in Section 3.2, we try to
calculate the similarity between the candidate im-
age and each reference image in three ways: 1)
I-I: similarities between the global fc7 features,
2) Hist: Bhattacharyya distance9 for histogram
comparison (Bhattacharyya, 1943), and 3) Temp:
Fourier Analysis template matching (Briechle and
Hanebeck, 2001).

We employ annotators to evaluate 600 samples
(randomly selected from the outputs of each model
on the validation set). Each sample is scored by
two persons and we take the average score as the
final score. We use 450 of them as training set to
train the MMAE model in Sec. 4.5, the rest is used
as test set. The scores calculated by each evalua-
tion metric are then tested on the training set to see
how well they correlate with human judgments.
The correlation is evaluated with three metrics, in-
cluding 1) Pearson correlation coefficient (r), 2)
Spearman rank coefficient (ρ), and 3) Kendall rank
coefficient (τ ). Our results of correlation test are
given in Table 5.

As shown in Table 5, IP (Image Precision) cor-
relates best with human assessments according to
the three correlation coefficients. It illustrates that
people pay more attention to images when assess-
ing pictorial summaries. If we choose the right
image for the summary, people are more likely to
assign a high score. We also note that the corre-
lation score of IP is significantly higher than four

8Some articles are annotated with no relevant images
(about 3.9%), we directly skipped these articles without man-
ual scoring

9In statistics, the Bhattacharyya distance measures the
similarity of two discrete or continuous probability distribu-
tions. For a distance d, we take (1− d) as the similarity.

Metric r ρ τ

BLEU .1949 .1542 .1198

Text ROUGE-1 .3006 .2941 .2152
ROUGE-2 .2735 .2742 .2002
ROUGE-L .3144 .3087 .2272

AVGsim .2662 .2388 .1774
Image-Text MAXsim .2849 .2749 .2033

Img-Sum .2380 .2075 .1556

I-I (max) .0169 .0258 .0196
I-I (avg) -.0262 -.0140 -.0113
Histavg .4688 .5077 .3725

Image Histmax .5974 .6388 .5149
Tempavg .4913 .4944 .3631
Tempmax .5967 .6435 .5080
IP .6407 .6482 .5789

Table 5: Correlation with human judgment scores
(training set), measured with Pearson r, Spearman ρ,
and Kendall τ coefficients. The max and avg denote
the maximum and average value of the scores.

text metrics. Because it is easy for a person to
judge the importance of images based on refer-
ence, such as to see whether the image appears in
reference. However, measuring the semantic sim-
ilarity of two texts is difficult. The four metrics all
measure the degree of n-gram overlap which can-
not accurately measure semantic similarity.

For the image-text relevance, MAXsim performs
best and is comparable to the several ROUGE met-
rics. It shows that in a good pictorial summary,
the image and text should be relevant. In some
cases, even though the generated text is not so im-
portant, the image is closely related to the text.
At this time, people can also be satisfied. On the
other hand, our VSE0 (Sec. 3.3) model can cap-
ture some fluency of sentences by adopting GRU.
Compare MAXsim, AVGsim, and Img-Sum, this
is very intuitive. Once people find a sentence (or
a part) relevant to the image, they will think the
image is related to the text. Besides, the worst
performance of Img-Sum metric is probably be-
cause the average length of captions used to train
VSE0 model is about 22, far less than the length
of the summary. We find the I-I (max) and I-I
(avg) nearly do not correlate with human assess-
ments. It shows that the visual features extracted
from VGG19 are not suitable for calculating the
similarity between news images. The analysis of
Hist (Temp)avg and Hist (Temp)max is similar to
the analysis of MAXsim and AVGsim above.

4.5 Effectiveness and Generalization of
MMAE

We then select the best-performing metrics sep-
arately from the three sets of metrics, namely
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ROUGE-L, MAXsim, and IP. We apply LR, MLP,
and Logis to learn our MMAE model that com-
bines the three metrics. We calculate the three co-
efficients for the three metrics on the test set as a
comparison. The correlation results are given in
Table 6.

Metric r ρ τ

ROUGE-L .3488 .3554 .2669
MAXsim .2541 .2339 .1773
IP .5982 .5966 .5485

MMAELR .6646 .6644 .5265
MMAEMLP .6632 .6646 .5265
MMAELogis .6630 .6653 .5277

Table 6: Correlation with human judgment scores (test
set).

As shown in Table 6, the MMAE learned by
three methods correlates better with human judg-
ments. Although MMAELogis gets a slightly
higher correlation score according to Spear-
man and Kendall coefficients, we choose the
MMAELR

10 as our final MMAE model due to Oc-
cam’s Razor11.

It is crucial that MMAE can generalize for a
previously unseen system. To test the generaliza-
tion of MMAE, we use MMAE to evaluate a new
system and calculate the correlation with human
judgment scores. The new system is a naive model
which applies LexRank to extract sentences and
randomly select an image from source. We can ob-
serve that MMAE still correlates well with human
judgment scores, as shown in Table 7. It illustrates
that MMAE generalize well for a new model. We
give some examples of MMAE in supplementary
material.

Metric r ρ τ

ROUGE-L .3223 .3514 .2615
MMAE .6352 .6318 .4728

Table 7: Correlation results for the new model on the
same 150 test samples as in Sec. 4.4.

4.6 Model Performances

According to our analyses above, we have proved
MMAE can evaluate multimodal output. In this
section, we report the MMAE scores for our pro-
posed multimodal attention model, as shown in
Table 8.

10The weight for ROUGE-L, MAXsim, and IP is 1.641,
0.854, 0.806 respectively and the intercept is 1.978.

11https://en.wikipedia.org/wiki/Occam%
27s_razor

Model ROUGE-L MAXsim IP MMAE

ATG 40.76 25.82 59.28 3.35
ATL 40.80 13.26 62.44 3.26
HAN 40.82 12.22 61.83 3.25
GR 30.20 26.60 61.70 3.20

Table 8: Results evaluated by our MMAE method. We
skipped the articles that are labeled as no relevant im-
ages. Finally, only 9,851 of the 10,261 articles are left.

Surprisingly, the model ATG achieves the high-
est MMAE score despite the mediocre perfor-
mance in three individual metrics. The MAXsim
score of ATG is much higher than ATL and HAN.
It shows the global features can help to learn bet-
ter image-text alignments. Since GR itself makes
use of the image-caption pairs, it is natural to
get a high image-text relevance score. Our pro-
posed multimodal attention models all achieves
higher performance than the extractive baseline
GR, which further indicate the effectiveness of our
models.

5 Related Work

Different from text summarization (Wan and
Yang, 2006; Rush et al., 2015; Zhu et al., 2017;
See et al., 2017; Celikyilmaz et al., 2018; Paulus
et al., 2018), Multimodal Summarization is a task
to generate a condensed text summary or a few
keyframes to help acquire the gist of multimedia
data. One of the most significant advantages of the
task is that it does not rely solely on text informa-
tion, but it can also utilize the rich visual content
from the images.

In recent years, much work has focused on mul-
timodal summarization. Evangelopoulos et al.
(2013) detect salient events in a movie based on
the saliency of individual features for aural, visual,
and linguistic representations. Li et al. (2017)
generate the text summary from an asynchronous
collection of text, image, audio, and video. There
has also been some work (Bian et al., 2013, 2015;
Wang et al., 2016; Qian et al., 2016) focused on
producing multimodal output for summarization.
Bian et al. (2013, 2015) aim to produce a visual-
ized summary for microblogs. Wang et al. (2016)
generate a pictorial storyline for summarization.
Qian et al. (2016) generate the multimedia topics
for social events. But these researches all treat
image-text pairs, in which texts and images are
aligned, as a basic summarization unit. For exam-
ple, the images are aligned with the text in a mi-

https://en.wikipedia.org/wiki/Occam%27s_razor
https://en.wikipedia.org/wiki/Occam%27s_razor
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croblog post; Wang et al. (2016) obtain the image-
text pairs by using image search engine. None of
the above works focuses on generating multimodal
output from a collection of texts and images that
are not explicitly aligned. This is one of the goals
in this paper. Another difference is that they sep-
arately evaluate texts and images when evaluating
the final results. In our work, we propose a new
automatic evaluation which jointly considers two
aspects of textual and visual modalities.

6 Conclusion

In this paper, we focus on a novel task which aims
to automatically generate a multimodal summary
from multimodal news, where the images and the
texts are not explicitly aligned. We provide a mul-
timodal summarization method to jointly gener-
ate text and the most relevant image, which can
be referred as the baseline for further study. Our
proposed metrics have been proved to be effective
in evaluating the multimodal output. Moreover,
the idea of constructing our MMAE can be eas-
ily extended to other modalities. That is, we both
consider the intramodality salience and the inter-
modality relevance.
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