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Abstract

Most previous efforts toward video caption-
ing focus on generating generic descriptions,
such as, “A man is talking.” We collect a
news video dataset to generate enriched de-
scriptions that include important background
knowledge, such as named entities and related
events, which allows the user to fully under-
stand the video content. We develop an ap-
proach that uses video meta-data to retrieve
topically related news documents for a video
and extracts the events and named entities
from these documents. Then, given the video
as well as the extracted events and entities,
we generate a description using a Knowledge-
aware Video Description network. The model
learns to incorporate entities found in the top-
ically related documents into the description
via an entity pointer network and the genera-
tion procedure is guided by the event and en-
tity types from the topically related documents
through a knowledge gate, which is a gating
mechanism added to the model’s decoder that
takes a one-hot vector of these types. We eval-
uate our approach on the new dataset of news
videos we have collected, establishing the first
benchmark for this dataset as well as propos-
ing a new metric to evaluate these descriptions.

1 Introduction

Video captioning is a challenging task that seeks to
automatically generate a natural language descrip-
tion of the content of a video. Many video cap-
tioning efforts focus on learning video representa-
tions that model the spatial and temporal dynam-
ics of the videos (Yao et al., 2015; Venugopalan
et al., 2016; Yu et al., 2017). Although the lan-
guage generation component within this task is of
great importance, less work has been done to en-
hance the contextual knowledge conveyed by the
descriptions. The descriptions generated by pre-
vious methods tend to be “generic”, describing

only what is evidently visible and lacking specific
knowledge, like named entities and event partic-
ipants, as shown in Figure 1a. In many situa-
tions, however, generic descriptions are uninfor-
mative as they do not provide contextual knowl-
edge. For example, in Figure 1b, details such as
who is speaking or why they are speaking are im-
perative to truly understanding the video, since
contextual knowledge gives the surrounding cir-
cumstances or cause of the depicted events.

a) Description (Chen and Dolan,
2011): 
A man is talking.

b) Human Description: 
Senior army officer and Zimbabwe
Defence Forces' spokesperson,
Major General S. B. Moyo, assures
the public that President Robert
Mugabe and his family are safe and
denies that the military is staging a
coup. 

Figure 1: Comparison of machine (a) and human
(b) generated descriptions.1

To address this problem, we collect a news
video dataset, where each video is accompanied
by meta-data (e.g., tags and date) and a natural lan-
guage description of the content in, and/or context
around, the video. We create an approach to this
task that is motivated by two observations.

First, the video content alone is insufficient to
generate the description. Named entities or spe-
cific events are necessary to identify the partici-
pants, location, and/or cause of the video content.
Although knowledge could potentially be mined
from visual evidence (e.g., recognizing the loca-
tion), training such a system is exceedingly diffi-

1(a) https://goo.gl/2StcD8, (b) https://goo.gl/VFR5nw

https://goo.gl/2StcD8
https://goo.gl/VFR5nw
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cult (Tran et al., 2016). Further, not all the knowl-
edge necessary for the description may appear in
the video. In Figure 2a, the video depicts much
of the description content, but knowledge of the
speaker (“Carles Puigdemont”) is unavailable if
limited to the visual evidence because the speaker
never appears in the video, making it intractable to
incorporate this knowledge into the description.

Second, one may use a video’s meta-data to re-
trieve topically related news documents that con-
tain the named entities or events that appear in the
video’s description, but these may not be specific
to the video content. For example, in Figure 2b,
the video discusses the “heightened security” and
does not depict the arrest directly. Topically re-
lated news documents capture background knowl-
edge about the attack that led to the “heightened
security” as well as the arrest, but they may not
describe the actual video content, which displays
some of the increased security measures.

Thus, we propose to retrieve topically related
news documents from which we seek to extract
named entities (Pan et al., 2017) and events (Li
et al., 2013) likely relevant to the video. We then
propose to use this knowledge in the generation
process through an entity pointer network, which
learns to dynamically incorporate extracted enti-
ties into the description, and through a new knowl-
edge gate, which conditions the generator on the
extracted event and entity types. We include the
video content in the generation by learning video
representations using a spatio-temporal hierarchi-
cal attention that spatially attends to regions of
each frame and temporally attends to different
frames. We call the combination of these genera-
tion components the Knowledge-aware Video De-
scription (KaVD) network. The contributions of
this paper are as follows:

• We create a knowledge-rich video captioning
dataset, which can serve as a new benchmark
for future work.

• We propose a new Knowledge-aware Video
Description network that can generate de-
scriptions using the video and background
knowledge mined from topically related doc-
uments.

• We present a knowledge reconstruction based
metric, using entity and event F1 scores, to
evaluate the correctness of the knowledge
conveyed in the generated descriptions.

Tags: Independence Catalonia
Demonstration Spain

Date: 10/10/2017
Description: Pro-independence
supporters gather near the Arc de
Triomf in Barcelona to follow the
speech of Carles Puigdemont on a
big screen.

a) b)

Tags: Britain London
Attack

Date: 9/16/2017
Description: There is heightened
security on the London
Underground Saturday as British
police raid a home near London
just hours after making their first
arrest in the investigation into the
bombing of an underground train a
day earlier.

Tube

Divisions in Spain over Catalonia
crisis
Referendum: Thousands rally for
Spanish Unity
Amid Catalan Crisis, Thousands
Hold Rallies in Madrid and
Barcelona

‘I Am Spanish’: Thousands in
Barcelona Protest a Push for
Independence
Catalan independence supporters
see brighter future alone

Topically related Documents:

Topically related Documents:
London train explosion is the
latest of 5 terror incidents in 2017
in the UK

London terror attack latest:
Second man arrested in tube
bombing

London Tube attack latest: Arrest
made as terror threat raised to
'critical'

Figure 2: Examples from the news video dataset
(video, meta-data, and description) with some re-
trieved topically related documents.2

2 Approach

Figure 3 shows our overall approach. We first re-
trieve topically related news documents using tags
from the video meta-data. Next, we apply entity
discovery and linking as well as event extraction
methods to the documents, which yields a set of
entities and events relevant to the video. We rep-
resent this background knowledge in two ways: 1)
we encode the entities through entity embeddings
and 2) we encode the event and entity typing in-
formation into a knowledge gate vector, which is
a one-hot vector where each entry represents an
entity or event type. Finally, with the video and
these representations of the background knowl-
edge, we employ our KaVD network, an encoder-
decoder (Cho et al., 2014) style model, to generate
the description.

2.1 Document Retrieval and Knowledge
Extraction

We gather topically related news documents as a
source of background knowledge using the video
meta-data. For each video, we use the correspond-
ing tags to perform a keyword search on docu-
ments from a number of popular news outlet web-

2(a) https://goo.gl/3cF1oU, (b) https://goo.gl/NkwHvJ

https://goo.gl/3cF1oU
https://goo.gl/NkwHvJ
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Event Extraction

Entity Extraction
and Linking

Document
Retrieval

Entities Types

coup
detained

Attack
Arrest-Jail

Events Types

KaVD

Senior army officer and
Zimbabwe Defence Forces'

spokesperson, Major
General S. B. Moyo,

assures the public that
President Robert Mugabe
and his family are safe and
denies that the military is

staging a coup.

Input Output

Entity
Embeddings

Knowledge Gate
Vector

Zimbabwe Politics Army Crisis AfricaTags:

Date: 11/15/2017

S. B. 
  Moyo 

Zimbabwe 

Military 
  Officer 

GPE
Mugabe President

Figure 3: Overall pipeline of our approach.

sites.3 We filter these documents by the date as-
sociated with video, only keeping documents that
are written within d days before and after the video
upload date.4 The keyword search gathers doc-
uments that are at least somewhat topically rele-
vant and filtering by date increases the likelihood
that the documents reference the specific events
and entities of the video, since the occurrences of
entity and event mentions across news documents
tend to be temporally correlated. We retrieve an
average of 3.1 articles per video and find that on
average 68.8% of the event types and 70.6% of the
entities in the ground truth description also appear
in corresponding news articles. In Figure 3, the
retrieved background documents include the en-
tity “Mugabe” and the event “detained”, which are
relevant to the video description.

We apply a high-performing, publicly avail-
able entity discovery and linking system (Pan
et al., 2017) to extract named entities and their
types. This system is able to discover en-
tities and link them to rich knowledge bases
that provide fine-grained types that we can ex-
ploit to better discern between entities in the
news documents (e.g., “President” versus
“Military Officer”).5 Additionally, we use
a high-performing event extraction system (Li
et al., 2013) to extract events and their arguments.
For example, in Figure 3, we get entities “S. B.
Moyo”, “Zimbabwe”, and “Mugabe” with their re-
spective types, “Military Officer”, “GPE”,

3BBC, CNN, and New York Times.
4d = 3 in our experiments.
5We only use types that appear in the training data and are

within 4 steps from the top of the 7,309 type hierarchy here.

and “President”. Likewise, we obtain events
“coup” and “detained” with their respective types,
“Attack” and “Arrest-Jail”. The entities
and events along with their types provide valuable
insight into the context of the video and can bias
the decoder to generate the correct event mentions
and incorporate the proper entities.

We encode the entities and events into represen-
tations that can be fed to the model. First, we ob-
tain an entity embedding, em, for each entity by
averaging the embeddings of the words in the en-
tity mention. Second, we encode the entity and
event types into a one-hot knowledge gate vector,
k0. Each element of k0 corresponds to an event
or entity type (e.g., “Arrest-Jail” event type
or “President” entity type), so the jth element,
k(j), is 1 if the entity or event type is found in the
related documents and 0 otherwise. k0 serves as
the initial knowledge gate vector of the decoder
(Section 2.2). The entity embeddings give the
model access to semantic representations of the
entities, while the knowledge gate vector aids the
generation process by providing the model with
the event and entity types.

2.2 KaVD Network

Our model learns video representations using hi-
erarchical, or multi-level, attention (Yang et al.,
2016; Qin et al., 2017). The encoder is com-
prised of a spatial attention (Xu et al., 2015) and
bidirectional Long Short-Term Memory network
(LSTM) (Hochreiter and Schmidhuber, 1997)
temporal encoder. The spatial attention allows
the model to attend to different locations of each
frame (Figure 4), yielding frame representations

http://nlp.cs.rpi.edu/kbp/2018/EDL2018TaskSpec_V2.0.pdf
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Figure 4: KaVD Network. At each decoder time step, the model computes pgen to determine whether to
emit a vocabulary word or a named entity from the topically related documents.

that emphasize the most important regions of each
frame. The temporal encoder incorporates mo-
tion into the frame representations by encoding
information from the preceding and subsequent
frames (Yao et al., 2015). We use a LSTM de-
coder, which applies a temporal attention (Bah-
danau et al., 2015) to the frame representations
at each step. To generate each word, the de-
coder computes its hidden state, adjusts this hid-
den state with the knowledge gate output at the
current time step, and determines the most proba-
ble word by utilizing the entity pointer network to
decide whether to generate a named entity or vo-
cabulary word. Pointer networks are effective at
incorporating out-of-vocabulary (OOV) words in
output sequences (Miao and Blunsom, 2016; See
et al., 2017). In previous research, OOV words
may appear in the input sequence, in which case
they are copied into the output. Analogously, in
our approach, named entities can be considered as
OOV words that are from a separate set instead
of the input sequence. In the following equations,
where appropriate, we omit bias terms for brevity.

Encoder. The input to the encoder is a se-
quence of video frames, {F1, ..., FN}. First, we
extract frame-level features by applying a Con-
volutional Neural Network (CNN) (Krizhevsky
et al., 2012; Simonyan and Zisserman, 2014; Ioffe
and Szegedy, 2015; Szegedy et al., 2015, 2017) to
each frame, Fi, and obtaining the response of a

convolutional layer, {ai,1, ...,ai,L}, where ai,l is
a D-dimensional representation of the lth location
of the ith frame (e.g., the top left box of the first
frame in Figure 4). We apply a spatial attention to
these location representations, given by

αi,l = aspace (ai,l) (1)

ξi,l = softmax (αi,l) (2)

zi =

L∑
l=1

ξi,lai,l (3)

where aspace is a scoring function (Bahdanau et al.,
2015). Frame representations {z1, ..., zN} are in-
put to a bi-directional LSTM, producing tempo-
rally encoded frame representations {h1, ...,hN}.

Decoder. The decoder is an attentive LSTM cell
with the addition of a knowledge gate and entity
pointer network. At each decoder step t, we apply
a temporal attention to the frame representations,

βt,i = atime (hi, st−1) (4)

ηt,i = softmax (βt,i) (5)

vt =
N∑
i=1

ηt,ihi (6)

where st−1 is the previous decoder hidden state
and atime is another scoring function. This yields
a single, spatio-temporally attentive video repre-
sentation, vt. We then compute an intermediate
hidden state, ŝt, by applying the decoder LSTM
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to st−1, vt, and previous word embedding, xt−1.
The final decoder hidden state is determined after
the knowledge gate computation.

The motivation for the knowledge gate is that it
biases the model to generate sentences that con-
tain specific knowledge relevant to the video and
topically related documents, acting as a kind of
coverage mechanism (Tu et al., 2016). For exam-
ple, given the retrieved event types in Figure 3, the
knowledge gate encourages the decoder to gener-
ate the event trigger “coup” due to the presence
of the “Attack” event type. Inspired by the
gating mechanisms from natural language gener-
ation (Wen et al., 2015; Tran and Nguyen, 2017),
the knowledge gate, gt, is given by

gt = σ (Wg,v[xt−1,vt] +Wg,sŝt) (7)

kt = gt � kt−1 (8)

where all W are learned parameters and [xt−1,vt]
is the concatenation of these two vectors. This gat-
ing step determines the amount of the entity and
event type features contained in kt−1 to carry to
the next step. With the updated kt, we compute
the decoder hidden state, st, as

st = ŝt + (ot � tanh (Ws,kkt)) (9)

where ot is the output gate of the LSTM and Ws,k

is a learned parameter.
Our next step is to generate the next word. The

model needs to produce named entities (e.g., “S.
B. Moyo” and “Robert Mugabe”) throughout the
generation process. These named entities tend to
occur rarely if at all in many datasets, including
ours. We overcome this issue by using the entity
embeddings from the topically related documents
as potential entities to incorporate in the descrip-
tion. We adopt a soft switch pointer network (See
et al., 2017), as our entity pointer network, to per-
form the selection of generating words or entities.

For our entity pointer network to predict the
next word, we first predict a vocabulary distribu-
tion, Pv = ψ (st,vt), where ψ(·) is a softmax out-
put layer. Pv(w) is the probability of generating
word w from the decoder vocabulary. Next, we
compute an entity context vector, ct, using a soft
attention mechanism:

γt,m = aentity (em, st,vt) (10)

εt,m = softmax (γt,m) (11)

ct =
M∑

m=1

εt,mem (12)

Here, aentity is yet another scoring function. We
use the scalars εt,m as our entity probability distri-
bution, Pe, where Pe (Em) = εt,m is the probabil-
ity of generating entity mention Em. We compute
the probability of generating a word from the vo-
cabulary, pgen, as

pgen = σ(w>c ct +w>s st +w>x xt−1 +w>v vt)
(13)

where all w are learned parameters. Finally, we
predict the probability of word w by

P (w) = pgenPv(w) + (1− pgen)Pe(w) (14)

and select the word of maximum probability. In
Equation 14, Pe(w) is 0 when w is not a named
entity. Likewise, Pv is 0 when w is an OOV word.
For the example in Figure 4, the vocabulary distri-
bution, Pv, has the word “from” as the most prob-
able word and the entity distribution, Pe, has the
entity “S. B. Moyo” as the most probable entity.
However, by combining these two distribution us-
ing pgen, the model switches to the entity distribu-
tion and correctly generates “S. B. Moyo”.

3 News Video Dataset

Current datasets for video description generation
focus on specific (Rohrbach et al., 2014) and gen-
eral (Chen and Dolan, 2011; Xu et al., 2016) do-
mains, but do not contain a large proportion of
descriptions with specific knowledge like named
entities as shown in Table 1. In our news video
dataset, the descriptions are replete with important
knowledge that is both necessary and challenging
to incorporate into the generated descriptions.

Our news video dataset contains AFP interna-
tional news videos from YouTube.6 These videos
are from October, 2015 to November, 2017 and
cover a variety of topics, such as protests, at-
tacks, natural disasters, trials, and political move-
ments. The videos are “on-the-scene” and con-
tain some depiction of the content in the descrip-
tion. For each video, we take the YouTube de-
scriptions given by AFP News as the ground-truth
descriptions we wish to generate. We collect the
tags and meta-data (e.g., upload date). We filter
videos by length, with a cutoff of 2 minutes, and
remove videos which are videographics or anima-
tions. For preprocessing, we tokenize each sen-
tence, remove punctuation characters other than

6https://www.youtube.com/user/AFP

https://www.youtube.com/user/AFP
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Dataset Domain #Videos #Sentences Vocab Size Named Entities/Sentence

TACos M-L (Rohrbach et al., 2014) Cooking 14,105 52,593 2,864 0.1×10−4

MSVD (Chen and Dolan, 2011) Multi-category 1,970 70,028† 13,010 0.4× 10−2

MSR-VTT-10K (Xu et al., 2016) 20 categories 10,000 200,000† 29,316 1.4× 10−1

News Video (Ours) News 2,883 3,302 9,179 2.1

Table 1: Comparison of our news video dataset to other datasets. † indicates that the dataset has multiple,
single-sentence reference descriptions for each video.

periods, commas, and apostrophes, and replace
numerical quantities and dates/times with special
tokens. We sample frames at a rate of 1fps.
We randomly select 400 videos for testing, 80 for
validation, and 2,403 for training. We make the
dataset publicly available: https://goo.gl/2jScKk.

4 Experiments

4.1 Model Comparisons
We test our method against the following base-
lines: Article-only. We use the summariza-
tion model of See et al. (2017) to generate
the description by summarizing the topically re-
lated documents. Video-only (VD). We train
a model that does not receive any background
knowledge and generates the description directly
from the video. VD with knowledge gate only
(VD+Knowledge Gate), VD with entity pointer
network only (VD+Entity Pointer), and no-
video (Entity Pointer+Knowledge Gate). These
test the effects of the knowledge gate, entity
pointer network, and video encoder in isolation.

Each model uses a cross entropy loss. Video-
based models are trained using the Adam op-
timizer (Kingma and Ba, 2015) with a learn-
ing rate of 0.0002 and have a hidden state size
of 512 as well as an embedding size of 300.
We use Google News pre-trained word embed-
dings (Mikolov et al., 2013) to initialize our
word embeddings and compute entity embed-
dings. For visual features, we use the Conv3-512
layer response of VGGNet (Simonyan and Zisser-
man, 2014) pre-trained on ImageNet (Deng et al.,
2009).

4.2 Evaluations
METEOR (Denkowski and Lavie, 2014) and
ROUGE-L (Lin, 2004) are adopted as metrics for
evaluating the generated descriptions. We choose
METEOR because we only have one reference
description per video and this metric accounts
for stemming and synonym matching. We also

use ROUGE-L for comparison to summarization
work. These capture the coherence and relevance
of the generated descriptions to the ground truth.

Generating these descriptions is concerned with
not only generating fluent text, but also the amount
of knowledge conveyed and the accuracy of the
knowledge elements (e.g., named entities or event
structures). Previous work in natural language
generation and summarization (Nenkova and Pas-
sonneau, 2004; Novikova et al., 2017; Wiseman
et al., 2017; Pasunuru and Bansal, 2018) scores
and/or assigns weights to overlapping text, salient
phrases, or information units (e.g., entity rela-
tions (Wiseman et al., 2017)). However, knowl-
edge elements cannot be simply represented as a
set of isolated information units since they are in-
herently interconnected through some structure.

Therefore, for this knowledge-centric genera-
tion task, we compute F1 scores on event and en-
tity extraction results from the generated descrip-
tions against the extraction results on the ground
truth. For entities, we measure the F1 score of the
named entities in the generated description com-
pared to the ground truth. For events, given a
generated description, ws, and the ground truth
description, wc, we extract a set of event struc-
tures, Ys and Yc, for both descriptions such that
Y = {(tk, rk,1, ak,1, ..., rk,m, ak,m)}Kk=1 where
there are K events extracted from the description,
tk is the kth event type, rk,m is the mth argument
role of tk, and ak,m is the mth argument of tk. For
the description in Figure 2a, one may obtain:

Y = {(Demonstrate,
Entity, “Pro-independence supporters”,

Place, “Barcelona”)}

Next, we form event type, argument role, and ar-
gument triples (tsk, r

s
k,m, a

s
k,m) and (tcj , r

c
j,m, a

c
j,m)

for each event structure in Ys and Yc, respectively.
We compute the F1 score of the triples, consid-
ering a triple correct if and only if it appears in

https://goo.gl/2jScKk
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the ground truth triples.7 This metric enables us
to evaluate how well a generated description cap-
tures the overall events, while still giving credit
to partially correct event structures. We compute
these F1 scores on 50 descriptions based on man-
ually annotated event structures. We also perform
automatic F1 score evaluation on the entire test
set using the entity and event extraction systems
of Pan et al. (2017) and Li et al. (2013), respec-
tively. The manual evaluations offer accurate com-
parisons and control for correctness, while the au-
tomated evaluations explore the viability of us-
ing automated IE tools to measure performance,
which is desirable for scaling to larger datasets for
which manual evaluations are too expensive.

5 Results and Analysis

The KaVD network outperforms almost all of the
baselines, as shown in Table 2, achieving statisti-
cally significant improvements in METEOR and
ROUGE-L w.r.t. all other models besides the no-
video model (p < 0.05).8 The additions of the
entity pointer network and knowledge gate are
complementary and greatly improve the entity in-
corporation performance, increasing the entity F1
scores by at least 6% in both the manual and auto-
matic evaluations. In Figure 5a, the entity pointer
network is able to incorporate the entity “Abdiaziz
Abu Musab”, who is a leader of the group respon-
sible for the attack. We find that the entity and
event type features from the knowledge gate help
generate more precise entities. However, noise in
the article retrieval process and entity extraction
system limits our entity incorporation capabilities,
since on average only 70.6% of the entities in the
ground truth description are retrieved from the ar-
ticles. Lastly, the video encoder helps generate the
correct events and offers qualitative benefits, such
as allowing the model to generate more concise
and diverse descriptions, though it negatively af-
fects the entity incorporation performance.

The video alone is insufficient to generate the
correct entities (Table 2). In Figure 5a, the VD
baseline generates the correct event, but generates
the incorrect location “Kabul”. We observe that
when the visual evidence is ambiguous, this model
may fail to generate the correct events and entities.
For example, if a video depicts the destruction of
buildings after a hurricane, then the VD baseline

7This criterion is used for computing precision and recall.
8Found via paired bootstrap resampling (Koehn, 2004).

may mistakenly describe the video as an explosion
since the visual evidence is similar.

The article-only baseline tends to mention the
correct entities as shown in Figure 5a, where the
description is generally on topic but provides some
irrelevant information. Indeed, this model can
generate descriptions unrelated to the video itself.
In Figure 5b, the article-only baseline’s descrip-
tion contains some correct entities (e.g., “Colom-
bia”), but is not focused on the announcement
depicted in the video. As See et al. (2017) dis-
cuss, this model can be more extractive than ab-
stractive, copying many sequences from the docu-
ments. This can lead to irrelevant descriptions as
the articles may not be specific to the video.

Our entity and event F1 score based metrics cor-
relate well with the correctness of the knowledge
conveyed in the generated description. The con-
sistency in model rankings between the manual
and automatic entity metrics shows the potential
of using automated entity extraction approaches
to evaluate with this metric. We observe discrep-
ancies between the manual and automatic event
metrics, in part, due to errors in the automated
extraction and the addition of more test points.
For example, in the generated sentence, “Hun-
dreds of people are to take to the streets of...”,
the event extraction system mistakenly assigns a
“Transport” event type instead of the correct
“Demonstrate” event type. In contrast, such
mistakes do not appear in the manual evaluations.

6 Related Work

Most previous video captioning efforts focus
on learning video representations through dif-
ferent encoding techniques (Venugopalan et al.,
2015a,b), using spatial or temporal attentions (Yao
et al., 2015; Pan et al., 2016; Yu et al., 2016; Zanfir
et al., 2016), using 3D CNN features (Tran et al.,
2015; Yao et al., 2015; Pan et al., 2016), or eas-
ing the learning process via multi-task learning
or reinforcement rewards (Pasunuru and Bansal,
2017a,b). Compared to other hierarchical mod-
els (Pan et al., 2016; Yu et al., 2016), each level
of our hierarchy encodes a different dimension of
the video, leveraging global temporal features and
local spatial features, which are shown to be ef-
fective for different tasks (Ballas et al., 2015; Xu
et al., 2015; Yu et al., 2017).

We move towards using datasets with captions
that have specific knowledge rather than generic
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Model METEOR ROUGE-L Entity F1 Auto-Entity F1 Event F1 Auto-Event F1

Article-only 8.6 13.2 8.7 8.5 1.9 3.6
VD 9.1 17.9 2.5 1.5 1.0 7.3
VD+Entity Pointer 9.7 18.1 15.3 13.6 5.7 7.0
VD+Knowledge Gate 9.8 18.5 10.2 10.7 6.7 8.3
Entity Pointer+Knowledge Gate 10.1 18.7 23.7 20.9 2.2 9.9
KaVD 10.2 18.9 22.1 19.7 9.6 8.9

Table 2: METEOR, ROUGE-L, and manual/automated entity (Entity F1/Auto-Entity F1) and event
(Event F1/Auto-Event F1) F1 score results of the baselines and KaVD network on our news video dataset.

b)

Title: Santos: 'Green light' for referendum on Colombia peace deal

a)

Title: Deadly Shabaab attack rocks Somali capital

Model Description
Article-only somali capital mogadishu on saturday. at least

276 people have died and the government news
agency sonna says only 111 of them have been
identified. a turkish military but instead wit-
nessed her burial. no group has yet said it
was behind on instead he attended her burial.
“anfa’a said she had spoken to her sister 20
minutes before on

VD a suicide bomber killed # people in a bus car-
rying # people killed in a bus in central kabul.

VD+Entity
Pointer

A suicide bomber killed # people were killed
in a bus near the northern city of Mogadishu,
police said.

VD
+Knowledge
Gate

At least # people were killed and # wounded
when a busy bus station in Kabul, killing at
least # people dead and others who died in the
rubble of the deadliest attack in the country.

EntityPointer
+Knowledge
Gate

At least # people were killed in a suicide car
bomb attack on a suicide car bomb attack on a
police vehicle in Mogadishu, police said.

KaVD A suicide bombing claimed by the Abdiaziz
Abu Musab group time killed # people in So-
malia’s capital Mogadishu, killing # people, of-
ficials said.

Model Description
Article-only colombia’s marxist rebels against her family.

and last year, when given the leg of helena
gonzlez’s nephew years ago is still fresh the as
pope francis arrived in colombia on wednesday
for a six-day the

VD president donald trump says that he will be
talks to be to be talks to be talks in the country’s
country to be talks, saying he says he would be
no evidence’s state and kerry says.

VD+Entity
Pointer

President Maduro says the FARC president
warns that the ceasefire to Prime Minister says
that he will be ready to help President Maduro
says that he is no evidence of President Bashar
talks in Bogota.

VD
+Knowledge
Gate

US Secretary of State John Kerry, who will not
any maintain in Syria, after a ceasefire in Syria,
saying that the United Nations says, it will not
to be into a speech in its interview.

EntityPointer
+Knowledge
Gate

Venezuela’s President FARC envoy to Colom-
bia is a definitive ceasefire in the FARC con-
flict, with FARC rebels, the FARC rebels.

KaVD Colombia’s government, signed the peace
agreement with the FARC peace accord in the
FARC rebels.

Figure 5: Comparison of generated descriptions. The KaVD network generates the correct entities and
correct events, while other models may contain some wrong entities or wrong events.

captions as in previous work (Chen and Dolan,
2011; Rohrbach et al., 2014; Xu et al., 2016).
There are efforts in image captioning to personal-
ize captions (Park et al., 2017), incorporate novel
objects into captions (Venugopalan et al., 2016),
and perform open domain captioning (Tran et al.,
2016). To the best of our knowledge, our dataset is
the first of its kind and offers challenges in entity
and activity recognition as well as the generation
low probability words. Datasets with captions rich
in knowledge elements, like those in our dataset,
take a necessary step towards increasing the utility
of video captioning systems.

We employ similar approaches to those in
automatic summarization, where pointer net-
works (Vinyals et al., 2015) and copy mecha-
nisms (Gu et al., 2016) are used (Gulcehre et al.,
2016; Nallapati et al., 2016; Miao and Blunsom,
2016; See et al., 2017), and natural language gen-
eration for dialogue systems (Wen et al., 2015;
Tran and Nguyen, 2017). The KaVD network
combines the copying capabilities of pointer net-
works (See et al., 2017) and semantic control of
gating mechanisms (Wen et al., 2015; Tran and
Nguyen, 2017) in a complementary fashion to ad-
dress a new, multi-modal task.
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7 Conclusions and Future Work

We collect a news video dataset with knowledge-
rich descriptions and present a multi-modal ap-
proach to this task that uses a novel Knowledge-
aware Video Description network, which can uti-
lize background knowledge mined from topically
related documents. We offer a new metric to mea-
sure a model’s ability to incorporate named enti-
ties and specific events into the descriptions. We
show the effectiveness of our approach and set a
new benchmark for this dataset. In future work,
we are increasing the size of dataset and exploring
other knowledge-centric metrics for this task.
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