
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3749–3760
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

3749

A Word-Complexity Lexicon and A Neural Readability Ranking Model
for Lexical Simplification

Mounica Maddela and Wei Xu
Department of Computer Science and Engineering

The Ohio State University
{maddela.4, xu.1265}@osu.edu

Abstract
Current lexical simplification approaches rely
heavily on heuristics and corpus level fea-
tures that do not always align with human
judgment. We create a human-rated word-
complexity lexicon of 15,000 English words
and propose a novel neural readability rank-
ing model with a Gaussian-based feature vec-
torization layer that utilizes these human rat-
ings to measure the complexity of any given
word or phrase. Our model performs bet-
ter than the state-of-the-art systems for dif-
ferent lexical simplification tasks and evalua-
tion datasets. Additionally, we also produce
SimplePPDB++, a lexical resource of over 10
million simplifying paraphrase rules, by ap-
plying our model to the Paraphrase Database
(PPDB).1

1 Introduction

Lexical simplification is an important subfield that
is concerned with the complexity of words or
phrases, and particularly how to measure read-
ability and reduce the complexity using alterna-
tive paraphrases. There are three major lexi-
cal simplification tasks which effectively resem-
ble a pipeline: (i) Complex Word Identifica-
tion (Paetzold and Specia, 2016a; Yimam et al.,
2017; Shardlow, 2013b) which involves identify-
ing complex words in the sentence; (ii) Substitu-
tion Generation (Glavaš and Štajner, 2015; Coster
and Kauchak, 2011) which involves finding alter-
natives to complex words or phrases; and (iii) Sub-
stitution Ranking (Specia et al., 2012) which in-
volves ranking the paraphrases by simplicity. Lex-
ical simplification also has practical real-world
uses, such as displaying alternative expressions
of complex words as reading assistance for chil-
dren (Kajiwara et al., 2013), non-native speakers

1The code and data are publicly available on the au-
thors’ homepages and GitHub: https://github.com/
mounicam/lexical_simplification.

(Petersen and Ostendorf, 2007; Pellow and Es-
kenazi, 2014), lay readers (Elhadad and Sutaria,
2007; Siddharthan and Katsos, 2010), or people
with reading disabilities (Rello et al., 2013).

Most current approaches to lexical simplifica-
tion heavily rely on corpus statistics and surface
level features, such as word length and corpus-
based word frequencies (read more in §5). Two
of the most commonly used assumptions are that
simple words are associated with shorter lengths
and higher frequencies in a corpus. However,
these assumptions are not always accurate and are
often the major source of errors in the simplifi-
cation pipeline (Shardlow, 2014). For instance,
the word foolishness is simpler than its meaning-
preserving substitution folly even though foolish-
ness is longer and less frequent in the Google
1T Ngram corpus (Brants and Franz, 2006). In
fact, we found that 21% of the 2272 meaning-
equivalent word pairs randomly sampled from
PPDB2 (Ganitkevitch et al., 2013) had the simpler
word longer than the complex word, while 14%
had the simpler word less frequent.

To alleviate these inevitable shortcomings of
corpus and surface-based methods, we explore a
simple but surprisingly unexplored idea – creating
an English lexicon of 15,000 words with word-
complexity ratings by humans. We also propose
a new neural readability ranking model with a
Gaussian-based feature vectorization layer, which
can effectively exploit these human ratings as well
as other numerical features to measure the com-
plexity of any given word or phrase (including
those outside the lexicon and/or with sentential
context). Our model significantly outperforms the
state-of-the-art on the benchmark SemEval-2012
evaluation for Substitution Ranking (Specia et al.,

2PPDB is a large paraphrase database derived from
static bilingual translation data available at: http://
paraphrase.org

https://github.com/mounicam/lexical_simplification
https://github.com/mounicam/lexical_simplification
http://paraphrase.org
http://paraphrase.org


3750

2012; Paetzold and Specia, 2017), with or without
using the manually created word-complexity lexi-
con, achieving a Pearson correlation of 0.714 and
0.702 respectively. We also apply the new rank-
ing model to identify lexical simplifications (e.g.,
commemorate→ celebrate) among the large num-
ber of paraphrase rules in PPDB with improved
accuracy compared to previous work for Substi-
tution Generation. At last, by utilizing the word-
complexity lexicon, we establish a new state-of-
the-art on two common test sets for Complex
Word Identification (Paetzold and Specia, 2016a;
Yimam et al., 2017). We make our code, the word-
complexity lexicon, and a lexical resource of over
10 million paraphrase rules with improved read-
ability scores (namely SimplePPDB++) all pub-
licly available.

2 Constructing A Word-Complexity
Lexicon with Human Judgments

We first constructed a lexicon of 15,000 English
words with word-complexity scores assessed by
human annotators.3 Despite the actual larger En-
glish vocabulary size, we found that rating the
most frequent 15,000 English words in Google
1T Ngram Corpus4 was effective for simplifica-
tion purposes (see experiments in §4) as our neural
ranking model (§3) can estimate the complexity of
any word or phrase even out-of-vocabulary.

We asked 11 non-native but fluent English
speakers to rate words on a 6-point Likert scale.
We found that an even number 6-point scale
worked better than a 5-point scale in a pilot exper-
iment with two annotators, as the 6-point scheme
allowed annotators to take a natural two-step ap-
proach: first determine whether a word is simple
or complex; then decide whether it is ‘very sim-
ple’ (or ‘very complex’), ‘simple’ (or ‘complex’),
or ‘moderately simple’ (or ‘moderately complex’).
For words with multiple capitalized versions (e.g.,
nature, Nature, NATURE), we displayed the most
frequent form to the annotators. We also asked
the annotators to indicate the words for which they
had trouble assessing their complexity due to am-
biguity, lack of context or any other reason. All the
annotators reported little difficulty, and explained
possible reasons such as that word bug is simple

3Download at https://github.com/mounicam/
lexical_simplification

4https://catalog.ldc.upenn.edu/
ldc2006t13

Word Avg A1 A2 A3 A4 A5
watch 1.0 1 1 1 1 1
muscles 1.6 2 1 2 2 1
sweatshirts 1.8 2 1 2 3 1
giant 2.0 2 3 1 1 3
pattern 2.4 2 3 2 3 2
Christianity 2.8 3 2 2 3 4
educational 3.2 3 3 3 3 4
revenue 3.6 4 4 3 3 4
cortex 4.2 4 4 4 4 5
crescent 4.6 5 5 5 5 3
Memorabilia 5.4 5 6 6 5 5
assay 5.8 6 6 6 5 6

Table 1: Word-Complexity lexicon consists of English
words and their complexity scores obtained by averaging over
human ratings. A1, A2, A3, A4 and A5 are ratings by five dif-
ferent annotators on a 6-point Likert scale (1 is the simplest
and 6 is the most complex).

regardless of its meaning as an insect in biology
or an error in computer software.5

With our hired annotators, we were able to have
most annotators complete half or the full list of
15,000 words for better consistency, and collected
between 5 and 7 ratings for each word. It took
most annotators about 2 to 2.5 hours to rate 1,000
words. Table 1 shows few examples from the lex-
icon along with their human ratings.

In order to assess the annotation quality, we
computed the Pearson correlation between each
annotator’s annotations and the average of the rest
of the annotations (Agirre et al., 2014). For our
final word-complexity lexicon, we took an aver-
age of the human ratings for each word, discard-
ing those (about 3%) that had a difference ≥ 2
from the mean of the rest of the ratings. The over-
all inter-annotator agreement improved from 0.55
to 0.64 after discarding the outlying ratings. For
the majority of the disagreements, the ratings of
one annotator and the mean of the rest were fairly
close: the difference is ≤ 0.5 for 47% of the an-
notations; ≤ 1.0 for 78% of the annotations; and
≤ 1.5 for 93% of the annotations on the 6-point
scale. We hired annotators of different native lan-
guages intentionally, which may have contributed
to the variance in the judgments.6 We leave further
investigation and possible crowdsourcing annota-
tion to future work.

5The word-happiness lexicon (Dodds et al., 2011) of
10,222 words was also similarly created by human rating on
the most frequent words without context or word-sense dis-
ambiguation.

6One recent work similarly observed lower inter-
annotator agreement among non-native speakers than native
speakers when asked to identify complex words in given text
paragraphs (Yimam et al., 2017).

https://github.com/mounicam/lexical_simplification
https://github.com/mounicam/lexical_simplification
https://catalog.ldc.upenn.edu/ldc2006t13
https://catalog.ldc.upenn.edu/ldc2006t13


3751

3 Neural Readability Ranking Model for
Words and Phrases

In order to predict the complexity of any given
word or phrase, within or outside the lexicon, we
propose a Neural Readability Ranking model that
can leverage the created word-complexity lexi-
con and take context (if available) into account to
further improve performance. Our model uses a
Gaussian-based vectorization layer to exploit nu-
merical features more effectively and can outper-
form the state-of-the-art approaches on multiple
lexical simplification tasks with or without the
word-complexity lexicon. We describe the general
model framework in this section, and task-specific
configurations in the experiment section (§4).

3.1 Neural Readability Ranker (NRR)
Given a pair of words/phrases 〈wa, wb〉 as input,
our model aims to output a real number that indi-
cates the relative complexity P (y|〈wa, wb〉) of wa

and wb. If the output value is negative, then wa is
simpler thanwb and vice versa. Figure 1 shows the
general architecture of our ranking model high-
lighting the three main components:

1. An input feature extraction layer (§3.2) that
creates lexical and corpus-based features for
each input f(wa) and f(wb), and pairwise
features f(〈wa, wb〉). We also inject the
word-complexity lexicon into the model as a
numerical feature plus a binary indicator.

2. A Gaussian-based feature vectorization
layer (§3.3) that converts each numerical fea-
ture, such as the lexicon scores and n-gram
probabilities, into a vector representation by
a series of Gaussian radial basis functions.

3. A feedforward neural network performing re-
gression with one task-specific output node
that adapts the model to different lexical sim-
plification tasks (§4).

Our model first processes each input word or
phrase in parallel, producing vectorized features.
All the features are then fed into a joint feedfor-
ward neural network.

3.2 Features
We use a combination of rating scores from the
word-complexity lexicon, lexical and corpus fea-
tures (Pavlick and Callison-Burch, 2016) and col-
locational features (Paetzold and Specia, 2017).

We inject the word-complexity lexicon into the
NRR model by adding two features for each in-
put word or phrase: a 0-1 binary feature represent-
ing the presence of a word (the longest word in
a multi-word phrase) in the lexicon, and the cor-
responding word complexity score. For out-of-
vocabulary words, both features have the value 0.
We back-off to the complexity score of the lemma-
tized word if applicable. We also extract the fol-
lowing features: phrase length in terms of words
and characters, number of syllables, frequency
with respect to Google Ngram corpus (Brants
and Franz, 2006), the relative frequency in Sim-
ple Wikipedia with respect to normal Wikipedia
(Pavlick and Nenkova, 2015) and ngram probabil-
ities from a 5-gram language model trained on the
SubIMDB corpus (Paetzold and Specia, 2016c),
which has been shown to work well for lexical
simplification. For a word w, we take language
model probabilities of all the possible n-grams
within the context window of 2 to the left and right
of w. When w is a multi-word phrase, we break w
into possible n-grams and average the probabilities
for a specific context window.

For an input pair of words/phrases 〈wa, wb〉,
we include individual features f(w1), f(w2) and
the differences f(wa)−f(wb). We also use pair-
wise features f(〈wa, wb〉) including cosine simi-
larity cos(−→w a,−→w b) and the difference −→w a−−→w b

between the word2vec (Mikolov et al., 2013) em-
bedding of the input words. The embeddings for
a mutli-word phrase are obtained by averaging the
embeddings of all the words in the phrase. We use
the 300-dimensional embeddings pretrained on the
Google News corpus, which is released as part of
the word2vec package.7

3.3 Vectorizing Numerical Features via
Gaussian Binning

Our model relies primarily on numerical features
as many previous approaches for lexical simplifi-
cation. Although these continuous features can be
directly fed into the network, it is helpful to exploit
fully the nuanced relatedness between different in-
tervals of feature values.

We adopt a smooth binning approach and
project each numerical feature into a vector rep-
resentation by applying multiple Gaussian radial
basis functions. For each feature f , we divide its

7https://code.google.com/archive/p/
word2vec/

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/


3752

Figure 1: The neural readability ranking (NRR) model.

value range [fmin, fmax] evenly into k bins and
place a Gaussian function for each bin with the
mean µj (j ∈ {1, 2, . . . , k}) at the center of the
bin and standard deviation σ. We specify σ as a
fraction γ of bin width:

σ =
1

k
(fmax − fmin) · γ (1)

where γ is a tunable hyperparameter in the model.
For a given feature value f(·), we then compute
the distance to each bin as follows:

dj(f(·)) = e−
(f(·)−µj)

2

2σ2 (2)

and normalize to project into a k-dimensional vec-
tor
−−→
f(·) = (d1, d2, . . . , dk).

We vectorize all the features except word2vec
vectors,

−−−→
f(wa),

−−−→
f(wb),

−−−−−−−−−→
f(wa)−f(wb), and

−−−−−−−→
f(〈wa, wb〉), then concatenate them as inputs. Fig-
ure 2 presents a motivating t-SNE visualization of
the word-complexity scores from the lexicon after
the vectorization in our NRR model, where differ-
ent feature value ranges are gathered together with
some distances in between.

3.4 Training and Implementation Details
We use PyTorch framework to implement the
NRR model, which consists of an input layer, three
hidden layers with eight nodes in each layer and
the tanh activation function, and a single node lin-
ear output layer. The training objective is to mini-
mize the Mean Squared Error (MSE):

L(θ) =
1

m

m∑
i=1

(yi − ŷi)2 (3)

where yi and ŷi are the true and predicted rela-
tive complexity scores of 〈wa, wb〉 which can be
configured accordingly for different lexical sim-
plification tasks and datasets, m is the number
of training examples, and θ is the set of parame-
ters of the NRR model. We use Adam algorithm
(Kingma and Ba, 2014) for optimization and also
apply a dropout of 0.2 to prevent overfitting. We
set the rate to 0.0005 and 0.001 for experiments
in (§4.1) and (§4.2) respectively. For Gaussian
binning layer, we set the number of bins k to 10
and γ to 0.2 without extensive parameter tuning.
For each experiment,we report results with 100
epochs.

Figure 2: t-SNE visualization of the complexity scores,
ranging between 1.0 and 5.0, of 300 random words from the
word-complexity lexicon vectorized into 10-dimensional rep-
resentations by applying Gaussian radial basis functions.



3753

4 Lexical Simplification Applications

As the lexical simplification research field tradi-
tionally studies multiple sub-tasks and datasets,
we present a series of experiments to demonstrate
the effectiveness of our newly created lexicon and
neural readability ranking (NRR) model.

4.1 Substitution Ranking
Given an instance consisting of a target complex
word in a sentence and a set of candidate substi-
tutions, the goal of the Substitution Ranking task
is to rank the candidates in the order of their sim-
plicity. In this section, we show that our proposed
NRR model outperforms the state-of-the-art neu-
ral model on this task, with or without using the
word-complexity lexicon.

Data. We use the dataset from the English Lex-
ical Simplification shared-task at SemEval 2012
(Specia et al., 2012) for evaluation. The training
and test sets consist of 300 and 1,710 instances,
respectively, with a total of 201 target words (all
single word, mostly polysemous) and each in 10
different sentences. One example of such instance
contains a target complex word in context:

When you think about it, that’s pretty terrible.

and a set of candidate substitutions {bad, awful,
deplorable}. Each instance contains at least 2 and
an average of 5 candidates to be ranked. There are
a total of 10034 candidates in the dataset, 88.5%
of which are covered by our word-complexity
lexicon and 9.9% are multi-word phrases (3438
unique candidates with 81.8% in-vocabulary and
20.2% multi-word).

Task-specific setup of the NRR model. We
train the NRR model with every pair of candi-
dates 〈ca, cb〉 in a candidate set as the input, and
the difference of their ranks ra−rb as the ground-
truth label. For each such pair, we also include
another training instance with 〈cb, ca〉 as the in-
put and rb − ra as the label. Given a test in-
stance with candidate set C, we rank the can-
didates as follows: for every pair of candidates
〈ca, cb〉, the model predicts the relative complex-
ity score S(ca, cb); we then compute a single score
R(ca) =

∑
ca 6=cb∈C S(ca, cb) for each candidate

by aggregating pairwise scores and rank the can-
didates in the increasing order of these scores.

Comparison to existing methods. We compare
with the state-of-the-art neural model (Paetzold

P@1 Pearson
Biran et al. (2011) 51.3 0.505
Jauhar & Specia (2012) 60.2 0.575
Kajiwara et al. (2013) 60.4 0.649
Horn et al. (2014) 63.9 0.673
Glavaš & Štajner (2015) 63.2 0.644
Boundary Ranker 65.3 0.677
Paetzold & Specia (2017) 65.6 0.679
NRRall 65.4 0.682
NRRall+binning 66.6 0.702*
NRRall+binning+WC 67.3* 0.714*

Table 2: Substitution Ranking evaluation on English Lexi-
cal Simplification shared-task of SemEval 2012. P@1 and
Pearson correlation of our neural readability ranking (NRR)
model compared to the state-of-the-art neural model (Paet-
zold and Specia, 2017) and other methods. ∗ indicates statis-
tical significance (p < 0.05) compared to the best performing
baseline (Paetzold and Specia, 2017).

and Specia, 2017) for substitution ranking with the
best reported results on the SemEval 2012 dataset.
Our baselines also include several other existing
methods: Biran et al. (2011), Kajiwara et al.
(2013), and Glavaš & Štajner (2015), which use
carefully designed heuristic scoring functions to
combine various information such as corpus statis-
tics and semantic similarity measures from Word-
Net; Horn et al. (2014) and the Boundary Ranker
(Paetzold and Specia, 2015), which respectively
use a supervised SVM ranking model and pairwise
linear classification model with various features.
All of these methods have been implemented as
part of the LEXenstein toolkit (Paetzold and Spe-
cia, 2015), which we use for the experimental
comparisons here. In addition, we also compare to
the best system (Jauhar and Specia, 2012) among
participants at SemEval 2012, which used SVM-
based ranking.

Results. Table 2 compares the performances of
our NRR model to the state-of-the-art results re-
ported by Paetzold and Specia (2017). We use pre-
cision of the simplest candidate (P@1) and Pear-
son correlation to measure performance. P@1 is
equivalent to TRank (Specia et al., 2012), the of-
ficial metric for the SemEval 2012 English Lexi-
cal Simplification task. While P@1 captures the
practical utility of an approach, Pearson correla-
tion indicates how well the system’s rankings cor-
relate with human judgment. We train our NRR
model with all the features (NRRall) mentioned
in §3.2 except the word2vec embedding features
to avoid overfitting on the small training set. Our
full model (NRRall+binning+WC) exhibits a statis-
tically significant improvement over the state-of-



3754

paraphrases of ‘modification’ ranked by simplicity
SimplePPDB tweak, modify, process, variable, layout
SimplePPDB++ change, adjustment, amendment, shift,

difference

paraphrases of ‘aggregation’
SimplePPDB pod, swarm, node, clump, pool
SimplePPDB++ cluster, pool, collection, addition, grouping

paraphrases of ‘of transnational corporation’
SimplePPDB of corporation, by corporation, of enter-

prise, of tncs, of business
SimplePPDB++ of business, of firm, of corporation, of

company, of enterprise

paraphrases of ‘should reject’
SimplePPDB refuse, discard, repudiate, shun, dismiss
SimplePPDB++ vote against, set aside, throw out, say no

to, turn away

Table 3: SimplePPDB++ includes lexical and phrasal para-
phrases with improved readability ranking scores by our
NRRall+binning+WC model. Shown are the top 5 ranked
simplifications according to SimplePPDB++ for several input
words/phrases, in comparison to the previous work of Sim-
plePPDB (Pavlick and Callison-Burch, 2016).

the-art for both measures. We use paired bootstrap
test (Berg-Kirkpatrick et al., 2012; Efron and Tib-
shirani, 1993) as it can be applied to any perfor-
mance metric. We also conducted ablation experi-
ments to show the effectiveness of the Gaussian-
based feature vectorization layer (+binning) and
the word-complexity lexicon (+WC).

4.2 SimplePPDB++

We also can apply our NRR model to rank the
lexical and phrasal paraphrase rules in the Para-
phrase Database (PPDB) (Pavlick et al., 2015),
and identify good simplifications (see examples
in Table 3). The resulting lexical resource, Sim-
plePPDB++, contains all 13.1 million lexical and
phrasal paraphrase rules in the XL version of
PPDB 2.0 with readability scores in ‘simplifying’,
‘complicating’, or ‘nonsense/no-difference’ cate-
gories, allowing flexible trade-off between high-
quality and high-coverage paraphrases. In this
section, we show the effectiveness of the NRR
model we used to create SimplePPDB++ by com-
paring with the previous version of SimplePPDB
(Pavlick and Callison-Burch, 2016) which used a
three-way logistic regression classifier. In next
section, we demonstrate the utility of SimpleP-
PDB++ for the Substitution Generation task.

Task-specific setup of NRR model. We use the
same manually labeled data of 11,829 paraphrase
rules as SimplePPDB for training and testing,
of which 26.5% labeled as ‘simplifying’, 26.5%

Acc. P+1 P−1

Google Ngram Frequency 49.4 53.7 54.0
Number of Syllables 50.1 53.8 53.3
Character & Word Length 56.2 55.7 56.1
W2V 60.4 54.9 53.1
SimplePPDB 62.1 57.6 57.8
NRRall 59.4 61.8 57.7
NRRall+binning 64.1 62.1 59.8
NRRall+binning+WC 65.3* 65.0* 61.8*

Table 4: Cross-validation accuracy and precision of our neu-
ral readability ranking (NRR) model used to create SimpleP-
PDB++, in comparison to the SimplePPDB and other base-
lines. P+1 stands for the precision of ‘simplifying’ para-
phrase rules and P−1 for the precision of ‘complicating’ rules.
* indicates statistical significance (p < 0.05) compared to the
best performing baseline (Pavlick and Callison-Burch, 2016).

as ‘complicating’, and 47% as ‘nonsense/no-
difference’. We adapt our NRR model to perform
the three-way classification by treating it as a re-
gression problem. During training, we specify the
ground truth label as follows: y = -1 if the para-
phrase rule belongs to the ‘complicating’ class, y
= +1 if the rule belongs to the ‘simplifying’class,
and y = 0 otherwise. For predicting, the network
produces a single real-value output ŷ ∈ [−1, 1]
which is then mapped to three-class labels based
on the value ranges for evaluation. The thresholds
for the value ranges are -0.4 and 0.4 chosen by
cross-validation.

Comparison to existing methods. We compare
our neural readability ranking (NRR) model used
to create the SimplePPDB++ against SimpleP-
PDB, which uses a multi-class logistic regression
model. We also use several other baselines, in-
cluding W2V which uses logistic regression with
only word2vec embedding features.

Results. Following the evaluation setup in pre-
vious work (Pavlick and Callison-Burch, 2016),
we compare accuracy and precision by 10-fold
cross-validation. Folds are constructed in such
a way that the training and test vocabularies are
disjoint. Table 4 shows the performance of our
model compared to SimplePPDB and other base-
lines. We use all the features (NRRall) in §3.2
except for the context features as we are classi-
fying paraphrase rules in PPDB that come with
no context. SimplePPDB used the same features
plus additional discrete features, such as POS tags,
character unigrams and bigrams. Our neural read-
ability ranking model alone with Gaussian bin-
ning (NRRall+binning) achieves better accuracy
and precision while using less features. Leverag-



3755

ing the lexicon (NRRall+binning+WC) shows sta-
tistically significant improvements over SimpleP-
PDB rankings based on the paired bootstrap test.
The accuracy increases by 3.2 points, the precision
for ‘simplifying’ class improves by 7.4 points and
the precision for ‘complicating’ class improves by
4.0 points.

4.3 Substitution Generation

Substitution Generation is arguably the most chal-
lenging research problem in lexical simplification,
which involves producing candidate substitutions
for each target complex word/phrase, followed by
the substitution ranking. The key focus is to not
only have better rankings, but more importantly,
to have a larger number of simplifying substitu-
tions generated. This is a more realistic evalua-
tion to demonstrate the utility of SimplePPDB++
and the effectiveness of the NRR ranking model
we used to create it, and how likely such lexical
resources can benefit developing end-to-end sen-
tence simplification system (Narayan and Gardent,
2016; Zhang and Lapata, 2017) in future work.

Data. We use the dataset from (Pavlick and
Callison-Burch, 2016), which contains 100 unique
target words/phrases sampled from the Newsela
Simplification Corpus (Xu et al., 2015) of news ar-
ticles, and follow the same evaluation procedure.
We ask two annotators to evaluate whether the
generated substitutions are good simplifications.

Comparison to existing methods. We evaluate
the correctness of the substitutions generated by
SimplePPDB++ in comparison to several exist-
ing methods: Glavaš (Glavaš and Štajner, 2015),
Kauchak (Coster and Kauchak, 2011), WordNet
Generator (Devlin and Tait, 1998; Carroll et al.,
1999), and SimplePPDB (Pavlick and Callison-
Burch, 2016). Glavaš obtains candidates with the
highest similarity scores in the GloVe (Penning-
ton et al., 2014) word vector space. Kauchak’s
generator is based on Simple Wikipedia and nor-
mal Wikipedia parallel corpus and automatic word
alignment. WordNet-based generator simply uses
the synonyms of word in WordNet (Miller, 1995).
For all the existing methods, we report the re-
sults based on the implementations in (Pavlick
and Callison-Burch, 2016), which used SVM-
based ranking. For both SimplePPDB and Sim-
plePPDB++, extracted candidates are high quality
paraphrase rules (quality score≥3.5 for words and

#PPs MAP P@1
Glavaš(n=95) — 22.8 13.5
WordNet(n=82) 6.63 62.2 50.6
Kauchak(n=48) 4.39 76.4† 68.9
SimplePPDB(n=100) 8.77 67.8 78.0
SimplePPDB++(n=100) 9.52 69.1 80.2

Table 5: Substitution Generation evaluation with Mean Av-
erage Precision, Precision@1 and the average number of
paraphrases generated per target for each method. n is the
number of target complex words/phrases for which the model
generated > 0 candidates. Kauchak† has an advantage on
MAP because it generates the least number of candidates.
Glavaš is marked as ‘-’ because it can technically generate
as many words/phrases as are in the vocabulary.

≥4.0 for phrases) belonging to the same syntac-
tic category as target word according to PPDB 2.0
(Pavlick et al., 2015).

Results. Table 5 shows the comparison of Sim-
plePPDB and SimplePPDB++ on the number of
substitutions generated for each target, the mean
average precision and precision@1 for the final
ranked list of candidate substitutions. This is a fair
and direct comparison between SimplePPDB++
and SimplePPDB, as both methods have access
to the same paraphrase rules in PPDB as poten-
tial candidates. The better NRR model we used in
creating SimplePPDB++ allows improved selec-
tions and rankings of simplifying paraphrase rules
than the previous version of SimplePPDB. As an
additional reference, we also include the mea-
surements for the other existing methods based
on (Pavlick and Callison-Burch, 2016), which, by
evaluation design, are focused on the comparison
of precision while PPDB has full coverage.

4.4 Complex Word Identification
Complex Word Identification (CWI) identifies the
difficult words in a sentence that need to be sim-
plified. According to Shardlow (2014), this step
can improve the simplification system by avoiding
mistakes such as overlooking challenging words
or oversimplifying simple words. In this section,
we demonstrate how our word-complexity lexicon
helps with the CWI task by injecting human rat-
ings into the state-of-the-art systems.

Data. The task is to predict whether a target
word/phrase in a sentence is ‘simple’ or ‘com-
plex’, and an example instance is as follows:

Nine people were killed in the bombardment.

We conduct experiments on two datasets: (i) Se-
meval 2016 CWI shared-task dataset (Paetzold



3756

CWI SemEval 2016 CWIG3G2 2018
G-score F-score Accuracy G-score F-score Accuracy

Length 47.8 10.7 33.2 70.8 65.9 67.7
Senses 57.9 12.5 43.6 67.7 62.3 54.1
SimpleWiki 69.7 16.2 58.3 73.1 66.3 61.6
NearestCentroid 66.1 14.8 53.6 75.1 66.6 76.7
SV000gg 77.3 24.3 77.6 74.9 73.8 78.7
WC-only 68.5 30.5 87.7 71.1 67.5 69.8
NearestCentroid+WC 70.2 16.6 61.8 77.3 68.8 78.1
SV000gg+WC 78.1 26.3 80.0 75.4 74.8 80.2

Table 6: Evaluation on two datasets for English complex word identification. Our approaches that utilize the word-complexity
lexicon (WC) improve upon the nearest centroid (Yimam et al., 2017) and SV000gg (Paetzold and Specia, 2016b) systems.
The best performance figure of each column is denoted in bold typeface and the second best is denoted by an underline.

CWI SemEval 2016 total (IV%) unique (IV%)
simple 85621 (94.7%) 14129 (77.6%)

complex 4837 (57.4%) 3836 (54.8%)
CWIG3G2 total (IV%) unique (IV%)

simple 20451 (89.8%) 5576 (82.1%)
complex 14428 (81.1%) 8376 (76.0%)

Table 7: Statistics of CWI datasets – total number of target
words/phrases, number of unique targets, and in-vocabulary
(IV) ratio with respect to our word-complexity lexicon.

and Specia, 2016a), which has been widely used
for evaluating CWI systems and contains 2,237
training and 88,221 test instances from Wikipedia;
and (ii) CWIG3G2 dataset (Yimam et al., 2017),
which is also known as English monolingual CWI
2018 shared-task dataset (Yimam et al., 2018) and
comprises of 27,299 training, 3,328 development
and 4,252 test instances from Wikipedia and news
articles. Table 7 shows the coverage of our word-
complexity lexicon over the two CWI datasets.

Comparison to existing methods. We consider
two state-of-the-art CWI systems: (i) the near-
est centroid classifier proposed in (Yimam et al.,
2017), which uses phrase length, number of
senses, POS tags, word2vec cosine similarities, n-
gram frequency in Simple Wikipedia corpus and
Google 1T corpus as features; and (ii) SV000gg
(Paetzold and Specia, 2016b) which is an ensem-
ble of binary classifiers trained with a combina-
tion of lexical, morphological, collocational, and
semantic features. The latter is the best perform-
ing system on the Semeval 2016 CWI dataset.
We also compare to threshold-based baselines that
use word length, number of word senses and fre-
quency in the Simple Wikipedia.

Utilizing the word-complexity lexicon. We en-
hance the SV000gg and the nearest centroid clas-
sifier by incorporating the word-complexity lex-
icon as additional features as described in §3.2.

We added our modifications to the implementa-
tion of SV000gg in the LEXenstein toolkit, and
used our own implementation for the nearest cen-
troid classifier. Additionally, to evaluate the word-
complexity lexicon in isolation, we train a deci-
sion tree classifier with only human ratings as in-
put (WC-only), which is equivalent to learning a
threshold over the human ratings.

Results. We compare our enhanced approaches
(SV000gg+WC and NC+WC) and lexicon only
approach (WC-only), with the state-of-the-art and
baseline threshold-based methods. For measuring
performance, we use F-score and accuracy as well
as G-score, the harmonic mean of accuracy and re-
call. G-score is the official metric of the CWI task
of Semeval 2016. Table 6 shows that the word-
complexity lexicon improves the performance of
SV000gg and the nearest centroid classifier in all
the three metrics. The improvements are statisti-
cally significant according to the paired bootstrap
test with p < 0.01. The word-complexity lexi-
con alone (WC-only) performs satisfactorily on
the CWIG3G2 dataset, which effectively is a sim-
ple table look-up approach with extreme time and
space efficiency. For CWI SemEval 2016 dataset,
WC-only approach gives the best accuracy and F-
score, though this can be attributed to the skewed
distribution of dataset (only 5% of the test in-
stances are ‘complex’).

5 Related Work

Lexical simplification: Prior work on lexical
simplification depends on lexical and corpus-
based features to assess word complexity. For
complex word identification, there are broadly
two lines of research: learning a frequency-based
threshold over a large corpus (Shardlow, 2013b)
or training an ensemble of classifiers over a com-
bination of lexical and language model features



3757

(Shardlow, 2013a; Paetzold and Specia, 2016a;
Yimam et al., 2017; Kriz et al., 2018). Substitu-
tion ranking also follows similar trend. Biran et al.
(2011) and Bott et al. (2012) employed simplicity
measures based on word length and word frequen-
cies from Wikipedia and Simple Wikipedia. Ka-
jiwara et al. (2013) combined WordNet similar-
ity measures with Simple Wikipedia frequencies.
Glavaš and Štajner (2015) averaged the rankings
produced by a collection of frequency, language
model and semantic similarity features. Horn et
al. (2014) trained an SVM classifier over corpus-
based features.

Only recently, researchers started to apply neu-
ral networks to simplification tasks. To the best
of our knowledge, the work by Paetzold and Spe-
cia (2017) is the first neural model for lexical sim-
plification which uses a feedforward network with
language model probability features. Our NRR
model is the first pairwise neural ranking model
to vectorize numeric features and to embed hu-
man judgments using a word-complexity lexicon
of 15,000 English words.

Besides lexical simplification, another line of
relevant research is sentence simplification that
uses statistical or neural machine translation (MT)
approaches (Xu et al., 2016; Nisioi et al., 2017;
Zhang and Lapata, 2017; Vu et al., 2018; Guo
et al., 2018). It has shown possible to integrate
paraphrase rules in PPDB into statistical MT for
sentence simplification (Xu et al., 2016) and bilin-
gual translation (Mehdizadeh Seraj et al., 2015),
while how to inject SimplePPDB++ into neural
MT remains an open research question.

Lexica for simplification: There have been pre-
vious attempts to use manually created lexica for
simplification. For example, Elhadad and Sutaria
(2007) used UMLS lexicon (Bodenreider, 2007),
a repository of technical medical terms; Ehara
et al. (2010) asked non-native speakers to an-
swer multiple-choice questions corresponding to
12,000 English words to study each user’s famil-
iarity of vocabulary; Kaji et al. (2012) and Ka-
jiwara et al. (2013) used a dictionary of 5,404
Japanese words based on the elementary school
textbooks; Xu et al. (2016) used a list of 3,000
most common English words; Lee and Yeung
(2018) used an ensemble of vocabulary lists of
different complexity levels. However, to the best
of our knowledge, there is no previous study on
manually building a large word-complexity lexi-

con with human judgments that has shown sub-
stantial improvements on automatic simplifica-
tion systems. We were encouraged by the suc-
cess of the word-emotion lexicon (Mohammad
and Turney, 2013) and the word-happiness lexicon
(Dodds et al., 2011, 2015).

Vectorizing features: Feature binning is a stan-
dard feature engineering and data processing
method to discretize continuous values, more
commonly used in non-neural machine learning
models. Our work is largely inspired by re-
cent works on entity linking that discussed feature
quantization for neural models (Sil et al., 2017;
Liu et al., 2016) and neural dependency parsing
with embeddings of POS tags as features (Chen
and Manning, 2014).

6 Conclusion

We proposed a new neural readability ranking
model and showed significant performance im-
provement over the state-of-the-art on various lex-
ical simplification tasks. We release a manually
constructed word-complexity lexicon of 15,000
English words and an automatically constructed
lexical resource, SimplePPDB++, of over 10 mil-
lion paraphrase rules with quality and simplicity
ratings. For future work, we would like to ex-
tend our lexicon to cover specific domains, differ-
ent target users and languages.

Acknowledgments

We thank anonymous reviewers for their thought-
ful comments. We thank Avirup Sil and Anasta-
sios Sidiropoulos for valuable discussions, Sanja
Štajner and Seid Muhie Yimam for sharing their
code and data. We also thank the annotators:
Jeniya Tabassum, Ashutosh Baheti, Wuwei Lan,
Fan Bai, Alexander Konovalov, Chaitanya Kulka-
rni, Shuaichen Chang, Jayavardhan Reddy, Ab-
hishek Kumar and Shreejit Gangadharan.

This material is based on research sponsored
by the NSF under grants IIS-1822754 and IIS-
1755898. The views and conclusions contained in
this publication are those of the authors and should
not be interpreted as representing official policies
or endorsements of the NSF or the U.S. Govern-
ment.



3758

References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel

Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Wiebe
Janyce. 2014. SemEval-2014 Task 10: Multilingual
Semantic Textual Similarity. In Proceedings of the
8th International Workshop on Semantic Evaluation
(SemEval@COLING).

Taylor Berg-Kirkpatrick, David Burkett, and Dan
Klein. 2012. An Empirical Investigation of Statisti-
cal Significance in NLP. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL).

Or Biran, Samuel Brody, and Noemie Elhadad. 2011.
Putting it Simply: A Context-Aware Approach to
Lexical Simplification. In Proceedings of the 49th
Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies
(ACL-HLT).

Olivier Bodenreider. 2007. The Unified Medical Lan-
guage System (UMLS): integrating biomedical ter-
minology. In Proceedings of the Workshop on Bio-
logical, Translational, and Clinical Language Pro-
cessing (BioNLP).

Stefan Bott, Luz Rello, Drndarvic Biljang, and Saiggon
Horacio. 2012. Can Spanish Be Simpler? LexSiS:
Lexical Simplification for Spanish. Proceedings of
the International Conference on Computational Lin-
guistics (COLING).

Thorsten Brants and Alex Franz. 2006. Web 1T 5-gram
version 1. Linguistic Data Consortium (LDC).

John Carroll, Guido Minnen, Darren Pearce, Yvonne
Canning, Siobhan Devlin, and John Tait. 1999. Sim-
plifying Text for Language-Impaired Readers. In
Proceedings of the 9th Conference of European
chapter of the Association for Computational Lin-
guistics (EACL).

Danqi Chen and Christopher Manning. 2014. A Fast
and Accurate Dependency Parser using Neural Net-
works. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP).

William Coster and David Kauchak. 2011. Learning
to Simplify Sentences using Wikipedia. In Proceed-
ings of the Workshop on Monolingual Text-To-Text
Generation (MTTG@ACL).

Siobhan Devlin and John Tait. 1998. The use of a psy-
cholinguistic database in the simplification of text
for aphasic readers. Linguistic Databases.

P. S. Dodds, E. M. Clark, S. Desu, M. R. Frank, A. J.
Reagan, J. R. Williams, L. Mitchell, K. D. Harris,
I. M. Kloumann, J. P. Bagrow, K. Megerdoomian,
M. T. McMahon, B. F. Tivnan, and C. M. Danforth.

2015. Human language reveals a universal positiv-
ity bias. Proceedings of the National Academy of
Sciences (PNAS), 112(8):2389–2394.

Peter Sheridan Dodds, Kameron Decker Harris, Is-
abel M. Kloumann, Catherine A. Bliss, and Christo-
pher M. Danforth. 2011. Temporal patterns of hap-
piness and information in a global social network:
Hedonometrics and Twitter. Public Library of Sci-
ence (PLOS ONE), 6(12):1–1.

Bradley Efron and Robert J. Tibshirani. 1993. An In-
troduction to the Bootstrap. Chapman & Hall/CRC.

Yo Ehara, Nobuyuki Shimizu, Takashi Ninomiya, and
Hiroshi Nakagawa. 2010. Personalized reading sup-
port for second-language web documents by collec-
tive intelligence. In Proceedings of the 15th Inter-
national Conference on Intelligent User Interfaces
(IUI).

Noemie Elhadad and Komal Sutaria. 2007. Mining
a Lexicon of Technical Terms and Lay Equiva-
lents. In Proceedings of the Workshop on Biologi-
cal, Translational, and Clinical Language Process-
ing (BioNLP).

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The paraphrase
database. In Proceedings of the Conference of
the North American Chapter of the Association for
Computational Linguistics (NAACL).

Goran Glavaš and Sanja Štajner. 2015. Simplify-
ing Lexical Simplification: Do We Need Simplified
Corpora? In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (ACL-IJCNLP).

Han Guo, Ramakanth Pasunuru, and Mohit Bansal.
2018. Dynamic multi-level multi-task learning for
sentence simplification. In Proceedings of the 27th
International Conference on Computational Lin-
guistics (COLING).

Colby Horn, Cathryn Manduca, and David Kauchak.
2014. Learning a Lexical Simplifier Using
Wikipedia. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (ACL).

Sujay Kumar Jauhar and Lucia Specia. 2012. UOW-
SHEF: Simplex - Lexical Simplicity Ranking based
on Contextual and Psycholinguistic features. In Pro-
ceedings of the 6th International Workshop on Se-
mantic Evaluation (SemEval@NAACL).

Nobuhiro Kaji, Daisuke Kawahara, Sadao Kurohash,
and Satoshi Sato. 2012. Verb Paraphrase based on
Case Frame Alignment. In Proceedings of the 40th
Annual Meeting of the Association for Computa-
tional Linguistics (ACL).



3759

Tomoyuki Kajiwara, Hiroshi Matsumoto, and
Kazuhide Yamamoto. 2013. Selecting Proper
Lexical Paraphrase for Children. In Proceedings of
the 25th Conference on Computational Linguistics
and Speech Processing (ROCLING).

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization. In Proceed-
ings of the 3rd International Conference for Learn-
ing Representations (ICLR).

Reno Kriz, Eleni Miltsakaki, Marianna Apidianaki,
and Chris Callison-Burch. 2018. Simplification us-
ing paraphrases and context-based lexical substitu-
tion. In The 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics (NAACL).

John Lee and Chak Yan Yeung. 2018. Personalizing
lexical simplification. In Proceedings of the 27th In-
ternational Conference on Computational Linguis-
tics (COLING).

Dan Liu, Wei Lin, Shiliang Zhang, Si Wei, and Hui
Jiang. 2016. Neural Networks Models for En-
tity Discovery and Linking. Computing Research
Repository (CoRR), 1611.03558.

Ramtin Mehdizadeh Seraj, Maryam Siahbani, and
Anoop Sarkar. 2015. Improving Statistical Ma-
chine Translation with a Multilingual Paraphrase
Database. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Repre-
sentations in Vector Space. Proceedings of Work-
shop at International Conference on Learning Rep-
resentations (ICLR).

George A. Miller. 1995. Wordnet: A Lexical
Database for English. Communications of the ACM,
38(11):39–41.

Saif M. Mohammad and Peter D. Turney. 2013.
Crowdsourcing a Word-Emotion Association Lex-
icon. Computational Intelligence, 29(3):436–465.

Shashi Narayan and Claire Gardent. 2016. Unsuper-
vised Sentence Simplification Using Deep Seman-
tics. In Proceedings of the 9th International Confer-
ence on Natural Language Generation (INLG).

Sergiu Nisioi, Sanja Štajner, Simone Paolo Ponzetto,
and Liviu P. Dinu. 2017. Exploring Neural Text
Simplification Models. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics (ACL).

Gustavo Paetzold and Lucia Specia. 2015. LEX-
enstein: A Framework for Lexical Simplification.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing: System Demonstrations (ACL-
IJCNLP).

Gustavo Paetzold and Lucia Specia. 2016a. SemEval
2016 Task 11: Complex Word Identification. In
Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval@NAACL).

Gustavo Paetzold and Lucia Specia. 2016b. SV000gg
at Semeval-2016 Task 11: Heavy Gauge Complex
Word Identification with System Voting. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval@NAACL).

Gustavo Paetzold and Lucia Specia. 2017. Lexical
Simplification with Neural Ranking. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics
(EACL).

Gustavo Henrique Paetzold and Lucia Specia. 2016c.
Unsupervised Lexical Simplification for Non-Native
Speakers. In Proceedings of the 30th Association
for the Advancement of Artificial Intelligence Con-
ference on Artificial Intelligence (AAAI).

Ellie Pavlick and Chris Callison-Burch. 2016. Simple
PPDB: A paraphrase database for simplification. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (ACL).

Ellie Pavlick and Ani Nenkova. 2015. Inducing Lex-
ical Style Properties for Paraphrase and Genre Dif-
ferentiation. In Proceedings of the Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT).

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevich,
and Chris Callison-Burch Ben Van Durme. 2015.
PPDB 2.0: Better paraphrase ranking, fine-grained
entailment relations, word embeddings, and style
classification. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics (ACL).

David Pellow and Maxine Eskenazi. 2014. An Open
Corpus of Everyday Documents for Simplification
Tasks. In Proceedings of the 3rd Workshop on Pre-
dicting and Improving Text Readability for Target
Reader Populations (PITR@EACL).

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vectors for
Word Representation. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Sarah E Petersen and Mari Ostendorf. 2007. Text Sim-
plification for Language Learners: A Corpus Anal-
ysis. In In Proceedings of Workshop on Speech and
Language Technology in Education (SLaTE).

Luz Rello, Ricardo Baeza-Yates, and Horacio Sag-
gion. 2013. The Impact of Lexical Simplification
by Verbal Paraphrases for People with and without
Dyslexia. In Proceedings of the 14th International
Conference on Computational Linguistics and Intel-
ligent Text Processing (CICLing).



3760

Matthew Shardlow. 2013a. A Comparison of Tech-
niques to Automatically Identify Complex Words.
In Proceedings of the ACL Student Research Work-
shop.

Matthew Shardlow. 2013b. The CW Corpus: A New
Resource for Evaluating the Identification of Com-
plex Words. In Proceedings of the 2nd Workshop on
Predicting and Improving Text Readability for Tar-
get Reader Populations (PITR@ACL).

Matthew Shardlow. 2014. Out in the Open: Finding
and Categorising Errors in the Lexical Simplifica-
tion Pipeline. In Proceedings of the 9th Interna-
tional Conference on Language Resources and Eval-
uation (LREC).

Advaith Siddharthan and Napoleon Katsos. 2010. Re-
formulating Discourse Connectives for Non-Expert
Readers. In Proceedings of the Conference of
the North American Chapter of the Association for
Computational Linguistics (NAACL).

Avirup Sil, Gourab Kundu, Radu Florian, and Wael
Hamza. 2017. Neural Cross-Lingual Entity Linking.
In Proceedings of the 30th Association for the Ad-
vancement of Artificial Intelligence Conference on
Artificial Intelligence (AAAI).

Lucia Specia, Sujay Kumar Jauhar, and Rada Mihal-
cea. 2012. SemEval-2012 Task 1: English Lexi-
cal Simplification. In Proceedings of the 6th In-
ternational Workshop on Semantic Evaluation (Se-
mEval@NAACL).

Tu Vu, Baotian Huu, Tsendsuren Munkhdalai, and
Hong Yu. 2018. Sentence Simplification with
Memory-Augmented Neural Networks. In Proceed-
ings of the Conference of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL).

Wei Xu, Chris Callison-Burch, and Courtney Napoles.
2015. Problems in Current Text Simplification Re-
search: New Data Can Help. Transactions of the
Association for Computational Linguistics (TACL),
3:283–297.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze
Chen, and Chris Callison-Burch. 2016. Optimizing
Statistical Machine Translation for Text Simplifica-
tion. Transactions of the Association for Computa-
tional Linguistics (TACL), 4:401–415.

Seid Muhie Yimam, Chris Biemann, Shervin Malmasi,
Gustavo H. Paetzold, Specia Lucia, Sanja tajner,
Anas Tack, and Marcos Zampieri. 2018. A Report
on the Complex Word Identification Shared Task
2018. In Proceedings of the 13th Workshop on In-
novative Use of NLP for Building Educational Ap-
plications (BEA@NAACL).

Seid Muhie Yimam, Sanja Štajner, Martin Riedl, and
Chris Biemann. 2017. CWIG3G2 - Complex Word
Identification Task across Three Text Genres and

Two User Groups. In Proceedings of the 8th In-
ternational Joint Conference on Natural Language
Processing (IJCNLP).

Xingxing Zhang and Mirella Lapata. 2017. Sentence
Simplification with Deep Reinforcement Learn-
ing. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP).


