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Abstract

In this work, we propose a novel method for
training neural networks to perform single-
document extractive summarization without
heuristically-generated extractive labels. We
call our approach BANDITSUM as it treats ex-
tractive summarization as a contextual ban-
dit (CB) problem, where the model receives
a document to summarize (the context), and
chooses a sequence of sentences to include
in the summary (the action). A policy gradi-
ent reinforcement learning algorithm is used
to train the model to select sequences of sen-
tences that maximize ROUGE score. We per-
form a series of experiments demonstrating
that BANDITSUM is able to achieve ROUGE
scores that are better than or comparable to
the state-of-the-art for extractive summariza-
tion, and converges using significantly fewer
update steps than competing approaches. In
addition, we show empirically that BANDIT-
SUM performs significantly better than com-
peting approaches when good summary sen-
tences appear late in the source document.

1 Introduction

Single-document summarization methods can be
divided into two categories: extractive and ab-
stractive. Extractive summarization systems form
summaries by selecting and copying text snippets
from the document, while abstractive methods aim
to generate concise summaries with paraphrasing.
This work is primarily concerned with extractive

∗Equal contribution.

summarization. Though abstractive summariza-
tion methods have made strides in recent years, ex-
tractive techniques are still very attractive as they
are simpler, faster, and more reliably yield seman-
tically and grammatically correct sentences.

Many extractive summarizers work by selecting
sentences from the input document (Luhn, 1958;
Mihalcea and Tarau, 2004; Wong et al., 2008;
Kågebäck et al., 2014; Yin and Pei, 2015; Cao
et al., 2015; Yasunaga et al., 2017). Furthermore,
a growing trend is to frame this sentence selection
process as a sequential binary labeling problem,
where binary inclusion/exclusion labels are cho-
sen for sentences one at a time, starting from the
beginning of the document, and decisions about
later sentences may be conditioned on decisions
about earlier sentences. Recurrent neural networks
may be trained with stochastic gradient ascent to
maximize the likelihood of a set of ground-truth
binary label sequences (Cheng and Lapata, 2016;
Nallapati et al., 2017). However, this approach has
two well-recognized disadvantages. First, it suf-
fers from exposure bias, a form of mismatch be-
tween training and testing data distributions which
can hurt performance (Ranzato et al., 2015; Bah-
danau et al., 2017; Paulus et al., 2018). Second,
extractive labels must be generated by a heuris-
tic, as summarization datasets do not generally in-
clude ground-truth extractive labels; the ultimate
performance of models trained on such labels is
thus fundamentally limited by the quality of the
heuristic.

An alternative to maximum likelihood training
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is to use reinforcement learning to train the model
to directly maximize a measure of summary qual-
ity, such as the ROUGE score between the gener-
ated summary and a ground-truth abstractive sum-
mary (Wu and Hu, 2018). This approach has be-
come popular because it avoids exposure bias, and
directly optimizes a measure of summary quality.
However, it also has a number of downsides. For
one, the search space is quite large: for a docu-
ment of length T , there are 2T possible extrac-
tive summaries. This makes the exploration prob-
lem faced by the reinforcement learning algorithm
during training very difficult. Another issue is
that due to the sequential nature of selection, the
model is inherently biased in favor of selecting
earlier sentences over later ones, a phenomenon
which we demonstrate empirically in Section 7.
The first issue can be resolved to a degree using
either a cumbersome maximum likelihood-based
pre-training step (using heuristically-generated la-
bels) (Wu and Hu, 2018), or placing a hard upper
limit on the number of sentences selected. The
second issue is more problematic, as it is inherent
to the sequential binary labeling setting.

In the current work, we introduce BANDITSUM,
a novel method for training neural network-based
extractive summarizers with reinforcement learn-
ing. This method does away with the sequential
binary labeling setting, instead formulating extrac-
tive summarization as a contextual bandit. This
move greatly reduces the size of the space that
must be explored, removes the need to perform su-
pervised pre-training, and prevents systematically
privileging earlier sentences over later ones. Al-
though the strong performance of Lead-3 indicates
that good sentences often occur early in the source
article, we show in Sections 6 and 7 that the con-
textual bandit setting greatly improves model per-
formance when good sentences occur late without
sacrificing performance when good sentences oc-
cur early.

Under this reformulation, BANDITSUM takes
the document as input and outputs an affinity for
each of the sentences therein. An affinity is a
real number in [0, 1] which quantifies the model’s
propensity for including a sentence in the sum-
mary. These affinities are then used in a process
of repeated sampling-without-replacement which
does not privilege earlier sentences over later ones.
BANDITSUM is free to process the document as
a whole before yielding affinities, which permits

affinities for different sentences in the document
to depend on one another in arbitrary ways. In our
technical section, we show how to apply policy
gradient reinforcement learning methods to this
setting.

The contributions of our work are as follows:

• We propose a theoretically grounded method,
based on the contextual bandit formalism,
for training neural network-based extrac-
tive summarizers with reinforcement learn-
ing. Based on this training method, we pro-
pose the BANDITSUM system for extractive
summarization.

• We perform experiments demonstrating that
BANDITSUM obtains state-of-the-art perfor-
mance on a number of datasets and requires
significantly fewer update steps than compet-
ing approaches.

• We perform human evaluations showing that
in the eyes of human judges, summaries cre-
ated by BANDITSUM are less redundant and
of higher overall quality than summaries cre-
ated by competing approaches.

• We provide evidence, in the form of experi-
ments in which models are trained on subsets
of the data, that the improved performance
of BANDITSUM over competitors stems in
part from better handling of summary-worthy
sentences that come near the end of the doc-
ument (see Section 7).

2 Related Work

Extractive summarization has been widely studied
in the past. Recently, neural network-based meth-
ods have been gaining popularity over classical
methods (Luhn, 1958; Gong and Liu, 2001; Con-
roy and O’leary, 2001; Mihalcea and Tarau, 2004;
Wong et al., 2008), as they have demonstrated
stronger performance on large corpora. Central to
the neural network-based models is the encoder-
decoder structure. These models typically use ei-
ther a convolution neural network (Kalchbrenner
et al., 2014; Kim, 2014; Yin and Pei, 2015; Cao
et al., 2015), a recurrent neural network (Chung
et al., 2014; Cheng and Lapata, 2016; Nallapati
et al., 2017), or a combination of the two (Narayan
et al., 2018; Wu and Hu, 2018) to create sentence
and document representations, using word embed-
dings (Mikolov et al., 2013; Pennington et al.,
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2014) to represent words at the input level. These
vectors are then fed into a decoder network to gen-
erate the output summary.

The use of reinforcement learning (RL) in
extractive summarization was first explored by
Ryang and Abekawa (2012), who proposed to
use the TD(λ) algorithm to learn a value function
for sentence selection. Rioux et al. (2014) im-
proved this framework by replacing the learning
agent with another TD(λ) algorithm. However,
the performance of their methods was limited by
the use of shallow function approximators, which
required performing a fresh round of reinforce-
ment learning for every new document to be sum-
marized. The more recent work of Paulus et al.
(2018) and Wu and Hu (2018) use reinforcement
learning in a sequential labeling setting to train ab-
stractive and extractive summarizers, respectively,
while Chen and Bansal (2018) combines both ap-
proaches, applying abstractive summarization to a
set of sentences extracted by a pointer network
(Vinyals et al., 2015) trained via REINFORCE.
However, pre-training with a maximum likelihood
objective is required in all of these models.

The two works most similar to ours are Yao
et al. (2018) and Narayan et al. (2018). Yao
et al. (2018) recently proposed an extractive sum-
marization approach based on deep Q learning, a
type of reinforcement learning. However, their
approach is extremely computationally intensive
(a minimum of 10 days before convergence),
and was unable to achieve ROUGE scores bet-
ter than the best maximum likelihood-based ap-
proach. Narayan et al. (2018) uses a cascade of
filters in order to arrive at a set of candidate extrac-
tive summaries, which we can regard as an approx-
imation of the true action space. They then use an
approximation of a policy gradient method to train
their neural network to select summaries from this
approximated action space. In contrast, BANDIT-
SUM samples directly from the true action space,
and uses exact policy gradient parameter updates.

3 Extractive Summarization as a
Contextual Bandit

Our approach formulates extractive summariza-
tion as a contextual bandit which we then train an
agent to solve using policy gradient reinforcement
learning. A bandit is a decision-making formal-
ization in which an agent repeatedly chooses one
of several actions, and receives a reward based on

this choice. The agent’s goal is to quickly learn
which action yields the most favorable distribu-
tion over rewards, and choose that action as often
as possible. In a contextual bandit, at each trial,
a context is sampled and shown to the agent, af-
ter which the agent selects an action and receives
a reward; importantly, the rewards yielded by the
actions may depend on the sampled context. The
agent must quickly learn which actions are favor-
able in which contexts. Contextual bandits are a
subset of Markov Decision Processes in which ev-
ery episode has length one.

Extractive summarization may be regarded as a
contextual bandit as follows. Each document is a
context, and each ordered subset of a document’s
sentences is a different action. Formally, assume
that each context is a document d consisting of
sentences s = (s1, . . . , sNd

), and that each action
is a length-M sequence of unique sentence indices
i = (i1, . . . , iM ) where it ∈ {1, . . . , Nd}, it 6= it′

for t 6= t′, and M is an integer hyper-parameter.
For each i, the extractive summary induced by i
is given by (si1 , . . . , siM ). An action i taken in
context d is given a reward R(i, a), where a is the
gold-standard abstractive summary that is paired
with document d, andR is a scalar reward function
quantifying the degree of match between a and the
summary induced by i.

A policy for extractive summarization is a neu-
ral network pθ(·|d), parameterized by a vector θ,
which, for each input document d, yields a proba-
bility distribution over index sequences. Our goal
is to find parameters θ which cause pθ(·|d) to as-
sign high probability to index sequences that in-
duce extractive summaries that a human reader
would judge to be of high-quality. We achieve
this by maximizing the following objective func-
tion with respect to parameters θ:

J(θ) = E [R(i, a)] (1)

where the expectation is taken over documents d
paired with gold-standard abstractive summaries
a, as well as over index sequences i generated ac-
cording to pθ(·|d).

3.1 Policy Gradient Reinforcement Learning

Ideally, we would like to maximize (1) using gra-
dient ascent. However, the required gradient can-
not be obtained using usual techniques (e.g. sim-
ple backpropagation) because i must be discretely
sampled in order to compute R(i, a).
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Fortunately, we can use the likelihood ratio gra-
dient estimator from reinforcement learning and
stochastic optimization (Williams, 1992; Sutton
et al., 2000), which tells us that the gradient of this
function can be computed as:

∇θJ(θ) = E [∇θ log pθ(i|d)R(i, a)] (2)

where the expectation is taken over the same vari-
ables as (1).

Since we typically do not know the exact docu-
ment distribution and thus cannot evaluate the ex-
pected value in (2), we instead estimate it by sam-
pling. We found that we obtained the best perfor-
mance when, for each update, we first sample one
document/summary pair (d, a), then sample B in-
dex sequences i1, . . . , iB from pθ(·|d), and finally
take the empirical average:

∇θJ(θ) ≈
1

B

B∑
b=1

∇θ log pθ(ib|d)R(ib, a) (3)

This overall learning algorithm can be regarded as
an instance of the REINFORCE policy gradient al-
gorithm (Williams, 1992).

3.2 Structure of pθ(·|d)
There are many possible choices for the structure
of pθ(·|d); we opt for one that avoids privileging
early sentences over later ones. We first decom-
pose pθ(·|d) into two parts: πθ, a deterministic
function which contains all the network’s param-
eters, and µ, a probability distribution parameter-
ized by the output of πθ. Concretely:

pθ(·|d) = µ(·|πθ(d)) (4)

Given an input document d, πθ outputs a real-
valued vector of sentence affinities whose length
is equal to the number of sentences in the docu-
ment (i.e. πθ(d) ∈ RNd) and whose elements fall
in the range [0, 1]. The t-th entry π(d)t may be
roughly interpreted as the network’s propensity to
include sentence st in the summary of d.

Given sentence affinities πθ(d), µ imple-
ments a process of repeated sampling-without-
replacement. This proceeds by repeatedly nor-
malizing the set of affinities corresponding to sen-
tences that have not yet been selected, thereby ob-
taining a probability distribution over unselected
sentences, and sampling from that distribution to
obtain a new sentence to include. This normalize-
and-sample step is repeated M times, yielding M
unique sentences to include in the summary.

At each step of sampling-without-replacement,
we also include a small probability ε of sampling
uniformly from all remaining sentences. This is
used to achieve adequate exploration during train-
ing, and is similar to the ε-greedy technique from
reinforcement learning.

Under this sampling scheme, we have the fol-
lowing expression for pθ(i|d):

M∏
j=1

(
ε

Nd − j + 1
+

(1− ε)π(d)ij
z(d)−

∑j−1
k=1 π(d)ik

)
(5)

where z(d) =
∑

t π(d)t. For index sequences
that have length different from M , or that con-
tain duplicate indices, we have pθ(i|d) = 0.
Using this expression, it is straightforward to
use automatic differentiation software to compute
∇θ log pθ(i|d), which is required for the gradient
estimate in (3).

3.3 Baseline for Variance Reduction
Our sample-based gradient estimate can have high
variance, which can slow the learning. One po-
tential cause of this high variance can be seen by
inspecting (3), and noting that it basically acts
to change the probability of a sampled index se-
quence to an extent determined by the reward
R(i, a). However, since ROUGE scores are al-
ways positive, the probability of every sampled
index sequence is increased, whereas intuitively,
we would prefer to decrease the probability of se-
quences that receive a comparatively low reward,
even if it is positive. This can be remedied by the
introduction of a so-called baseline which is sub-
tracted from all rewards.

Using a baseline r, our sample-based estimate
of∇θJ(θ) becomes:

1

B

B∑
i=1

∇θ log pθ(ib|d)(R(ib, a)− r) (6)

It can be shown that the introduction of r does not
bias the gradient estimator and can significantly
reduce its variance if chosen appropriately (Sutton
et al., 2000).

There are several possibilities for the baseline,
including the long-term average reward and the
average reward across different samples for one
document-summary pair. We choose an approach
known as self-critical reinforcement learning, in
which the test-time performance of the current
model is used as the baseline (Ranzato et al., 2015;
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Rennie et al., 2017; Paulus et al., 2018). More
concretely, after sampling the document-summary
pair (d, a), we greedily generate an index se-
quence using the current parameters θ:

igreedy = argmax
i

pθ(i|d) (7)

and calculate the baseline for the current update
as r = R(igreedy, a). This baseline has the intu-
itively satisfying property of only increasing the
probability of a sampled label sequence when the
summary it induces is better than what would be
obtained by greedy decoding.

3.4 Reward Function
A final consideration is a concrete choice for the
reward function R(i, a). Throughout this work we
use:

R(i, a) =
1

3
(ROUGE-1f (i, a) +

ROUGE-2f (i, a) + ROUGE-Lf (i, a)). (8)

The above reward function optimizes the average
of all the ROUGE variants (Lin, 2004) while bal-
ancing precision and recall.

4 Model

In this section, we discuss the concrete instan-
tiations of the neural network πθ that we use
in our experiments. We break πθ up into two
components: a document encoder fθ1, which
outputs a sequence of sentence feature vectors
(h1, . . . , hNd

) and a decoder gθ2 which yields sen-
tence affinities:

h1, . . . , hNd
= fθ1(d) (9)

πθ(d) = gθ2(h1, . . . , hNd
) (10)

Encoder. Features for each sentence in isolation
are first obtained by applying a word-level Bidi-
rectional Recurrent Neural Network (BiRNN) to
the embeddings for the words in the sentence, and
averaging the hidden states over words. A sepa-
rate sentence-level BiRNN is then used to obtain a
representations hi for each sentence in the context
of the document.
Decoder. A multi-layer perceptron is used to
map from the representation ht of each sentence
through a final sigmoid unit to yield sentence
affinities πθ(d).

The use of a bidirectional recurrent network in
the encoder is crucial, as it allows the network to

process the document as a whole, yielding repre-
sentations for each sentence that take all other sen-
tences into account. This procedure is necessary to
deal with some aspects of summary quality such
as redundancy (avoiding the inclusion of multiple
sentences with similar meaning), which requires
the affinities for different sentences to depend on
one another. For example, to avoid redundancy,
if the affinity for some sentence is high, then sen-
tences which express similar meaning should have
low affinities.

5 Experiments

In this section, we discuss the setup of our exper-
iments. We first discuss the corpora that we used
and our evaluation methodology. We then discuss
the baseline methods against which we compared,
and conclude with a detailed overview of the set-
tings of the model parameters.

5.1 Corpora
Three datasets are used for our experiments: the
CNN, the Daily Mail, and combined CNN/Daily
Mail (Hermann et al., 2015; Nallapati et al., 2016).
We use the standard split of Hermann et al. (2015)
for training, validating, and testing and the same
setting without anonymization on the three cor-
pus as See et al. (2017). The Daily Mail corpus
has 196,557 training documents, 12,147 validation
documents and 10,397 test documents; while the
CNN corpus has 90,266/1,220/1,093 documents,
respectively.

5.2 Evaluation
The models are evaluated based on ROUGE (Lin,
2004). We obtain our ROUGE scores using the
standard pyrouge package1 for the test set eval-
uation and a faster python implementation of the
ROUGE metric2 for training and evaluating on the
validation set. We report the F1 scores of ROUGE-
1, ROUGE-2, and ROUGE-L, which compute
the uniform, bigram, and longest common subse-
quence overlapping with the reference summaries.

5.3 Baselines
We compare BANDITSUM with other extractive
methods including: the Lead-3 model, Sum-
maRuNNer (Nallapati et al., 2017), Refresh

1https://pypi.python.org/pypi/pyrouge/
0.1.3

2We use the modified version based on https://
github.com/pltrdy/rouge

https://pypi.python.org/pypi/pyrouge/0.1.3
https://pypi.python.org/pypi/pyrouge/0.1.3
https://github.com/pltrdy/rouge
https://github.com/pltrdy/rouge
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(Narayan et al., 2018), RNES (Wu and Hu, 2018),
DQN (Yao et al., 2018), and NN-SE (Cheng and
Lapata, 2016). The Lead-3 model simply pro-
duces the leading three sentences of the document
as the summary.

5.4 Model Settings

We use 100-dimensional Glove embeddings (Pen-
nington et al., 2014) as our embedding initializa-
tion. We do not limit the sentence length, nor the
maximum number of sentences per document. We
use one-layer BiLSTM for word-level RNN, and
two-layers BiLSTM for sentence-level RNN. The
hidden state dimension is 200 for each direction
on all LSTMs. For the decoder, we use a feed-
forward network with one hidden layer of dimen-
sion 100.

During training, we use Adam (Kingma and Ba,
2015) as the optimizer with the learning rate of
5e−5, beta parameters (0, 0.999), and a weight de-
cay of 1e−6, to maximize the objective function
defined in equation (1). We employ gradient clip-
ping of 1 to regularize our model. At each iter-
ation, we sample B = 20 times to estimate the
gradient defined in equation 3. For our system,
the reported performance is obtained within two
epochs of training 3.

At the test time, we pick sentences sorted by
the predicted probabilities until the length limit is
reached. The full-length ROUGE F1 score is used
as the evaluation metric. For M , the number of
sentences selected per summary, we use a value of
3, based on our validation results as well as on the
settings described in Nallapati et al. (2017).

6 Experiment Results

In this section, we present quantitative results
from the ROUGE evaluation and qualitative re-
sults based on human evaluation. In addition, we
demonstrate the stability of our RL model by com-
paring the validation curve of BANDITSUM with
SummaRuNNer (Nallapati et al., 2017) trained
with a maximum likelihood objective.

6.1 Rouge Evaluation

We present the results of comparing BANDITSUM

to several baseline algorithms4 on the CNN/Daily
3Our code can be found at https://github.com/

yuedongP/summarization_RL
4 Due to different pre-processing methods and different

numbers of selected sentences, several papers report different
Lead scores (Narayan et al., 2018; See et al., 2017). We use

Model ROUGE
1 2 L

Lead(Narayan et al., 2018) 39.6 17.7 36.2
Lead-3(ours) 40.0 17.5 36.2
SummaRuNNer 39.6 16.2 35.3
DQN 39.4 16.1 35.6
Refresh 40.0 18.2 36.6
RNES w/o coherence 41.3 18.9 37.6
BANDITSUM 41.5 18.7 37.6

Table 1: Performance comparison of different ex-
tractive summarization models on the combined
CNN/Daily Mail test set using full-length F1.

Model CNN Daily Mail
1 2 L 1 2 L

Lead-3 28.8 11.0 25.5 41.2 18.2 37.3
NN-SE 28.4 10.0 25.0 36.2 15.2 32.9
Refresh 30.4 11.7 26.9 41.0 18.8 37.7
BANDITSUM 30.7 11.6 27.4 42.1 18.9 38.3

Table 2: The full-length ROUGE F1 scores of various
extractive models on the CNN and the Daily Mail test
set separately.

Mail corpus in Tables 1 and 2. Compared to other
extractive summarization systems, BANDITSUM

achieves performance that is significantly better
than two RL-based approaches, Refresh (Narayan
et al., 2018) and DQN (Yao et al., 2018), as well
as SummaRuNNer, the state-of-the-art maximum
liklihood-based extractive summarizer (Nallapati
et al., 2017). BANDITSUM performs a little bet-
ter than RNES (Wu and Hu, 2018) in terms of
ROUGE-1 and slightly worse in terms of ROUGE-
2. However, RNES requires pre-training with the
maximum likelihood objective on heuristically-
generated extractive labels; in contrast, BANDIT-
SUM is very light-weight and converges signifi-
cantly faster. We discuss the advantage of fram-
ing the extractive summarization based on the con-
textual bandit (BANDITSUM) over the sequential
binary labeling setting (RNES) in the discussion
Section 7.

We also noticed that different choices for the
policy gradient baseline (see Section 3.3) in BAN-
DITSUM affect learning speed, but do not signif-
icantly affect asymptotic performance. Models
trained with an average reward baseline learned
most quickly, while models trained with three
different baselines (greedy, average reward in a

the test set provided by Narayan et al. (2018). Since their
Lead score is a combination of Lead-3 for CNN and Lead-
4 for Daily Mail, we recompute the Lead-3 scores for both
CNN and Daily Mail with the preprocessing steps used in
See et al. (2017). Additionally, our results are not directly
comparable to results based on the anonymized dataset used
by Nallapati et al. (2017).

https://github.com/yuedongP/summarization_RL
https://github.com/yuedongP/summarization_RL
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batch, average global reward) all perform roughly
the same after training for one epoch. Models
trained without a baseline were found to under-
perform other baseline choices by about 2 points
of ROUGE score on average.

6.2 Human Evaluation
We also conduct a qualitative evaluation to un-
derstand the effects of the improvements intro-
duced in BANDITSUM on human judgments of
the generated summaries. To assess the effect
of training with RL rather than maximum like-
lihood, in the first set of human evaluations we
compare BANDITSUM with the state-of-the-art
maximum likelihood-based model SummaRuN-
Ner. To evaluate the importance of using an exact,
rather than approximate, policy gradient to opti-
mize ROUGE scores, we perform another human
evaluation comparing BANDITSUM and Refresh,
an RL-based method that uses the an approxima-
tion of the policy gradient.

We follow a human evaluation protocol similar
to the one used in Wu and Hu (2018). Given a set
of N documents, we ask K volunteers to evalu-
ate the summaries extracted by both systems. For
each document, a reference summary, and a pair of
randomly ordered extractive summaries (one gen-
erated by each of the two models) is presented to
the volunteers. They are asked to compare and
rank the extracted summaries along three dimen-
sions: overall, coverage, and non-redundancy.

Model Overall Coverage Non-
Redundancy

SummaRuNNer 1.67 1.46 1.70
BANDITSUM 1.33 1.54 1.30

Table 3: Average rank of human evaluation based on
5 participants who expressed 57 pairwise preferences
between the summaries generated by SummaRuNNer
and BANDITSUM. The model with the lower score is
better.

Model Overall Coverage Non-
Redundancy

Refresh 1.53 1.34 1.55
BANDITSUM 1.50 1.58 1.30

Table 4: Average rank of manual evaluation with 4
participants who expressed 20 pairwise preferences be-
tween the summaries generated by Refresh and our sys-
tem. The model with the lower score is better.

To compare with SummaRuNNer, we randomly
sample 57 documents from the test set of Daily-

Mail and ask 5 volunteers to evaluate the extracted
summaries. While comparing with Refresh, we
use the 20 documents (10 CNN and 10 Daily-
Mail) provided by Narayan et al. (2018) to 4 vol-
unteers. Tables 3 and 4 show the results of hu-
man evaluation in these two settings. BANDIT-
SUM is shown to be better than Refresh and Sum-
maRuNNer in terms of overall quality and non-
redundancy. These results indicate that the use of
the true policy gradient, rather than the approxi-
mation used by Refresh, improves overall quality.
It is interesting to observe that, even though BAN-
DITSUM does not have an explicit redundancy
avoidance mechanism, it actually outperforms the
other systems on non-redundancy.

6.3 Learning Curve

Reinforcement learning methods are known for
sometimes being unstable during training. How-
ever, this seems to be less of a problem for BAN-
DITSUM, perhaps because it is formulated as a
contextual bandit rather than a sequential label-
ing problem. We show this by comparing the val-
idation curves generated by BANDITSUM and the
state-of-the-art maximum likelihood-based model
– SummaRuNNer (Nallapati et al., 2017) (Fig-
ure 1).

Figure 1: Average of ROUGE-1,2,L F1 scores on the
Daily Mail validation set within one epoch of training
on the Daily Mail training set. The x-axis (multiply
by 2,000) indicates the number of data example the
algorithms have seen. The supervised labels in Sum-
maRuNNer are used to estimate the upper bound.

From Figure 1, we observe that BANDITSUM

converges significantly more quickly to good re-
sults than SummaRuNNer. Moreover, there is
less variance in the performance of BANDITSUM.
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One possible reason is that extractive summariza-
tion does not have well-defined supervised labels.
There exists a mismatch between the provided la-
bels and human-generated abstractive summaries.
Hence, the gradient, computed from the maximum
likelihood loss function, is not optimizing the eval-
uation metric of interest. Another important mes-
sage is that both models are still far from the es-
timated upper bound5, which shows that there is
still significant room for improvement.

6.4 Run Time

On CNN/Daily mail dataset, our model’s time-
per-epoch is about 25.5 hours on a TITAN Xp.
We trained the model for 3 epochs, which took
about 76 hours in total. For comparison, DQN
took about 10 days to train on a GTX 1080 (Yao
et al., 2018). Refresh took about 12 hours on a sin-
gle GPU to train (Narayan et al., 2018). Note that
this figure does not take into account the signifi-
cant time required by Refresh for pre-computing
ROUGE scores.

7 Discussion: Contextual Bandit Setting
Vs. Sequential Full RL Labeling

We conjecture that the contextual bandit (CB) set-
ting is a more suitable framework for modeling
extractive summarization than the sequential bi-
nary labeling setting, especially in the cases when
good summary sentences appear later in the doc-
ument. The intuition behind this is that models
based on the sequential labeling setting are af-
fected by the order of the decisions, which bi-
ases towards selecting sentences that appear ear-
lier in the document. By contrast, our CB-based
RL model has more flexibility and freedom to
explore the search space, as it samples the sen-
tences without replacement based on the affin-
ity scores. Note that although we do not explic-
itly make the selection decisions in a sequential
fashion, the sequential information about depen-
dencies between sentences is implicitly embedded
in the affinity scores, which are produced by bi-
directional RNNs.

We provide empirical evidence for this conjec-
ture by comparing BANDITSUM to the sequential
RL model proposed by Wu and Hu (2018) (Fig-
ure 2) on two subsets of the data: one with good

5The supervised labels for the upper bound estimation
are obtained using the heuristic described in Nallapati et al.
(2017).

summary sentences appearing early in the article,
while the other contains articles where good sum-
mary sentences appear late. Specifically, we con-
struct two evaluation datasets by selecting the first
50 documents (Dearly, i.e., best summary occurs
early) and the last 50 documents (Dlate, i.e., best
summary occurs late) from a sample of 1000 doc-
uments that is ordered by the average extractive
label index idx. Given an article with n sentences
indexed from 1, . . . , n and a greedy extractive la-
bels set with three sentences (i, j, k)6, the aver-
age index for the extractive label is computed by
idx= (i+ j + k)/3n.

Figure 2: Model comparisons of the average value for
ROUGE-1,2,L F1 scores (f ) on Dearly and Dlate. For
each model, the results were obtained by averaging f
across ten trials with 100 epochs in each trail. Dearly

and Dlate consist of 50 articles each, such that the good
summary sentences appear early and late in the arti-
cle, respectively. We observe a significant advantage of
BANDITSUM compared to RNES and RNES3 (based
on the sequential binary labeling setting) on Dlate.

Given these two subsets of the data, three differ-
ent models (BANDITSUM, RNES and RNES3) are
trained and evaluated on each of the two datasets
without extractive labels. Since the original se-
quential RL model (RNES) is unstable without
supervised pre-training, we propose the RNES3
model that is limited to select no more then three
sentences. Starting with random initializations
without supervised pre-training, we train each
model ten times for 100 epochs and plot the learn-
ing curve of the average ROUGE-F1 score com-
puted based on the trained model in Figure 2. We
can clearly see that BANDITSUM finds a better so-

6For each document, a length-3 extractive summary with
near-optimal ROUGE score is selected following the heuris-
tic proposed by Nallapati et al. (2017).
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lution more quickly than RNES and RNES3 on
both datasets. Moreover, it displays a significantly
speed-up in the exploration and finds the best solu-
tion when good summary sentences appeared later
in the document (Dlate).

8 Conclusion

In this work, we presented a contextual ban-
dit learning framework, BANDITSUM , for ex-
tractive summarization, based on neural networks
and reinforcement learning algorithms. BANDIT-
SUM does not require sentence-level extractive la-
bels and optimizes ROUGE scores between sum-
maries generated by the model and abstractive ref-
erence summaries. Empirical results show that
our method performs better than or comparable
to state-of-the-art extractive summarization mod-
els which must be pre-trained on extractive la-
bels, and converges using significantly fewer up-
date steps than competing approaches. In future
work, we will explore the direction of adding an
extra coherence reward (Wu and Hu, 2018) to im-
prove the quality of extracted summaries in terms
of sentence discourse relation.
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