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Abstract

Understanding causal explanations — reasons
given for happenings in one’s life — has been
found to be an important psychological factor
linked to physical and mental health. Causal
explanations are often studied through man-
ual identification of phrases over limited sam-
ples of personal writing. Automatic identifi-
cation of causal explanations in social media,
while challenging in relying on contextual and
sequential cues, offers a larger-scale alterna-
tive to expensive manual ratings and opens the
door for new applications (e.g. studying pre-
vailing beliefs about causes, such as climate
change). Here, we explore automating causal
explanation analysis, building on discourse
parsing, and presenting two novel subtasks:
causality detection (determining whether a
causal explanation exists at all) and causal ex-
planation identification (identifying the spe-
cific phrase that is the explanation). We
achieve strong accuracies for both tasks but
find different approaches best: an SVM for
causality prediction (F1 = 0.791) and a hier-
archy of Bidirectional LSTMs for causal ex-
planation identification (F1 = 0.853). Fi-
nally, we explore applications of our complete
pipeline (F1 = 0.868), showing demographic
differences in mentions of causal explanation
and that the association between a word and
sentiment can change when it is used within a
causal explanation.

1 Introduction

Explanations of happenings in one’s life, causal
explanations, are an important topic of study in so-
cial, psychological, economic, and behavioral sci-
ences. For example, psychologists have analyzed
people’s causal explanatory style (Peterson et al.,
1988) and found strong negative relationships with
depression, passivity, and hostility, as well as pos-
itive relationships with life satisfaction, quality of

Figure 1: A casual relation characterizes the connec-
tion between two discourse arguments, one of which is
the causal explanation.

life, and length of life (Scheier et al., 1989; Carver
and Gaines, 1987; Peterson et al., 1988).

To help understand the significance of causal
explanations, consider how they are applied
to measuring optimism (and its converse, pes-
simism) (Peterson et al., 1988). For example, in
“My parser failed because I always have bugs.”,
the emphasized text span is considered a causal
explanation which indicates pessimistic personal-
ity – a negative event where the author believes the
cause is pervasive. However, in “My parser failed
because I barely worked on the code.”, the expla-
nation would be considered a signal of optimistic
personality – a negative event for which the cause
is believed to be short-lived.

Language-based models which can detect
causal explanations from everyday social media
language can be used for more than automating
optimism detection. Language-based assessments
would enable other large-scale downstream tasks:
tracking prevailing causal beliefs (e.g., about cli-
mate change or autism), better extracting process
knowledge from non-fiction (e.g., gravity causes
objects to move toward one another), or detecting
attribution of blame or praise in product or service
reviews (“I loved this restaurant because the fish
was cooked to perfection”).
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In this paper, we introduce causal explanation
analysis and its subtasks of detecting the presence
of causality (causality prediction) and identifying
explanatory phrases (causal explanation identifi-
cation). There are many challenges to achiev-
ing these task. First, the ungrammatical texts in
social media incur poor syntactic parsing results
which drastically affect the performance of dis-
course relation parsing pipelines 1. Many causal
relations are implicit and do not contain any dis-
course markers (e.g., ‘because’). Further, Explicit
causal relations are also more difficult in social
media due to the abundance of abbreviations and
variations of discourse connectives (e.g., ‘cuz’ and
‘bcuz’).

Prevailing approaches for social media analy-
ses, utilizing traditional linear models or bag of
words models (e.g., SVM trained with n-gram,
part-of-speech (POS) tags, or lexicon-based fea-
tures) alone do not seem appropriate for this task
since they simply cannot segment the text into
meaningful discourse units or discourse arguments
2 such as clauses or sentences rather than random
consecutive token sequences or specific word to-
kens. Even when the discourse units are clear,
parsers may still fail to accurately identify dis-
course relations since the content of social media
is quite different than that of newswire which is
typically used for discourse parsing.

In order to overcome these difficulties of dis-
course relation parsing in social media, we sim-
plify and minimize the use of syntactic parsing re-
sults and capture relations between discourse ar-
guments, and investigate the use of a recursive
neural network model (RNN). Recent work has
shown that RNNs are effective for utilizing dis-
course structures for their downstream tasks (Ji
and Smith, 2017; Bhatia et al., 2015; Wieting
et al., 2015; Paulus et al., 2014), but they have yet
to be directly used for discourse relation predic-
tion in social media. We evaluated our model by
comparing it to off-the-shelf end-to-end discourse
relation parsers and traditional models. We found
that the SVM and random forest classifiers work
better than the LSTM classifier for the causality

1Off-the-shelf Penn Discourse Treebank (PDTB) end-to-
end parsers perform poorly on our Facebook causal predic-
tion dataset (see Table 3)

2Each discourse relation theory uses a different term for
minimal discourse text spans: ‘Elementary Discourse Unit
(EDU)’ in RST and ‘Discourse Argument’ in PDTB. We will
call it ‘Discourse Argument’ in this paper, since we adapted
the PDTB text segmentation method.

detection, while the LSTM classifier outperforms
other models for identifying causal explanation.

The contributions of this work include: (1) the
proposal of models for both (a) causality predic-
tion and (b) causal explanation identification, (2)
the extensive evaluation of a variety of models
from social media classification models and dis-
course relation parsers to RNN-based application
models, demonstrating that feature-based models
work best for causality prediction while RNNs are
superior for the more difficult task of causal ex-
planation identification, (3) performance analysis
on architectural differences of the pipeline and the
classifier structures, (4) exploration of the applica-
tions of causal explanation to downstream tasks,
and (5) release of a novel, anonymized causality
Facebook dataset along with our causality predic-
tion and causal explanation identification models.

2 Related Work

Identifying causal explanations in documents can
be viewed as discourse relation parsing. The
Penn Discourse Treebank (PDTB) (Prasad et al.,
2007) has a ‘Cause’ and ‘Pragmatic Cause’ dis-
course type under a general ‘Contingency’ class
and Rhetorical Structure Theory (RST) (Mann and
Thompson, 1987) has a ‘Relations of Cause’. In
most cases, the development of discourse parsers
has taken place in-domain, where researchers have
used the existing annotations of discourse argu-
ments in newswire text (e.g. Wall Street Jour-
nal) from the discourse treebank and focused on
exploring different features and optimizing vari-
ous types of models for predicting relations (Pitler
et al., 2009; Park and Cardie, 2012; Zhou et al.,
2010). In order to further develop automated sys-
tems, researchers have proposed end-to-end dis-
course relation parsers, building models which are
trained and evaluated on the annotated PDTB and
RST Discourse Treebank (RST DT). These cor-
pora consist of documents from Wall Street Jour-
nal (WSJ) which are much more well-organized
and grammatical than social media texts (Biran
and McKeown, 2015; Lin et al., 2014; Ji and
Eisenstein, 2014; Feng and Hirst, 2014).

Only a few works have attempted to parse dis-
course relations for out-of-domain problems such
as text categorizations on social media texts; Ji and
Bhatia used models which are pretrained with RST
DT for building discourse structures from movie
reviews, and Son adapted the PDTB discourse re-
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lation parsing approach for capturing counterfac-
tual conditionals from tweets (Bhatia et al., 2015;
Ji and Smith, 2017; Son et al., 2017). These works
had substantial differences to what propose in this
paper. First, Ji and Bhatia used a pretrained model
(not fully optimal for some parts of the given
task) in their pipeline; Ji’s model performed worse
than the baseline on the categorization of legisla-
tive bills, which is thought to be due to legisla-
tive discourse structures differing from those of
the training set (WSJ corpus). Bhatia also used
a pretrained model finding that utilizing discourse
relation features did not boost accuracy (Bhatia
et al., 2015; Ji and Smith, 2017). Both Bhatia
and Son used manual schemes which may limit
the coverage of certain types of positive samples–
Bhatia used a hand-crafted schema for weighting
discourse structures for the neural network model
and Son manually developed seven surface forms
of counterfactual thinking for the rule-based sys-
tem (Bhatia et al., 2015; Son et al., 2017). We
use social-media-specific features from pretrained
models which are directly trained on tweets and
we avoid any hand-crafted rules except for those
included in the existing discourse argument ex-
traction techniques.

The automated systems for discourse relation
parsing involve multiple subtasks from segment-
ing the whole text into discourse arguments to
classifying discourse relations between the argu-
ments. Past research has found that different types
of models and features yield varying performance
for each subtask. Some have optimized models for
discourse relation classification (i.e. given a doc-
ument indicating if the relation existing) without
discourse argument parsing using models such as
Naive-Bayes or SVMs, achieve relatively stronger
accuracies but a simpler task than that associated
with discourse arguments (Park and Cardie, 2012;
Zhou et al., 2010; Pitler et al., 2009). Researchers
who, instead, tried to build the end-to-end parsing
pipelines considered a wider range of approaches
including sequence models and RNNs (Biran and
McKeown, 2015; Feng and Hirst, 2014; Ji and
Eisenstein, 2014; Li et al., 2014). Particularly,
when they tried to utilize the discourse struc-
tures for out-domain applications, they used RNN-
based models and found that those models are
advantageous for their downstream tasks (Bhatia
et al., 2015; Ji and Smith, 2017).

In our case, for identifying causal explana-

tions from social media using discourse structure,
we build an RNN-based model for its structural
effectiveness in this task (see details in section
3.2). However, we also note that simpler models
such as SVMs and logistic regression obtained the
state-of-the-art performances for text categoriza-
tion tasks in social media (Lynn et al., 2017; Mo-
hammad et al., 2013), so we build relatively simple
models with different properties for each stage of
the full pipeline of our parser.

3 Methods

We build our model based on PDTB-style dis-
course relation parsing since PDTB has a rela-
tively simpler text segmentation method;3 for ex-
plicit discourse relations, it finds the presence of
discourse connectives within a document and ex-
tracts discourse arguments which parametrize the
connective while for implicit relations, it consid-
ers all adjacent sentences as candidate discourse
arguments.

3.1 Dataset

We created our own causal explanation dataset by
collecting 3,268 random Facebook status update
messages. Three well-trained annotators manually
labeled whether or not each message contains the
causal explanation and obtained 1,600 causality
messages with substantial agreement (κ = 0.61).
We used the majority vote for our gold standard.
Then, on each causality message, annotators iden-
tified which text spans are causal explanations.

For each task, we used 80% of the dataset for
training our model and 10% for tuning the hy-
perparameters of our models. Finally, we evalu-
ated all of our models on the remaining 10% (Ta-
ble 1 and Table 2). For causal explanation detec-
tion task, we extracted discourse arguments using
our parser and selected discourse arguments which
most cover the annotated causal explanation text
span as our gold standard.

3.2 Model

We build two types of models. First, we de-
velop feature-based models which utilize features
of the successful models in social media analysis
and causal relation discourse parsing. Then, we

3RST parsing builds fully hierarchical discourse tree
structures out of the whole span of target text which highly
depends on syntactic parsing and exact matching of elemen-
tary discourse units which are extremely hard to obtain from
social media texts
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Dataset Causality Non-Causal Total
Training 1,284 1,330 2,614
Validation 150 177 327
Test 164 163 327
Total 1,598 1,670 3,268

Table 1: Number of messages containing causality or
not in our dataset.

Causality messages CE DA Total DA
Training 1,278 5,606
Validation 160 652
Test 160 757
Total 1,598 7,015

Table 2: The number of discourse arguments in causal-
ity messages. Across 1,598 total causality messages,
we found 7,015 discourse arguments (Total DA) and
the one which covers annotated causal explanation are
used as causal explanation discourse arguments (CE
DA)

build a recursive neural network model which uses
distributed representation of discourse arguments
as this approach can even capture latent proper-
ties of causal relations which may exist between
distant discourse arguments. We specifically se-
lected bidirectional LSTM since the model with
the discourse distributional structure built in this
form outperformed the traditional models in simi-
lar NLP downstream tasks (Ji and Smith, 2017).

Discourse Argument Extraction As the first
step of our pipeline, we use Tweebo parser (Kong
et al., 2014) to extract syntactic features from mes-
sages. Then, we demarcate sentences using punc-
tuation (‘,’) tag and periods. Among those sen-
tences, we find discourse connectives defined in
PDTB annotation along with a Tweet POS tag for
conjunction words which can also be a discourse
marker. In order to decide whether these connec-
tives are really discourse connectives (e.g., I went
home, but he stayed) as opposed to simple con-
nections of two words (I like apple and banana)
we see if verb phrases 4 exist before and after the
connective by using dependency parsing results.
Although discourse connective disambiguation is
a complicated task which can be much improved
by syntactic features (Pitler and Nenkova, 2009),
we try to minimize effects of syntactic parsing and
simplify it since it is highly error-prone in social

4minimal discourse unit is verb phrases with very few ex-
ceptions (Prasad et al., 2007)

media. Finally, according to visual inspection,
emojis (‘E’ tag) are crucial for discourse relation
in social media so we take them as separate dis-
course arguments (e.g.,in “My test result... :(” the
sad feeling is caused by the test result, but it can-
not be captured by plain word tokens).

Feature Based Models We trained a linear
SVM, an rbf SVM, and a random forest with N-
gram, charater N-gram, and tweet POS tags, senti-
ment tags, average word lengths and word counts
from each message as they have a pivotal role in
the models for many NLP downstream tasks in so-
cial media (Mohammad et al., 2013; Lynn et al.,
2017). In addition to these features, we also ex-
tracted First-Last, First3 features and Word Pairs
from every adjacent pair of discourse arguments
since these features were most helpful for causal
relation prediction (Pitler et al., 2009). First-Last,
First3 features are first and last word and first three
words of two discourse arguments of the relation,
and Word Pairs are the cross product of words of
those discourse arguments. These two features en-
able our model to capture interaction between two
discourse arguments. (Pitler et al., 2009) reported
that these two features along with verbs, modal-
ity, context, and polarity (which can be captured
by N-grams, sentiment tags and POS tags in our
previous features) obtained the best performance
for predicting Contingency class to which causal-
ity belongs.

Recursive Neural Network Model We load
the GLOVE word embedding (Pennington et al.,
2014) trained in Twitter 5 for each token of ex-
tracted discourse arguments from messages. For
the distributional representation of discourse ar-
guments, we run a Word-level LSTM on the
words’ embeddings within each discourse argu-
ment and concatenate last hidden state vectors
of forward LSTM (

−→
h ) and backward LSTM

(
←−
h ) which is suggested by (Ji and Smith, 2017)

(DA = [
−→
h ;
←−
h ]). Then, we feed the sequence of

the vector representation of discourse arguments
to the Discourse-argument-level LSTM (DA-level
LSTM) to make a final prediction with log soft-
max function. With this structure, the model can
learn the representation of interaction of tokens
inside each discourse argument, then capture dis-
course relations across all of the discourse argu-

5http://nlp.stanford.edu/data/glove.
twitter.27B.zip

http://nlp.stanford.edu/data/glove.twitter.27B.zip
http://nlp.stanford.edu/data/glove.twitter.27B.zip
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Figure 2: LSTM classifier for causality detection and explanation identification

ments in each message (Figure 2). In order to
prevent the overfitting, we added a dropout layer
between the Word-level LSTM and the DA-level
LSTM layer.

Architectural Variants We also explore subsets
of the full RNN architecture, specifically with one
of the two LSTM layers removed. In the first
model variant, we directly input all word embed-
dings of a whole message to a BiLSTM layer and
make prediction (Word LSTM) without the help
of the distributional vector representations of dis-
course arguments. In the second model variant,
we take the average of all word embeddings of
each discourse argument (DAk = 1

Nk

∑Nk
i=1Wi),

and use them as inputs to a BiLSTM layer (DA
AVG LSTM) as the average vector of embeddings
were quite effective for representing the whole se-
quence (Ji and Smith, 2017; Wieting et al., 2015).
As with the full architectures, for CP both of these
variants ends with a many-to-one classification per
message, while the CEI model ends with a se-
quence of classifications.

3.3 Experiment
Feature Based Model We explored three types
of models (RBF SVM, Linear SVM, and Ran-
dom Forest Classifier) which have previously been
shown empirically useful for the language analy-
sis in social media. We filtered out low frequency
Word Pairs features as they tend to be noisy and
sparse (Pitler et al., 2009). Then, we conducted
univariate feature selection to restrict all remain-
ing features to those showing at least a small rela-
tionship with the outcome. Specifically, we keep

all features passing a family-wise error rate of
α = 60 with the given outcome. After comparing
the performance of the optimized version of each
model, we also conducted a feature ablation test
on the best model in order to see how much each
feature contributes to the causality prediction.

Neural Network Model We used bidirectional
LSTMs for causality classification and causal ex-
planation identification since the discourse argu-
ments for causal explanation can show up either
before and after the effected events or results and
we want our model to be optimized for both cases.
However, there is a risk of overfitting due to the
dataset which is relatively small for the high com-
plexity of the model, so we added a dropout layer
(p=0.3) between the Word-level LSTM and the
DA-level LSTM.

For tuning our model, we explore the dimen-
sionality of word vector and LSTM hidden state
vectors of discourse arguments of 25, 50, 100, and
200 as pretrained GLOVE vectors were trained in
this setting. For optimization, we used Stochastic
Gradient Descent (SGD) and Adam (Kingma and
Ba, 2014) with learning rates 0.01 and 0.001.

We ignore missing word embeddings because
our dataset is quite small for retraining new word
embeddings. However, if embeddings are ex-
tracted as separate discourse arguments, we used
the average of all vectors of all discourse argu-
ments in that message. Average embeddings have
performed well for representing text sequences in
other tasks (Wieting et al., 2015).
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Model F1
(Biran and McKeown, 2015) 0.434
(Lin et al., 2014) 0.638
Linear SVM 0.791
RBF SVM 0.777
Random Forest 0.771
LSTM 0.758

Table 3: Causality prediction performance across dif-
ferent predictive models. Bold indicates significant im-
provement over the LSTM

Model F1
All 0.791
- First-Last, First3 0.788
- Word Pairs 0.787
- POS tags 0.734
- (Char + Word) N-grams 0.769
- Sentiment tags 0.791

Table 4: Feature ablation test of Linear SVM for
causality prediction

Model Evaluation We first use state-of-the-art
PDTB taggers for our baseline (Lin et al., 2014;
Biran and McKeown, 2015) for the evaluation
of the causality prediction of our models ((Biran
and McKeown, 2015) requires sentences extracted
from the text as its input, so we used our parser
to extract sentences from the message). Then,
we compare how models work for each task and
disassembled them to inspect how each part of
the models can affect their final prediction perfor-
mances. We conducted McNemar’s test to deter-
mine whether the performance differences are sta-
tistically significant at p < .05.

4 Results

We investigated various models for both causal-
ity detection and explanation identification. Based
on their performances on the task, we analyzed
the relationships between the types of models and
the tasks, and scrutinized further for the best per-
forming models. For performance analysis, we re-
ported weighted F1 of classes.

4.1 Causality Prediction

In order to classify whether a message contains
causal relation, we compared off-the-shelf PDTB
parsers, linear SVM, RBF SVM, Random forest
and LSTM classifiers. The off-the-shelf parsers
achieved the lowest accuracies ((Biran and McK-

Model Prec Rec F1
Linear SVM 0.773 0.727 0.743
RBF SVM 0.773 0.727 0.743
Random Forest 0.747 0.790 0.746
LSTM 0.851 0.858 0.853

Table 5: Causal explanation identification perfor-
mance. Bold indicates significant imrpovement over
next best model (p < .05)

eown, 2015) and (Lin et al., 2014) in Table 3).
This result can be expected since 1) these mod-
els were trained with news articles and 2) they are
trained for all possible discourse relations in ad-
dition to causal relations (e.g., contrast, condition,
etc). Among our suggested models, SVM and ran-
dom forest classifier performed better than LSTM
and, in the general trend, the more complex the
models were, the worse they performed. This sug-
gests that the models with more direct and simpler
learning methods with features might classify the
causality messages better than the ones more op-
timized for capturing distributional information or
non-linear relationships of features.

Causality Classifier Analysis Table 4 shows
the results of a feature ablation test to see how each
feature contributes to causality classification per-
formance of the linear SVM classifier. POS tags
caused the largest drop in F1. We suspect POS
tags played a unique role because discourse con-
nectives can have various surface forms (e.g., be-
cause, cuz, bcuz, etc) but still the same POS tag
‘P’. Also POS tags can capture the occurrences
of modal verbs, a feature previously found to be
very useful for detecting similar discourse rela-
tions (Pitler et al., 2009). N-gram features caused
0.022 F1 drop while sentiment tags did not af-
fect the model when removed. Unlike the previ-
ous work where First-Last, First3 and Word pairs
tended to gain a large F1 increase for multiclass
discourse relation prediction, in our case, they did
not affect the prediction performance compared to
other feature types such as POS tags or N-grams.

4.2 Causal Explanation Identification

In this task, the model identifies causal explana-
tions given the discourse arguments of the causal-
ity message. We explored over the same mod-
els as those we used for causality (sans the out-
put layer), and found the almost opposite trend of
performances (see Table 5). The Linear SVM ob-
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Model CP (F1) CEI (F1)
Full LSTM 0.758 0.853
DA AVG LSTM 0.685 0.818
Word LSTM 0.694 0.792

Table 6: The effect of Word-level LSTM (Word
LSTM) and discourse argument LSTM (DA AVG
LSTM) for causality prediction (CP) and causal expla-
nation identification (CEI). Note that, as described in
methods, there are architectural differences for CP and
CEI models with the same names, most notably that the
output layer is always a single classification for CP and
a sequence of classifications for CEI.

tained lowest F1 while the LSTM model made the
best identification performance. As opposed to the
simple binary classification of the causality mes-
sages, in order to detect causal explanation, it is
more beneficial to consider the relation across dis-
course arguments of the whole message and im-
plicit distributional representation due to the im-
plicit causal relations between two distant argu-
ments.

4.3 Architectural Variants

For causality prediction, we experimented with
only word tokens in the whole message without
help of Word-level LSTM layer (Word LSTM),
and F1 dropped by 0.064 (CP in Table 6). Also,
when we used the average of the sequence of
word embeddings of each discourse argument as
an input to the DA-level LSTM and it caused F1
drop of 0.073. This suggests that the informa-
tion gained from both the interaction of words in
and in between discourse arguments help when the
model utilizes the distributional representation of
the texts.

For causal explanation identification, in order
to test how the LSTM classifier works without its
capability of capturing the relations between dis-
course arguments, we removed DA-level LSTM
layer and ran the LSTM directly on the word em-
bedding sequence for each discourse argument for
classifying whether the argument is causal expla-
nation, and the model had 0.061 F1 drop (Word
LSTM in CEI in Table 6). Also, when we ran DA-
level LSTM on the average vectors of the word se-
quences of each discourse argument of messages,
F1 decreased to 0.818. This follows the similar
pattern observed from other types of models per-
formances (i.e., SVMs and Random Forest classi-
fiers) that the models with higher complexity for

Model Prec Rec F1
CP + CEIcausal 0.864 0.877 0.868
CP + CEIall 0.842 0.864 0.848
CEIcausal Only 0.847 0.788 0.810
CEIall Only 0.836 0.848 0.842

Table 7: The effect of Linear SVM Cauality model
(CP) within our pipeline. CEIall: LSTM CEI models
trained on all messages; CEIcausal: LSTM CEI mod-
els trained only on causality messages (CEIcausal); CP
+ CEIall|causal: the combination of Linear SVM and
each LSTM model. Bold: significant (p < .05) in-
crease in F1 over the next best model, suggesting the
two-step approach worked best.

capturing the interaction of discourse arguments
tend to identify causal explanation with the higher
accuracies.

For CEI task, we found that when the model
ran on the sequence representation of discourse ar-
gument (DA AVG LSTM), its performance was
higher than the plain sequence of word embed-
dings (Word LSTM). Finally, in both subtasks,
when the models ran on both Word-level and DA-
Level (Full LSTM), they obtained the highest per-
formance.

4.4 Complete Pipeline

Evaluations thus far zeroed-in on each subtask of
causal explanation analysis (i.e. CEI only focused
on data already identified to contain causal expla-
nations). Here, we seek to evaluate the complete
pipeline of CP and CEI, starting from all of test
data (those or without causality) and evaluating the
final accuracy of CEI predictions. This is intended
to evaluate CEI performance under an applied set-
ting where one does not already know whether a
document has a causal explanation.

There are several approaches we could take to
perform CEI starting from unannotated data. We
could simply run CEI prediction by itself (CEI
Only) or the pipeline of CP first and then only
run CEI on documents predicted as causal (CP
+ CEI). Further, the CEI model could be trained
only on those documents annotated causal (as was
done in the previous experiments) or on all train-
ing documents including many that are not causal.

Table 7 show results varying the pipeline and
how CEI was trained. Though all setups per-
formed decent (F1 > 0.81) we see that the
pipelined approach, first predicting causality (with
the linear SVM) and then predicting causal expla-
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nations only for those with marked causal (CP +
CEIcausal) yielded the strongest results. This also
utilized the CEI model only trained on those anno-
tated causal. Besides performance, an added ben-
efit from this two step approach is that the CP step
is less computational intensive of the CEI step and
approximately 2/3 of documents will never need
the CEI step applied.

Limitations. We had an inevitable limitation on
the size of our dataset, since there is no other
causality dataset over social media and the anno-
tation required an intensive iterative process. This
might have limited performances of more com-
plex models, but considering the processing time
and the computation load, the combination of the
linear model and the RNN-based model of our
pipeline obtained both the high performance and
efficiency for the practical applications to down-
stream tasks. In other words, it’s possible the lin-
ear model will not perform as well if the training
size is increased substantially. However, a linear
model could still be used to do a first-pass, com-
putationally efficient labeling, in order to short-
list social media posts for further labeling from an
LSTM or more complex model.

5 Exploration

Here, we explore the use of causal explanation
analysis for downstream tasks. First we look at the
relationship between use of causal explanation and
one’s demographics: age and gender. Then, we
consider their use in sentiment analysis for extract-
ing the causes of polarity ratings. Research involv-
ing human subjects was approved by the Univer-
sity of Pennsylvania Institutional Review Board.

Demographic differences. We first explored
variance in number of causality posts by de-
mographics. To do this, we used self-authored
posts from a random 300 consenting-users of the
MyPersonality dataset (Kosinski et al., 2013). For
each user we calculate a cp ratio, defined as the
number of causality predicted posts divided by
their total number of posts, indicating the percent-
age of their posts which include a causal explana-
tion. We then correlated this ratio with real-valued
age using Pearson correlation and looked the dif-
ferences by dichotomous gender using Cohen’s d
(the difference in standardized means; only bi-
nary gender was available). We found significant
(p < .05) moderate-sized associations for both,

CE Non-CE
Top Ngrams Top Ngrams

1 worst not
2 was no
3 not ”
4 the worst asked
5 horrible she
6 rude told
7 bad said
8 overpriced minutes
9 over ?
10 slow me

Table 8: Top words most associated with negative re-
views from within causal explanations (CE) and out-
side of causal explanation (Non-CE).

indicating both older individuals and females were
likely to use more causal explanations.

Causality in Sentiment Analysis We explored
the application of causality explanation identifi-
cation for sentiment analysis using the Yelp po-
larity dataset (Zhang et al., 2015). We randomly
selected 10,000 of both positive and negative re-
views and ran our complete pipeline on them to ex-
tract the causal explanations from the reviews. We
then analyzed the ngrams from (a) causal expla-
nation and (b) all other discourse arguments test-
ing for associations with polarity. We used the a
Bayesian interpretation of the log odds ratio us-
ing an informative dirichlet prior defined by Mon-
roe et al. (2008). We found difference in the top
ngrams depending on whether the argument the
ngram originated from was a causal explanation
or not (see Table 8). Top ngrams for causal expla-
nations included more content words (e.g. ‘rude’,
‘overpriced’, ‘slow’) suggesting analyzing causal
explanations within reviews can better target the
reasons for the negative review.

6 Conclusion

We developed a pipeline for causal explanation
analysis over social media text, including both
causality prediction and causal explanation iden-
tification. We examined a variety of model
types and RNN architectures for each part of the
pipeline, finding an SVM best for causality pre-
diction and a hierarchy of BiLSTMs for causal ex-
planation identification, suggesting the later task
relies more heavily on sequential information. In
fact, we found replacing either layer of the hier-
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archical LSTM architecture (the word-level or the
DA-level) with a an equivalent “bag of features”
approach resulted in reduced accuracy. Results of
our whole pipeline of causal explanation analysis
were found quite strong, achieving an F1 = 0.868
at identifying discourse arguments that are causal
explanations.

Finally, we demonstrated use of our models in
applications, finding associations between demo-
graphics and rate of mentioning causal explana-
tions, as well as showing differences in the top
words predictive of negative ratings in Yelp re-
views. Utilization of discourse structure in social
media analysis has been a largely untapped area
of exploration, perhaps due to its perceived diffi-
culty. We hope the strong results of causal expla-
nation identification here leads to the integration
of more syntax and deeper semantics into social
media analyses and ultimately enables new appli-
cations beyond the current state of the art.
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