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Abstract

We design and build the first neural temporal
dependency parser. It utilizes a neural ranking
model with minimal feature engineering, and
parses time expressions and events in a text
into a temporal dependency tree structure. We
evaluate our parser on two domains: news re-
ports and narrative stories. In a parsing-only
evaluation setup where gold time expressions
and events are provided, our parser reaches
0.81 and 0.70 f-score on unlabeled and la-
beled parsing respectively, a result that is very
competitive against alternative approaches. In
an end-to-end evaluation setup where time ex-
pressions and events are automatically recog-
nized, our parser beats two strong baselines
on both data domains. Our experimental re-
sults and discussions shed light on the nature
of temporal dependency structures in different
domains and provide insights that we believe
will be valuable to future research in this area.

1 Introduction

Temporal relation classification is important for
a range of NLP applications that include but are
not limited to story timeline construction, ques-
tion answering, summarization, etc. Most work on
temporal information extraction models the task as
a pair-wise classification problem (Bethard et al.,
2007; Chambers et al., 2007; Chambers and Juraf-
sky, 2008; Ning et al., 2018a): given an individual
pair of time expressions and/or events, the system
predicts whether they are temporally related and
which specific relation holds between them. An
alternative approach is to model the temporal re-
lations in a text as a temporal dependency struc-
ture (TDS) for the entire text (Kolomiyets et al.,
2012). Such a temporal dependency structure has
the advantage that (1) it can be easily used to infer
additional temporal relations between time expres-
sions and/or events that are not directly connected
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via the transitivity properties of temporal relations,
(2) it is computationally more efficient because a
model does not need to consider all pairs of time
expressions and events in a text, and (3) it is easier
to use for downstream applications such as time-
line construction.

However, most existing automatic systems are
pair-wise models trained with traditional statisti-
cal classifiers using a large number of manually
crafted features (Bethard et al., 2017). The few
exceptions include the work of Kolomiyets et al.
(2012), which describes a temporal dependency
parser based on traditional feature-based classi-
fiers, and Dligach et al. (2017), which describes a
system using neural network based models to clas-
sify individual temporal relations. More recently,
a semi-structured approach has also been proposed
(Ning et al., 2018b).

In this work, taking advantage of a newly avail-
able data set annotated with temporal dependency
structures — the Temporal Dependency Tree (TDT)
Corpus! (Zhang and Xue, 2018), we develop a
neural temporal dependency structure parser us-
ing minimal hand-crafted linguistic features. One
of the advantages of neural network based models
is that they are easily adaptable to new domains,
and we demonstrate this advantage by evaluating
our temporal dependency parser on data from two
domains: news reports and narrative stories. Our
results show that our model beats a strong logistic
regression baseline. Direct comparison with exist-
ing models is impossible because the only similar
dataset used in previous work that we are aware of
is not available to us (Kolomiyets et al., 2012), but
we show that our models are competitive against
similar systems reported in the literature.

The main contributions of this work are:

e We design and build the first end-to-end neu-

"https://github.com/yuchenz/
structured_temporal_relations_corpus
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ral temporal dependency parser. The parser
is based on a novel neural ranking model that
takes a raw text as input, extracts events and
time expressions, and arranges them in a tem-
poral dependency structure.

e We evaluate the parser by performing exper-
iments on data from two domains: news re-
ports and narrative stories, and show that our
parser is competitive against similar parsers.
We also show the two domains have very dif-
ferent temporal structural patterns, an obser-
vation that we believe will be very valuable
to future temporal parser development.

The rest of the paper is organized as follows.
Since temporal structure parsing is a relatively
new task, we give a brief problem description in
§2. We describe our end-to-end pipeline system in
§3. Details of the neural ranking model are dis-
cussed in §4. In §5 we present and discuss our ex-
perimental results, and error analysis are presented
in §6. In §7 we discuss related work and situate our
work in the broader context, and we conclude our
paper in §8.

2 Problem Description

In this section we give a brief description of the
temporal dependency parsing task (more details in
Zhang and Xue (2018)). In a temporal structure
parsing task, a text is parsed into a dependency
tree structure that represents the inherent tempo-
ral relations among time expressions and events in
the text. The nodes in this tree are mostly time ex-
pressions and events which are represented as con-
tiguous spans of words in the text. They can also
be pre-defined meta nodes, which serve as refer-
ence times for other time expressions and events,
and they constitute the top-most part of the tree.
For example, Past_Ref, Present_Ref, Future Ref,
and Document Creation Time (DCT) are all pre-
defined meta nodes. The edges in the tree repre-
sent temporal relations between each parent-child
pair. The temporal relations can be one of In-
cludes, Before, Overlap, and After, or Depend-
on which holds between two time expressions.
Unlike syntactic dependency parsing where each
word in a sentence is a node in the dependency
structure, in a temporal dependency structure only
some of the words in a text are nodes in the struc-
ture. Therefore, this process naturally falls into
two stages: first time expression and event recog-
nition, and then temporal relation parsing. Fig-

ure 1 is an example temporal dependency tree for
a news report paragraph.

Due to the fact that different types of time ex-
pressions and events behave differently in terms of
what can be their antecedents, and recognition of
these types can be helpful for determining tempo-
ral relations, finer classifications of time expres-
sions and events are also defined. Time expres-
sions are further classified into Vague Time, Abso-
lute Concrete Time, and Relative Concrete Time,
according to whether or not the time expression
can be located on the timeline, and whether or
not the interpretation of its temporal location de-
pends on another time expression. Events are fur-
ther classified into Eventive Event, State, Habitual
Event, Completed Event, Ongoing Event, Modal-
ized Event, Generic Habitual, and Generic State,
according to the eventuality type of the event. Our
experiments will show that these fine-grained clas-
sifications are very helpful for the overall temporal
structure parsing accuracy.

3 A Pipeline System

We build a two-stage pipeline system to tackle this
temporal structure parsing problem. The first stage
performs event and time expression identification.
In this stage, given a text as input, spans of words
that indicate events or time expressions are identi-
fied and categorized. We model this stage as a se-
quence labeling process. A standard Bi-LSTM se-
quence model coupled with BIO labels is applied
here. Word representations are the concatenation
of word and POS tag embeddings.

The second stage performs the actual tempo-
ral structure parsing by identifying the antecedent
for each time expression and event, and identify-
ing the temporal relation between them. In this
stage, given events and time expressions identi-
fied in the first stage as input, the model outputs
a temporal dependency tree in which each child
node is an event or time expression that is tempo-
rally related to another event or time expression
or pre-defined meta node as its parent node. This
stage is modeled as a ranking process: for each
node, a finite set of neighboring nodes are first se-
lected as its candidate parents. These candidates
are then ranked with a neural network model and
the highest ranking candidate is selected as its par-
ent. We use a ranking model because it is sim-
ple, more intuitive and easier to train than a tradi-
tional transition-based or graph-based model, and
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Example News Paragrapha:
Jorn Utzon, the Danish architect who designed the Sydney
Opera House, has died01 in Copenhagen. Bomcz in ,

Mr Utzon was inspired ., by Scandinavian functionalism in

architecture, but made a number of inspirational trips

ed’

including to Mexico and Morocco. In , Mr Utzon's

now-iconic shell-like design for the Opera House
unexpectedly won - a state government competition for

the site on Bennelong Point on Sydney Harbour. However,
he left . the project in . His plans for the interior of

the building were not completed ;. The Sydney Opera
House is_, one of the world's most classic modern

buildings and a landmark Australian structure. It was
declared ., a UNESCO World Heritage site

% From a news report in The Telegraph.
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Figure 1: Example text and its temporal dependency
tree. DCT is Document Creation Time.

the learned model rarely makes mistakes that vio-
late the structural constraint of a tree.

Since the model we use for Stage 1 is a very
standard model with little modifications, we don’t
describe it in detail in this paper due to the limita-
tion of space. Our neural ranking model for Stage
2 is described in detail in the next section.

4 Neural Ranking Model

4.1 Model Description

We use a neural ranking model for the parsing
stage. For each time expression or event node 7 in
a text, a group of candidate parent nodes (time ex-
pressions, events, or pre-defined meta nodes) are
selected. In practice, we select a window from
the beginning of the text to two sentences after
node 7, and select all nodes in this window and all
pre-defined meta nodes as the candidate parents
if node ¢ is an event. Since the parent of a time
expression can only be a pre-defined meta node
or another time expression as described in Zhang
and Xue (2018), we select all time expressions in
the same window and all pre-defined meta nodes

as the candidate parents if node ¢ is a time expres-
sion. Let y; be a candidate parent of node i, a score
is then computed for each pair of (7,y;).Through
ranking, the candidate with the highest score is
then selected as the final parent for node 3.

Model architecture is shown in Figure 2. Word
embeddings are used as word representations (e.g.
wy). A Bi-LSTM sequence layer is built on each
word over the entire text, computing Bi-LSTM
output vectors for each word (e.g. w}). The node
representation for each time expression or event is
the summation of the Bi-LSTM output vectors of
all words in the text span (e.g. ;). The pair repre-
sentation for node ¢ and one of its candidates y/ is
the concatenation of the Bi-LSTM output vectors
of these two nodes g, ,» = (i, /], which is then
sent through a Multi-Layer Perceptron to compute
a score for this pair Siyl- Finally all pair scores of
the current node ¢ are concatenated into vector ¢;,
and taking softmax on it generates the final dis-
tribution o;, which is the probability distribution
of each candidate being the parent of node z.

Formally, the Forward Computation is:

wj = BiLSTM (wy,)
x; = sum(wy_;, i, wi, )

iy = [Ti, Y]

hLy; = tcmh(Wl "Giy! + bl)
Si7y£ = W2 . hivyf; + b2
Ci = [Sij1y ey Sisi1s Siit1s s Sisitt]

0; = softmax(c;)

4.2 Learning

Let D be the training data set of K texts, Ny the
number of nodes in text Dy, and y; the gold parent
for node ¢. Our neural model is trained to max-
imize P(y1,...,yn,|Dx) over the whole training
set. More specifically, the cost function is defined
as follows:

K

C = —logHP(yh --'7yNk‘Dk)
3
K Ny

= —log [ TTT P(wil Dx)
k1

K Ny

=> > —logP(yi|Dx)
k i

For each training example, cross-entropy loss is
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minimized:

L = —logP(y;|Dx)

exp(si |
—log et
S, cplsiy]

where s; . is the score for child-candidate pair

(i,y}) as described in §4.1.

4.3 Decoding

During decoding, the parser constructs the tem-
poral dependency tree incrementally by identify-
ing the parent node for each event or time expres-
sion in textual order. To ensure the output parse
is a valid dependency tree, two constraints are ap-
plied in the decoding process: (i) there can only be
one parent for each node, and (ii) descendants of a
node cannot be its parent to avoid cycles. Candi-
dates violating these constraints are omitted from
the ranking process.”

4.4 Temporal Relation Labeling

The neural model described above generates an
unlabeled temporal dependency tree, with each
parent being the most salient reference time for the
child. However it doesn’t model the specific tem-
poral relation (e.g. “before”, “overlap”) between
a parent and a child. We extend this basic archi-
tecture to both identify parent-child pairs and pre-
dict their temporal relations. In this new model,
instead of ranking child-candidate pairs (i,v;),
we rank child-candidate-relation tuples (7, y., lx.),
where [, is the kth relation in the pre-defined set
of possible temporal relation labels L. We com-
pute this ranking by re-defining the pair score Siyl-
Here, pair score s; ,/ is no longer a scalar score but
avector s; ., of size | L|, where s; ,, [k] is the scalar
score for y, being the parent of ¢ with temporal re-
lation /. Accordingly, the lengths of ¢; and o; are
number of candidates x |L|. Finally, the tuple
(4,9}, 1) associated with the highest score in o;
predicts that y, is the parent for ¢ with temporal
relation label .

4.5 Variations of the Basic Neural Model
4.5.1 Linguistically Enriched Models

A variation of the basic neural model is a model
that takes a few linguistic features as input ex-

2An alternative decoding approach would be to perform
a global search for a Maximum Spanning Tree. However,
due to the nature of temporal structures, our greedy decoding
process rarely hits the constraints.

output layer (o) [ T ]

concatenated scores (sc) [ J [ T T T ]

pair scores (sp)
hidden layer (h)

pair representation (g)

node representation (x)

Bi-LSTM (w*)

word embedding (w)

Figure 2: Neural Ranking Model Architecture. x; is
the current child node, and x,, xp, T, x4 are the can-
didate parent nodes for x;. Arrows from Bi-LSTM
layer to 4, Tp, T, T4 are not shown.

plicitly. In this model, we extend the pair rep-
resentation g; ,» with local features: g;,, =
[ @y, Diyl.

Time and event type feature: Stage 1 of the
pipeline not only extracts text spans that are time
expressions or events, but also labels them with
pre-defined categories of different types of time
expressions and events. Readers are referred to
Zhang and Xue (2018) for the full category list.
Through a careful examination of the data, we no-
tice that time expressions or events are selective
as to what types of time expression or events can
be their parent. In other words, the category of
the child time expression or event has a strong
indication on which candidate can be its parent.
For example, a time expression’s parent can only
be another time expression or a pre-defined meta
node, and can never be an event; and an eventive
event’s parent is almost certainly another even-
tive event, and is highly unlikely to be a stative
event. Therefore, we include the time expression
and event type information predicted by stage 1 in
this model as a feature. More formally, we rep-
resent a time/event type as a fixed-length embed-
ding ¢, and concatenate it to the pair representation

gi,y; = [xiv xy; ) tiv ty:]

Distance features: Distance information can
be useful for predicting the parent of a child. In-
tuitively, candidates that are closer to the child are
more likely to be the actual parent. Through data
examination, we also find that a high percentage of
nodes have parents in close proximity. Therefore,
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we include two distance features in this model: the
node distance between a candidate and the child
ndw;, and whether they are in the same sentence
88! One-hot representations are used for both
features to represent according conditions listed in
Table 1.

conditions for feature nd; ,.:
VA

i.node_id — y;.node_id = 1
i.node_id — y;.node_id > 1 and i.sent_id = yj.sent_id
i.node_id — y;.node_id > 1 and i.sent_id # y;.sent_id
i.node_id — y}.node_id < 1

conditions for feature ss; ,:

i.sent_id = y..sent_id
i.sent_id # y..sent_id

Table 1: Conditions for node distance and same sen-
tence features.

The final pair representation for our linguisti-
cally enriched model is as follows:

gi7y'li = [miamyéatiat rnd; S8S;

vy Tyl ,yé]

4.5.2 Attention Model on Time and Event
Representation

In the basic neural model, a straight-forward sum-
pooling is used as the multi-word time expression
and event representation. However, multi-word
event expressions usually have meaning-bearing
head words. For example, in the event “took a

LR T

trip”, “trip” is more representative than “took’ and
“a”. Therefore, we add an attention mechanism
(Bahdanau et al., 2014) over the Bi-LSTM out-
put vectors in each multi-word expression to learn
a task-specific notion of headedness (Lee et al.,

2017):

ap = tanh(W - wy)

o explou]
Wit = ZEND() ™
k=START(i) ¢*P1Y%
. _ —END() e
Li = 2 4=START (i) Wit~ Wt

where &; is a weighted sum of Bi-LSTM output
vectors in span . The weights w; ; are automati-
cally learned. The final pair representation for our
attention model is as follows:

T, T

9iy, = @iz Ty, ity nd; 88,

Y50 7y7{ ) y,;:l

This model variation is also beneficial in an
end-to-end system, where time expression and
event spans are automatically extracted in Stage 1.
When extracted spans are not guaranteed correct
time expressions and events, an attention layer on

a slightly larger context of an extracted span has a
better chance of finding representative head words
than a sum-pooling layer strictly on words within
a event or time expression span.

5 Experiments

5.1 Data

All of our experiments are conducted on the
datasets described in Zhang and Xue (2018). This
is a temporal dependency structure corpus in Chi-
nese. It covers two domains: news reports and
narrative fairy tales. It consists of 115 news ar-
ticles sampled from Chinese TempEval2 datasets
(Verhagen et al., 2010) and Chinese Wikipedia
News?, and 120 fairy tale stories sampled from
Grimm Fairy Tales*. 20% of this corpus, dis-
tributed evenly on both domains, are double an-
notated with high inter-annotator agreements. We
use this part of the data as our development and
test datasets (10% documents for development and
10% for testing), and the remaining 80% as our
training dataset.

5.2 Baseline Systems

We build two baseline systems to compare with
our neural model. The first is a simple baseline
which links every time expression or event to its
immediate previous time expression or event. Ac-
cording to our data, if only position information is
considered, the most likely parent for a child is its
immediate previous time expression or event. This
baseline uses the most common temporal relation
edge label in the training datasets, i.e. “overlap”
for news data, and “before” for grimm data.

The second baseline is a more competitive base-
line for stage 2 in the pipeline. It takes the output
of the first stage as input, and uses a similar rank-
ing architecture but with logistic regression clas-
sifiers instead of neural classifiers. The purpose
of this baseline is to compare our neural models
against a traditional statistical model under oth-
erwise similar settings. We conduct robust fea-
ture engineering on this logistic regression model
to make sure it is a strong benchmark to compete
against. Table 2 lists the features and feature com-
binations used in this model.

‘https://zh.wikinews.org
‘nttps://www.grimmstories.com/zh/
grimm_tonghua/index
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time type and event type features:

i.type and y..type

if i.type = absolute time and y;.type = root

if i.type = time and y}.type = root

are i.type and y}.type time, eventive, or stative

are i.type and y/;,.type root, time, or event

are i.type and y,.type root, time, eventive, or stative

if i.type = y..type = event and §).type = state,
for all § between i and /]

distance features:

ifi.sent_id = y].sent_id

i.node_id — y;.node_id

if i.node_id — y}.node_id = 1

combination features:

if i.type = state and i.sent_id # y;.sent_id

if i.type = state and i.node_id — vy, . node_id = 1

if i.type = y..type = event and
i.node_id — y}.node_id = 1

if i.type = state and y;.type = event and
i.node_id — y;.node_id = 1 and
i.node_id_in_sent = 1 and
i.sent_id # 1

other features:

if 7 and g are in quotation marks

Table 2: Features in the logistic regression system.

5.3 Evaluation

We perform two types of evaluations for our sys-
tems. First, we evaluate the stages of the pipeline
and the entire pipeline, i.e. end-to-end systems
where both time expression and event recognition,
as well as temporal dependency structures are au-
tomatically predicted. Our models are compared
against the two strong baselines described in §5.2.
These evaluations are described in §5.3.1.

The second evaluation focuses only on the tem-
poral relation structure parsing part of our pipeline
(i.e. Stage 2), using gold standard time expression
and event spans and labels. Since most previous
work on temporal relation identification use gold
standard time expression and event spans, this
evaluation gives us some sense of how our models
perform against models reported in previous work
even though a strict comparison is impossible be-
cause different data sets are used. These evalua-
tions are described in §5.3.2.

All neural networks in this work are imple-
mented in Python with the DyNet library (Neubig
et al., 2017). The code is publicly available”.

For Stage 1, all models are trained with Adam
optimizer with early stopping and learning rate
0.001. The dimensions of word embeddings, POS
tag embeddings, Bi-LSTM output vectors, and
MLP hidden layers are tuned on the dev set to 256,

Shttps://github.com/yuchenz/tdp_
ranking

evaluated news grimm
label p r f p r f
allspan | .81 .74 .78 | .83 .74 .78
time 83 81 82].97 .62 .76
event 81 73 77| .83 74 I8

Table 3: Stage 1 cross-validation on span detection
and binary time/event recognition.

time/event type news grimm
vague time 7 .82
concrete absolute .67 -
concrete relative 15 -
event .61 77
state .65 .61
completed .62 .26
modalized 46 31

Table 4: Stage 1 (time/event type recognition) cross-
validation f1-scores on the full set.

32, 256, and 256 respectively. POS tags in Stage 1
are acquired using the joint POS tagger from Wang
and Xue (2014). The tagger is trained on Chinese
Treebank 7.0 (Xue et al., 2010). For Stage 2, the
dimensions of word embeddings, time/event type
embeddings, Bi-LSTM output vectors, and MLP
hidden layers are tuned on the dev set to 32, 16,
32, and 32 respectively. The optimizer is Adam
with early stopping and learning rate 0.001.

5.3.1 End-to-End System Evaluation

Stage 1: Time and Event Recognition For
Stage 1 in the pipeline, we perform BIO tagging
with the full set of time expression and event
types (i.e. a 11-way classification on all extracted
spans). Extracted spans will be nodes in the final
dependency tree, and time/event types will support
features in the next stage. We evaluate Stage 1
performance using 10-fold cross-validation of the
entire data set. We use the “exact match” evalua-
tion metrics for BIO sequence labeling tasks, and
compute precision, recall, and f-score for each la-
bel type.

We first ignore fine-grained time/event types
and only evaluate unlabeled span detection and
time/event binary classification to show how well
our system identify events and time expressions,
and how well our system distinguishes time ex-
pressions from events. Table 3 shows the cross-
validation results on these two evaluations. Span
detection and event recognition show similar per-
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news grimm
model unlabeled f labeled f | unlabeled f labeled f
dev test dev test | dev test dev test
Baseline-simple | .64 .68 47 43| .78 .79 .39 .39
temporal relation | Baseline-logistic | .81 19 63 54174 74 .60 .63
parsing with Neural-basic g8 15 67 57 .72 74 .60 .63
gold spans Neural-enriched | .80 .78 .67 59 | .76 .77 .63 .65
Neural-attention | .83 .81 .76 .70 | .79 .79 .66 .68
Baseline-simple | .39 40 26 25| 44 47 27 .25
end-to-end Baseline-logistic | .36 .34 24 22 | 43 49 33 37
systems with Neural-basic 37 .36 21 23 | 42 45 33 .35
automatic spans | Neural-enriched | .51 S52 32 35| .4 49 33 .37
Neural-attention | .54 .54 36 .39 | 4 49 35 .39

Table 5:

Stage 2 results (f-scores) with gold spans and timex/event labels (top), and automatic spans and

timex/event labels generated by stage 1 (bottom). Best performances are in bold.

formance on both news and narrative domains.
Time expressions have a higher recognition rate
than events in news data, which is consistent with
the observation that time expressions usually have
a more limited vocabulary and more strict lexical
patterns. On the other hand, due to the scarcity of
time expressions in the Grimm data, time expres-
sion recognition in this domain has a very high
precision but low recall, which results in a much
lower f-score than news.

Labeled full set evaluation results on time/event
type classification are reported in Table 4. Time
expressions have higher recognition rates than
events on both domains, and dominant event types
(“event”, “state”, etc.) have higher and more sta-
ble recognition rates than other types. Event types
with very few training instances, such as “modal-
ized event” (<7%), achieve lower and more un-
stable recognition rates. Other types with less
than 2% instances achieve close to 0 recognition
f-scores, and are not reported in this table.

Stage 2: Temporal Dependency Parsing For
Stage 2 in the pipeline, we conduct experiments on
the five systems described above: a simple base-
line, a logistic regression baseline, a basic neural
model, a linguistically enriched neural model, and
an attention neural model. All models are trained
on automatically predicted spans of time expres-
sions and events, and time/event types generated
by Stage 1 using 10-fold cross-validation, with
gold standard edges (and edge labels) mapped
onto the automatic spans. Evaluations in Stage
2 are against gold standard spans and edges,
and evaluation metrics are precision, recall, and

f-score on (child, parent) tuples for unlabeled
trees, and (child, relation, parent) triples for la-
beled trees.

Bottom rows in Table 5 report the end-to-end
performance of our five systems on both domains.
On both labeled and unlabeled parsing, our ba-
sic neural model with only lexical input performs
comparable to the logistic regression model. And
our enriched neural model with only three sim-
ple linguistic features outperforms both the logis-
tic regression model and the basic neural model
on news, improving the performance by more than
10%. However, our models only slightly improve
the unlabeled parsing over the simple baseline on
narrative Grimm data. This is probably due to (1)
it is a very strong baseline to link every node to
its immediate previous node, since in an narrative
discourse linear temporal sequences are very com-
mon; and (2) most events breaking the temporal
linearity in a narrative discourse are implicit sta-
tive descriptions which are harder to model with
only lexical and distance features. Finally, atten-
tion mechanism improves temporal relation label-
ing on both domains.

5.3.2 Temporal Relation Evaluation

To facilitate comparison with previous work
where gold events are used as parser input, we re-
port our results on temporal dependency parsing
with gold time expression and event spans in Ta-
ble 5 (top rows). These results are in the same ball-
park as what is reported in previous work on tem-
poral relation extraction. The best performance
in Kolomiyets et al. (2012) are 0.84 and 0.65 f-
scores for unlabeled and labeled parses, achieved
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by temporal structure parsers trained and evalu-
ated on narrative children’s stories. Our best per-
forming model (Neural-attention) reports 0.81 and
0.70 f-scores on unlabeled and labeled parses re-
spectively, showing similar performance. It is im-
portant to note, however, that these two works use
different data sets, and are not directly compara-
ble. Finally, parsing accuracy with gold time/event
spans as input is substantially higher than that with
predicted spans, showing the effects of error prop-
agation.

6 Error Analysis

We perform error analysis on the output of our best
model (Neural-attention) on the development data
sets. We focus on analyzing our neural ranking
model (i.e. Stage 2), with gold time expression
and event spans and labels as input.

First, we look at errors by the types of an-
tecedents. Most events in both news and grimm
data depend on their immediate previous event
or time expression as their reference time parent.
71% of the events in the news data set and 78% of
the events in the Grimm data have the immediate
previous node as their antecedent. The confusion
matrix in Table 6 illustrates how strongly this bias
affects our models. Our model learns the bias and
incorrectly links around half of the events (47% in
news and 46% in grimm) to their immediate pre-
vious node when the correct temporal dependency
is further back in the text.

news grimm
pre far total | pre far total
pre | 317 11 328 | 750 60 810
far | 65 72 137 | 104 122 226
total | 382 83 465 | 854 182 1036

Table 6: Parent node confusion matrix. Rows are gold
parents and columns are automatically parsed parents.
“pre” means the parent is the immediate previous node
of the child event, “far” means the parent is further back
from the child event.

Second, we look at errors in temporal rela-
tion labels. Considering only correctly recognized
parent-child pairs, we draw a confusion matrix as
in Table 7. Our data has very few after relations
in both domains, which explains why the model
has difficulty identifying this relation. There are
also very few include and depend-on relations in
the Grimm data, however they are identified with a

news be af ov in de | total
before 1 0o 21 2 0 24
after 1 0 1 0 0 2
overlap 1 0 295 O 0 296
include 0o 0 4 52 0 56
depend-on | 0 0 0 0 117 | 117
total 3 0 321 54 117 | 495
grimm be af ov in de | total
before 367 0 55 O 0 422
after 1 0o 2 0 0 3
overlap 74 1 314 O 0 389
include 3 0O 0 10 O 13
depend-on | 0 0 0 0 12 12
total 445 1 371 10 12 | 839
Table 7: Temporal relation confusion matrix. Rows

are gold relation labels and columns are automatic re-
lation labels. “be, af, ov, in, de” stand for “before, after,
overlap, include, and depend-on”.

relatively high accuracy. This is probably because,
according to the temporal dependency structure
design (Zhang and Xue, 2018), these relations
hold only between restricted pairs of parent and
child: include requires a time expression parent
and an event child, and depend-on requires that
the parent be the rootf. The main confusion among
temporal relations is between before and overlap.
In news data, with a high occurrence of overlap
relations (60% overlap and 5% before), most be-
fore parents are wrongly recognized as overlap.
Grimm data has a more balanced distribution of
these two temporal relations (46% overlap and
50% before), however, 13% before and 17% over-
lap are wrongly labeled as the other.

7 Related Work

7.1 Related Work on Temporal Relation
Modeling

There is a significant amount of research on tem-
poral relation extraction (Bethard et al., 2007;
Bethard, 2013; Chambers and Jurafsky, 2008;
Chambers et al., 2014; Ning et al., 2018a). Most
of the previous work models temporal relation
extraction as pair-wise classification between in-
dividual pairs of events and/or time expressions.
Some of the models also add a global reasoning
step to local pair-wise classification, typically us-
ing Integer Linear Programming, to exploit the
transitivity property of temporal relations (Cham-
bers and Jurafsky, 2008). Such a pair-wise clas-
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sification approach is often dictated by the way
the data is annotated. In most of the widely
used temporal data sets, temporal relations be-
tween individual pairs of events and/or time ex-
pressions are annotated independently of one an-
other (Pustejovsky et al., 2003; Chambers et al.,
2014; Styler IV et al., 2014; O’Gorman et al.,
2016; Mostafazadeh et al., 2016).

Our work is most closely related to that of
Kolomiyets et al. (2012), which also treats tem-
poral relation modeling as temporal dependency
structure parsing. However, their dependency
structure, as described in Bethard et al. (2012),
is only over events, excluding time expressions
which are an important source of temporal infor-
mation, and it also excludes states (stative events),
which makes the temporal dependency structure
incomplete. Moreover, their corpus only consists
of data in the narrative stories domain. We instead
choose to develop our model based on the data
set described in Zhang and Xue (2018), which in-
troduces a more comprehensive and linguistically
grounded annotation scheme for temporal depen-
dency structures. This structure includes both
events and time expressions, and uses the linguis-
tic notion of temporal anaphora to guide the anno-
tation of the temporal dependency structure. Since
in this temporal dependency structure each parent-
child pair is considered to be an instance of tem-
poral anaphora, the parent is also called the an-
tecedent and the child is also referred to as the
anaphor. Their corpus consists of data from two
domains: news reports and narrative stories.

More recently, Ning et al. (2018b) proposed a
semi-structured approach to model temporal rela-
tions in a text. Based on the observation that not
all pairs of events have well-defined temporal re-
lations, they propose a multi-axis representation in
which well-defined temporal relations only hold
between events on the same axis. The temporal
relations between events in a text form multiple
disconnected subgraphs. Like other work before
them, their annotation scheme only covers events,
to the exclusion of time expressions.

7.2 Related Work on Neural Dependency
Parsing

Most prior work on neural dependency parsing is
aimed at syntactic dependency parsing, i.e. pars-
ing a sentence into a dependency tree that rep-
resents the syntactic relations among the words.

Recent work on dependency parsing typically
uses transition-based or graph-based architectures
combined with contextual vector representations
learned with recurrent neural networks (e.g. Bi-
LSTMs) (Kiperwasser and Goldberg, 2016).

Temporal dependency parsing is, however, dif-
ferent from syntactic dependency parsing. In tem-
poral dependency parsing, for each event or time
expression, there is more than one other event
or time expression that can serve as its reference
time, while the most closely related one is se-
lected as the gold standard reference time parent.
This naturally falls into a ranking process where
all possible reference times are ranked and the
best is selected. In this sense our neural ranking
model for temporal dependency parsing is closely
related to the neural ranking model for corefer-
ence resolution described in Lee et al. (2017), both
of which extract related spans of words (entity
mentions for coreference resolution, and events or
time expressions for temporal dependency pars-
ing). However, our temporal dependency parsing
model differs from Lee et al’s coreference model
in that the ranking model for coreference only
needs to output the best candidate for each indi-
vidual pairing and cluster all pairs that are coref-
erent to each other. In contrast, our ranking model
for temporal dependency parsing needs to rank
not only the candidate antecedents but also the
temporal relations between the antecedent and the
anaphor. In addition, the model also adds connec-
tivity and acyclic constraints in the decoding pro-
cess to guarantee a tree-structured output.

8 Conclusion and Future Work

In this paper, we present the first end-to-end neu-
ral temporal dependency parser. We evaluate the
parser with both gold standard and automatically
recognized time expressions and events. In both
experimental settings, the parser outperforms two
strong baselines and shows competitive results
against prior temporal systems.

Our experimental results show that the model
performance drops significantly when automati-
cally predicted event and time expressions are
used as input instead of gold standard ones, indi-
cating an error propagation problem. Therefore,
in future work we plan to develop joint models
that simultaneously extract events and time ex-
pressions, and parse their temporal dependency
structure.
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