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Abstract

We employ imitation learning to train a neural
transition-based string transducer for morpho-
logical tasks such as inflection generation and
lemmatization. Previous approaches to train-
ing this type of model either rely on an exter-
nal character aligner for the production of gold
action sequences, which results in a subopti-
mal model due to the unwarranted dependence
on a single gold action sequence despite spu-
rious ambiguity, or require warm starting with
an MLE model. Our approach only requires a
simple expert policy, eliminating the need for
a character aligner or warm start. It also ad-
dresses familiar MLE training biases and leads
to strong and state-of-the-art performance on
several benchmarks.

1 Introduction

Recently, morphological tasks such as inflection
generation and lemmatization (Figure 1) have
been successfully tackled with neural transition-
based models over edit actions (Aharoni and
Goldberg, 2017; Robertson and Goldwater, 2018;
Makarov and Clematide, 2018; Cotterell et al.,
2017b). The model, introduced in Aharoni and
Goldberg (2017), uses familiar inductive biases
about morphological string transduction such as
conditioning on a single input character and mono-
tonic character-to-character alignment. Due to
this, the model achieves lower time complexity
(compared to soft-attentional seq2seq models) and
strong performance on several datasets.

Aharoni and Goldberg train the model by
maximizing the conditional log-likelihood (MLE)
of gold edit actions derived by an independent
character-pair aligner. The MLE training proce-
dure is therefore a pipeline, and the aligner is
completely uninformed of the end task. This re-
sults in error propagation and the unwarranted
dependence of the transducer on a single gold

하다 � 하셨습니까{V, PAST, FORMAL POLITE,
INTERROGATIVE, HONORIFIC}

하셨습니까 � 하다

Figure 1: Morphological tasks with examples
in Korean: inflection generation (top) and
lemmatization (bottom). (McCune-Reischauer:
하다=hada,하셨습니까=hasyŏssŭmnikka).

action sequence—in contrast to weighted finite-
state transducers (WFST) that take into account
all permitted action sequences. Although these
problems—as well as the exposure bias and the
loss-metric mismatch arising from this MLE train-
ing (Wiseman and Rush, 2016)—can be addressed
by reinforcement learning-style methods (Ranzato
et al., 2016; Bahdanau et al., 2017; Shen et al.,
2016, RL), for an effective performance, all these
approaches require warm-start initialization with
an MLE-pretrained model. Another shortcoming
of the RL-style methods is delayed punishment:
For many NLP problems, including morphological
string transduction, one can pinpoint actions that
adversely affect the global score. For example, it
is easy to tell if inserting some character c at step
t would render the entire output incorrect. Assign-
ing individual blame to single actions directly—
as opposed to scoring the entire sequence via a
sequence-level objective—simplifies the learning
problem.

Faced with problems similar to those arising
in transition-based dependency parsing with static
oracles (Goldberg and Nivre, 2012), we train this
model in the imitation learning (IL) framework
(Daumé III et al., 2009; Ross et al., 2011; Chang
et al., 2015), using a simple expert policy. Our
approach eliminates both all dependency on an
external character aligner and the need for MLE
pre-training. By making use of exploration of past



2878

and future actions and having a global objective, it
addresses the MLE training biases, while provid-
ing relevant action-level training signal. The ap-
proach leads to strong and state-of-the-art results
on a number of morphological datasets, outper-
forming models trained with minimum risk train-
ing (MRT).

2 Model Description

We use a variant of the seq2seq state-transition
system by Aharoni and Goldberg (2017). The
model transduces the input string into the out-
put string by performing single-character edits (in-
sertions, deletions). The encoder RNN computes
context-enriched representations of input charac-
ters, which are pushed onto the buffer at the be-
ginning of transduction. The decoder RNN keeps
track of the history of edits. Transitions—edits—
are scored based on the output of the decoder
state and can write a character or pop the rep-
resentation of a character from the top of the
buffer. We choose the model variant of Makarov
and Clematide (2018), who add the copy edit,
which results in strong performance gains in low-
resource settings.

Let x = x1 . . . xn, xi ∈ Σx be an input
sequence, y = y1 . . . yp, yj ∈ Σy an output se-
quence, and a = a1 . . . am, at ∈ Σa an action se-
quence. Let {fh}Hh=1 be the set of all features. The
morpho-syntactic description of a transduction is
then an n-hot vector e ∈ {0, 1}H .

The model employs a bidirectional long short-
term memory (LSTM) encoder (Graves and
Schmidhuber, 2005) to produce representations
for each character of the input x:

h1, . . . ,hn = BiLSTM(E(x1), . . . , E(xn)), (1)

where E returns the embedding for xi. We push
h1, . . . ,hn in reversed order onto the buffer. The
transduction begins with the full buffer and the
empty decoder state.

Transitions are scored based on the output of the
LSTM decoder state (Hochreiter and Schmidhu-
ber, 1997):

st = LSTM(ct−1, [A(at−1) ; hi]), (2)

where ct−1 is the previous decoder state, A(at−1)
is the embedding of the previous edit action, and
hi is the input character representation at the top
of the buffer. If features are part of the input in the

task, then the input to the decoder also contains the
representation of morpho-syntactic description e,
[F (f1) ; . . . ;F (fH)], which is a concatenation of
the embedded features and a designated embed-
ding F (0) is used instead of F (fh) if eh = 0.

The probabilities of transitions are computed
with a softmax classifier:

P (at = k | a<t,x,Θ) = softmaxk(W·st+b) (3)
Model parameters Θ include W, b, the embed-
dings, and the parameters of the LSTMs.

The alphabet of edit actions Σa contains IN-
SERT(c) for each c ∈ Σy, DELETE, and COPY. An
INSERT(c) action outputs c; DELETE pops hi from
the top of the buffer; COPY pops hi from the top of
the buffer and outputs xi. The system exhibits spu-
rious ambiguity: Multiple action sequences lead to
the same output string.

2.1 MLE Training
Aharoni and Goldberg train their model by mini-
mizing the negative conditional log-likelihood of
the data D = {(x(l),a(l))}Nl=1:

L(D,Θ) = −
N∑
l=1

m∑
t=1

logP (a
(l)
t |a

(l)
<t,x

(l),Θ), (4)

where gold action sequences a(l) are determinis-
tically computed from a character-pair alignment
of the input and output sequences (x(l),y(l)). The
character-pair aligner is trained separately to op-
timize the likelihood of the actual training data
T = {(x(l),y(l))}Nl=1. For the details, we refer the
reader to Aharoni and Goldberg (2017).

3 IL Training

One problem with the MLE approach is that the
aligner is trained in a disconnect from the end task.
As a result, alignment errors lead to the learning
of a suboptimal transducer. Switching to a differ-
ent aligner can dramatically improve performance
(Makarov and Clematide, 2018). More fundamen-
tally, in the face of the vast spurious ambiguity,
the transducer is forced to adhere to a single gold
action sequence whereas typically, legitimate and
equally likely alternative edit sequences exist. This
uncertainty is not accessible to the transducer, but
could be profitably leveraged by it.

We address this problem within the IL frame-
work and train the model to imitate an expert
policy (dynamic oracle), which is a map—on the
training data—from configurations to sets of opti-
mal actions. Actions are optimal if they lead to the
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lowest sequence-level loss, under the assumption
that all future actions are also optimal (Daumé III
et al., 2009). In the roll-in stage, we run the model
on a training sample and follow actions either re-
turned by the expert policy (as in teacher forc-
ing) or sampled from the model (which itself is
a stochastic policy). In this way, we obtain a se-
quence of configurations summarized as decoder
outputs s1, . . . , sm. In the roll-out stage, we com-
pute the sequence-level loss for every valid action
a in each configuration st. To this end, we execute
a and then either query the expert to obtain the loss
for the optimal action sequence following a or run
the model for the rest of the input and evaluate the
loss of the resulting action sequence. Finally, the
sequence-level losses obtained in this way for all
actions a enter the action-level loss for configura-
tion st that we minimize with respect to Θ.

Sequence-level loss We define the loss in terms
of the Levenshtein distance (Levenshtein, 1966)
between the prediction and the target and the edit
cost of the action sequence. Given input x(l) with
target y(l), the loss from producing an action se-
quence a is:

`(a,x(l),y(l)) = β distance(y,y(l))+cost(a), (5)

where y is computed from a and x(l) and β ≥ 1
is some penalty for unit distance.1 The first term
represents the task objective. The second term en-
forces that the task objective is reached with a min-
imum number of edits.

The second term is crucial as it takes over the
role of the character aligner. Initially, we also ex-
perimented with only Levenshtein distance as loss,
similar to previous work on character-level prob-
lems (Leblond et al., 2018; Bahdanau et al., 2017).
However, models did not learn much, which we
attribute to sparse training signal as all action
sequences producing the same y would incur
the same sequence-level loss, including intuitively
very wasteful ones, e.g. first deleting all of x(l) and
then inserting of all of y(l).

Expert The expert policy keeps track of the pre-
fix of the target y(l) in the predicted sequence y<t

and returns actions that lead to the completion of
the suffix of y(l) using an action sequence with
the lowest edit cost. The resulting prediction y at-
tains the minimum edit distance from y(l). For ex-
ample, if x(l) = walk and y(l) = walked, the

1We use unit costs to compute edit cost and distance.

top of the buffer is h3 representing x3 = l, and
y<3 = wad due to a sampling error from a roll-in
with the model, the expert returns {COPY}.

Action-level loss Given sequence-level losses,
we compute the regret for each action a:

rt(a) = `(a,x(l),y(l))−min
a′∈A(st)

`(a′,x(l),y(l)), (6)

where a (or a′) is the action sequence resulting
from taking a (or a′) at st and A(st) is the set of
valid actions. Thus, rt(a), which quantifies how
much we suffer from taking action a relative to the
optimal action under the current policy, constitutes
the direct blame of a in the sequence-level loss.

Classic IL employs cost-sensitive classification,
with regrets making up costs (Daumé III et al.,
2009; Chang et al., 2015). Our initial experi-
ments with cost-sensitive classification resulted in
rather inefficient training and not very effective
models. Instead, we choose to minimize the neg-
ative marginal log-likelihood of all optimal ac-
tions (Riezler et al., 2000; Goldberg, 2013; Balles-
teros et al., 2016). Given the training data T =
{(x(l),y(l))}Nl=1, the action-level loss is:

L(T,Θ)=−
N∑
l=1

m∑
t=1

log
∑
a∈At

P (a |a<t,x
(l),Θ), (7)

where At = {a ∈ A(st) : rt(a) = 0}, the set of
optimal actions under the current policy. Depend-
ing on the roll-in schedule, the next edit at+1 is
sampled either uniformly at random from At or
from the distribution of valid edits. To include all
the computed regrets into the loss, we also exper-
iment with the cost-augmented version of this ob-
jective (Gimpel and Smith, 2010), where regrets
function as costs.

The downside of IL is that roll-outs are costly.
We avoid computing most of the roll-outs by
checking if an action increases the edit distance
from y(l). If it does, we heuristically assign this
action a regret of β. We use this heuristic in both
expert and model roll-outs.

4 Experiments

We demonstrate the effectiveness of our approach
on three tasks: inflection generation (using the
typologically diverse SIGMORPHON 2016 and
SIGMORPHON 2017 datasets of Cotterell et al.
(2016, 2017a)), reinflection (the small-sized Ger-
man CELEX dataset of Dreyer et al. (2008)), and
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Model RU DE ES KA FI TR HU NV AR MT Avg.
MED 91.5 95.8 98.8 98.5 95.5 98.9 96.8 91.5 99.3 89.0 95.6
SOFT 92.2 96.5 98.9 98.9 97.0 99.4 97.0 95.4 99.3 88.9 96.3
HA 92.2 96.6 98.9 98.1 95.9 98.0 96.2 93.0 98.8 88.3 95.6
HA* 92.0 96.3 98.9 97.9 95.8 97.6 98.8 92.1 95.1 87.8 95.2
CA 91.9 96.4 98.8 98.3 96.5 97.7 98.9 92.1 94.6 87.7 95.3
CA-D 92.4 96.6 98.9 98.7 97.2 98.5 99.3 95.2 96.5 89.2 96.2
CA-R 92.3 96.5 98.9 98.9 97.3 98.9 99.4 95.2 96.1 88.8 96.2

Table 1: Results on SIGMORPHON 2016 data.2

Model 13SIA 2PIE 2PKE rP Avg.
LAT 87.5 93.4 87.4 84.9 88.3
NWFST 85.1 94.4 85.5 83.0 87.0
HA∗ 84.6 93.9 88.1 85.1 87.9
CA 85.0 94.5 88.0 84.9 88.1
HA∗-MRT 84.8 94.0 88.1 85.2 88.0
CA-MRT 85.6 94.6 88.0 85.3 88.4
CA-D 85.7 94.4 88.4 85.1 88.4
CA-R 85.6 94.4 88.3 85.3 88.4
CA-RM 84.9 94.1 88.3 85.0 88.1

Model EU EN GA TL Avg.
LAT 93.6 96.9 97.9 88.6 94.2
NWFST 91.5 94.5 97.9 97.4 95.3
LEM3 96.5 96.3 98.7 98.8 97.6
HA∗ 97.0 97.5 97.9 98.3 97.7
CA 96.3 96.9 97.7 98.3 97.3
CA-D 96.1 97.0 97.7 98.4 97.3
CA-R 96.6 97.2 97.5 98.3 97.4
CA-RM 96.5 97.0 97.8 98.3 97.4

Table 2: Results on CELEX data. Table 3: Lemmatization results.

Model L M
SGM17TOP 50.6 82.8
HA∗ 31.5 80.2
CA 48.8 81.0
HA∗-MRT 33.1 81.5
CA-MRT 49.9 82.9
CA-MRT-A 49.9 82.7
CA-D 50.3 82.6
CA-R 51.6 83.8
CA-RM 50.6 84.0

Table 4: Results on Low and
Medium settings of SIGMOR-
PHON 2017 data (averaged
over 52 languages).
-MRT: minimum risk train-
ing; -MRT-A: MRT with ac-
tion cost in the loss; -D:
only expert roll-outs; -R: ex-
pert and model roll-outs; -RM:
softmax-margin, expert and
model roll-outs

Experimental results. Soft-attention seq2seq models: MED=Kann and Schütze (2016) (cited from Aha-
roni and Goldberg (2017)), SOFT=Aharoni and Goldberg (2017), LEM=Bergmanis and Goldwater (2018).
WFSTs: LAT=Dreyer et al. (2008), NWFST=Rastogi et al. (2016). Transition-based models: HA=Aharoni
and Goldberg (2017), SGM17TOP=Makarov et al. (2017), and from Makarov and Clematide (2018):
HA∗=reimplementation of HA, CA=model in §2, and HA∗-MRT, CA-MRT (risk=normalized edit distance).
We report exact-match accuracies for ensembles of 5 models (SIGM. 2016 and 2017) and single-model
averages over 5 folds (CELEX) and 10 folds (lemmatization).

lemmatization (the standard subset of the Wicen-
towski (2002) dataset).

We use character and feature embeddings of
size 100 and 20, respectively, and one-layer
LSTMs with hidden-state size 200. Following
Aharoni and Goldberg, for every character c ∈
Σx ∩ Σy, we let A(INSERT(c)) := E(c), i.e. the
same embedding represents both c and the inser-
tion of c. We optimize with ADADELTA (Zeiler,
2012), use early stopping and batches of size 1.
We set the penalty for unit distance β = 5 and
roll in with an inverse-sigmoid decay schedule as
in Bengio et al. (2015). CA-D models are trained
with expert roll-outs only (as is often the case in
dynamic-oracle parsing). CA-R and CA-RM mod-
els mix expert and learned roll-outs with probabil-
ity 0.5 as in Chang et al. (2015). CA-RM models
optimize softmax-margin.

For comparison, we also train models with MRT
(CA-MRT-A) as in Shen et al. (2016), using a
global objective similar to our sequence-level loss
(Eq. 5). We use batches of at most 20 unique sam-
ples per training example. The risk is a convex
combination of normalized Levenshtein distance

and the action sequence cost, which we min-max
scale, within a batch, to the [0, 1] interval.

We decode all our models using beam search
with beam width 4.

Our approach performs best on most languages
of the SIGMORPHON 2016 data (Table 1) and both
limited-resource settings of SIGMORPHON 2017
(Table 4). It achieves marginal improvement over
an MRT model on the reinflection task (Table 2)
with consistent gains on the 2PKE7→z transforma-
tion (Dreyer et al., 2008), that involves infixation.
Using mixed roll-outs (CA-R, CA-RM) improves
performance on the SIGMORPHON 2017 inflec-
tion data (Table 4), otherwise the results are close
to CA-D. We also note strong gains over CA-MRT-
A trained with a similar global loss (Table 4). Gen-
erally, improvements are most pronounced in in-
flection generation, the only task where the model
could profit from adjusting alignment to available
feature information (cf. Table 3).

2Language codes: RU=Russian, DE=German,
ES=Spanish, KA=Georgian, FI=Finnish, TR=Turkish,
HU=Hungarian, NV=Navajo, AR=Arabic, MT=Maltese,
EU=Basque, EN=English, GA=Irish, TL=Tagalog.

3Personal communication.
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We take a closer look at the results in the SIG-
MORPHON 2017 medium data-size setting (1,000
training examples per language). CA-RM makes
the largest performance gains on languages with
complex morphological phenomena (Semitic and
Uralic languages, Navajo) and an above average
number of unique morpho-syntactic descriptions.
Khaling and Basque, outliers with 367 and 740
unique morpho-syntactic descriptions in the train-
ing data, are among the top five languages with the
largest gains. The lowest gains and rare losses are
made for Romance and Germanic languages and
languages with many unique morpho-syntactic
descriptions but regular morphologies (Quechua,
Urdu/Hindi).

5 Related work

Traditionally, morphological string transduction
has been approached with discriminative weighted
finite-state transducers (Rastogi et al., 2016; Cot-
terell et al., 2014; Dreyer et al., 2008; Eisner,
2002). Yu et al. (2016) and Graves (2012) tackle
the modeling of unbounded dependencies in the
output, while preserving latent monotonic hard
character alignment. Faruqui et al. (2016); Kann
and Schütze (2016) successfully apply seq2seq
modeling to the task. Aharoni and Goldberg
(2017) introduce a neural version of the transition-
based model over edits. Makarov and Clematide
(2018) show gains from using the copy edit and
address the MLE training biases with MRT.

The limitations of teacher forcing have recently
been the focus of intense research (Edunov et al.,
2017; Wiseman and Rush, 2016; Shen et al.,
2016), including the adaptation of RL methods
(Ranzato et al., 2016; Bahdanau et al., 2017). Most
of these approaches require warm start with an
MLE model and themselves introduce discrepan-
cies between training with sampling and search-
based decoding. Such biases do not arise from
IL, which has recently been proposed for seq2seq
models (Leblond et al., 2018). Our approach, re-
lated to Leblond et al. (2018), additionally ad-
dresses the problem of spurious ambiguity, which
is not present in seq2seq models.

6 Conclusion

We show that training to imitate a simple ex-
pert policy results in an effective neural transition-
based model for morphological string transduc-

tion. The fully end-to-end approach addresses var-
ious shortcomings of previous training regimes
(the need for an external character aligner, warm-
start initialization, and MLE training biases), and
leads to strong empirical results. We make our
code and predictions publicly available.4
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Yarowsky, Jason Eisner, and Mans Hulden.
2017a. The CoNLL-SIGMORPHON 2017 shared
task: Universal morphological reinflection in
52 languages. In Proceedings of the CoNLL-
SIGMORPHON 2017 Shared Task: Universal
Morphological Reinflection.

4https://github.com/ZurichNLP/emnlp2018-imitation-
learning-for-neural-morphology

https://github.com/ZurichNLP/emnlp2018-imitation-learning-for-neural-morphology
https://github.com/ZurichNLP/emnlp2018-imitation-learning-for-neural-morphology


2882

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 Shared Task—
Morphological Reinflection. In Proceedings of the
2016 Meeting of SIGMORPHON.

Ryan Cotterell, Nanyun Peng, and Jason Eisner. 2014.
Stochastic contextual edit distance and probabilistic
FSTs. In ACL.

Ryan Cotterell, John Sylak-Glassman, and Christo
Kirov. 2017b. Neural graphical models over strings
for principal parts morphological paradigm comple-
tion. In EACL.
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Rémi Leblond, Jean-Baptiste Alayrac, Anton Osokin,
and Simon Lacoste-Julien. 2018. SEARNN: Train-
ing RNNs with global-local losses. In ICLR.

Vladimir I Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. In
Soviet physics doklady, volume 10.

Peter Makarov and Simon Clematide. 2018. Neu-
ral transition-based string transduction for limited-
resource setting in morphology. In COLING.

Peter Makarov, Tatiana Ruzsics, and Simon Clematide.
2017. Align and copy: UZH at SIGMORPHON
2017 shared task for morphological reinflection. In
Proceedings of the CoNLL SIGMORPHON 2017
Shared Task: Universal Morphological Reinflection.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In ICLR.

Pushpendre Rastogi, Ryan Cotterell, and Jason Eisner.
2016. Weighting finite-state transductions with neu-
ral context. In NAACL-HLT.

Stefan Riezler, Jonas Kuhn, Detlef Prescher, and Mark
Johnson. 2000. Lexicalized stochastic modeling
of constraint-based grammars using log-linear mea-
sures and EM training. In ACL.

Alexander Robertson and Sharon Goldwater. 2018.
Evaluating historical text normalization systems:
How well do they generalize? In NAACL.
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