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Abstract

This paper presents a simple framework for
characterizing morphological complexity and
how it encodes syntactic information. In par-
ticular, we propose a new measure of morpho-
syntactic complexity in terms of governor-
dependent preferential attachment that ex-
plains parsing performance. Through ex-
periments on dependency parsing with data
from Universal Dependencies (UD), we show
that representations derived from morpholog-
ical attributes deliver important parsing per-
formance improvements over standard word
form embeddings when trained on the same
datasets. We also show that the new morpho-
syntactic complexity measure is predictive of
the gains provided by using morphological at-
tributes over plain forms on parsing scores,
making it a tool to distinguish languages using
morphology as a syntactic marker from others.

1 Introduction

While word embedding has proven a good solution
to reduce data sparsity in parsing (Koo et al., 2008),
treating word forms as atomic units is at odds with
the fact that words have a potentially complex in-
ternal structure. Furthermore, it makes parameters
estimation difficult for morphologically rich lan-
guages (MRL) in which the number of possible
forms a word can take can be very large1.

Recently, researchers have started to work on
morphologically informed word embeddings (Cao
and Rei, 2016; Botha and Blunsom, 2014), aiming
at better capturing both lexical, syntactic and mor-
phological information. But encoding lexicon and
morphology in the same space makes it difficult to
distinguish the role of each in syntactic tasks such

1A typical English noun has 2 forms while a Finnish one
may have more than 30. This shows in data as English lemmas
have 1.39 forms on average while Finnish ones have 2.19, as
measured on UD data (Nivre et al., 2016).

as dependency parsing. Furthermore, morpholog-
ically rich languages for which we hope to see a
real impact from those morphologically aware rep-
resentations, might not all rely to the same extent
on morphology for syntax encoding. Some might
benefit mostly from reducing data sparsity while
others, for which paradigm richness correlate with
freer word order (Comrie, 1981), will also benefit
from morphological information encoding.

This paper aims at characterizing the role of
morphology as a syntax encoding device for vari-
ous languages. Using simple word representations,
we measure the impact of morphological informa-
tion on dependency parsing and relate it to two
measures of language morphological complexity:
the basic form per lemma ratio and a new measure
(HPE) defined in terms of head attachment prefer-
ence encoded by its morphological attributes. We
show that this new measure is predictive of parsing
result differences observed when using different
word representations and that it allows one to dis-
tinguish amongst morphologically rich languages,
those that use morphology for syntactic purpose
from those using morphology as a more semantic
marker. To the best of our knowledge, this work
is the first attempt at systematically measuring the
syntactic content of morphology in a multi-lingual
environment.

Section 2 presents the representation learning
method and the dependency parsing model. It also
defines two measures of morphological complex-
ity. Section 3 describes the experimental setting
and analyses parsing results in terms of the pre-
viously defined morphological complexity mea-
sures. Section 4 gives some conclusions and future
work perspectives.
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2 Framework

This section details: (i) our method for learn-
ing lexical and morphological representations, (ii)
how these can be used for graph-based dependency
parsing, and (iii) how to measure morphological
complexity. Our representation learning and pars-
ing techniques are purposely very simple in order
to let us separate lexical and morphological infor-
mation and weight the role of morphology in de-
pendency parsing of MRL.

2.1 Word Representation
We construct separate vectorial representations for
lemmas, forms and morphological attributes, ei-
ther learned via dimension reduction of their own
cooccurrence count matrices or represented as raw
one-hot vectors.

LetV be a vocabulary (it can be lemmas or forms
or morphological attributes (incl. values for POS,
number, case, tense, mood...)) for a given lan-
guage. Correspondingly, let C be the set of con-
texts defined over elements of V . That is, lem-
mas appear in the context of other lemmas, forms
in the context of forms, and attributes in the con-
text of attributes. Then, given a corpus annotated
with lemmas and morphological information, we
can gather the cooccurrence counts in the matrix
M ∈ N|V|×|C|, such that M ij is the frequency of
lemma (form or morphological attributes) Vi ap-
pearing in context Cj in the corpus. Here, we con-
sider plain sequential contexts (i.e. surrounding
bag of “words”) of length 1, although we could
extend them to more structured contexts (Bansal
et al., 2014). Those cooccurrence matrices are then
reweighted by unshifted Positive Point-wise Mu-
tual Information (PPMI) and reduced via Singular
Value Decomposition (SVD). For more informa-
tion on word embedding via matrix factorization,
please refer to (Levy et al., 2015).

Despite its apparent simplicity, this model is as
expressive as more popular state of the art em-
bedding techniques. Indeed, Goldberg and Levy
(2014) have shown that the SkipGram objective
with negative sampling of Mikolov’s Word2vec
(2013) can be framed as the factorization of a
shifted PMI weighted cooccurrence matrix.

This matrix reduction procedure gives us vectors
for lemmas, forms and morphological attributes,
noted R. Note that while a word has only one
lemma and one form, it will often realize several
morphological attributes. We tackle this issue by

simply summing over all the attributes of a word
(noted Morph(w)). If we note rw the vectorial
representation of word w we have:

rw =
∑

a∈Morph(w)

Ra.

Simple additive models have been shown to be
very efficient for compositionally derived embed-
dings (Arora et al., 2017).

2.2 Dependency Parsing
We work with graph-based dependency parsing,
which offers very competitive parsing models as
recently re-emphasized by Dozat et al. (2017) in
the CONLL 2017 shared-task on dependency pars-
ing (Zeman et al., 2017).

Let x = (w1, w2, ..., wn) be a sentence, Tx be
the set of all possible trees over it, ŷ the tree that we
predict for x, and Score(•, •) a scoring function
over sentence-tree pairs :

ŷ = argmax
t∈Tx

Score(x, t).

We use edge factorization to make the inference
problem tractable. A tree score is thus the sum of
its edges scores. We use a simple linear model:

Score(x, t) =
∑
e∈t

θ> · φ(x, e),

where φ(x, e) is a feature vector representing edge
e in sentence x, and θ ∈ Rm is a parameter vector
to be learned.

The vector representation of an edge eij whose
governor is the i-th word wi and dependent is the
j-th word wj , is defined by the outer product of
their respective representations in context. Let ⊕
note vector concatenation, ⊗ the outer product and
wk±1 be the word just before/after wk, then: vi =
wi−1⊕wi⊕wi+1, vj = wj−1⊕wj ⊕wj+1 and

φ(x, eij) = vec(vi ⊗ vj) ∈ R9d2 .

Recall that wi of length d � V is a vector from R.
We use the averaged Passive-Aggressive on-

line algorithm for structured prediction (Crammer
et al., 2006) for learning the model θ. Given a
score for each edge, we use Eisner algorithm (Eis-
ner, 1996) to retrieve the best projective spanning
tree. Even though some languages display a fair
amount of non-projective edges, on average Eisner
algorithm scores higher than Chu-Liu-Edmonds
algorithm (Chu and Liu, 1965) in our setting.
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2.3 Measuring Morpho-Syntactic Complexity

Some languages use morphological cues to encode
syntactic information while other encode more se-
mantic information with them. For example, the
Case feature (especially core cases) is of prime
syntactic importance, for it encodes the type of re-
lation words have with each other. On the contrary,
the Possessor feature (in Hungarian for example) is
more semantic in nature and need not impact sen-
tence structure. This remark would support differ-
ent treatment for each language. However, those
languages tend to be treated equally in works deal-
ing with MRL.

Form to Lemma Ratio A basic measure of mor-
phological complexity is the form per lemma ratio,
we note it F/L. It captures the tendency of words to
inflect in a given language. Because some word
classes tend not to inflect and not all forms are
equally productive, we note F/iL the ratio of form
per inflected lemma. Given a language l with a
lemma vocabulary V l and a form counting func-
tion c : V l → N that returns the number of forms
a lemma can take, we have:

F/L(l) =
1

|V l|
∑
w∈Vl

c(w),

F/iL(l) =
1

|V l
i |

∑
w∈Vl

i

c(w),V l
i = {w ∈ V l|c(w) > 1}

F/L and F/iL do not measure the informative con-
tent of morphology, but simply its productivity.
Bentz et al. (2016) compared five different mea-
sures of morphological complexity amongst which
word entropy and the micro-averaged version of
F/L (they call it TTR) and showed that they all have
high positive correlation given enough data.

Head POS Entropy In order to compare the
morpho-syntactic complexity of different lan-
guages, we introduce a new measure called Head
Part-of-speech Entropy or HPE. The HPE of a to-
ken t represents the amount of information t has
about the part-of-speech of its governor. More
formally, let POS(Gov(t)) be the set of parts-
of-speech that t can depend on, and let πt(p) be
the probability of t actually depending on part-of-
speech p, then the HPE is defined as:

HPE(t) =
∑

p∈POS(Gov(t))

−πt(p)log2(πt(p)).

This is a measure of a token preferencial attach-
ment to its head. A token with a low HPE tends to
attach often to the same part-of-speech, while a to-
ken with a high HPE will attach to many different
parts-of-speech. Thus a language with a low HPE
will tend to encode a lot of syntactic information
in the morphology, rather than in word order say.

For example, a noun can attach to another noun
like a genitive, or to a verb as a subject or object,
or even to an adjective in the case of transitive ad-
jective. French nouns do not inflect for case, thus
attachment to another noun or verb can only be in-
fered from words relative positions. On the con-
trary, Gothic nouns do inflect for case, thus mak-
ing verb or noun attachment clear directly from the
morphological analysis.

We compute the HPE of a language as the aver-
aged HPE of its attributes sets over a given corpus.
Likewise, we use the empirical counts as a surro-
gate for c in F/L and F/iL.

3 Experiments

In order to test the hypothesis that morphologi-
cal representations contain syntactic information
crucial for dependency parsing of morphologically
rich languages, but that this information is not
equally distributed across MRL, we run experi-
ments on data from the Universal Dependencies
(Nivre et al., 2016) project.

Data Description For conciseness, we focused
on eleven languages that display varying degrees of
morphological complexity and belong to four dif-
ferent language families. Basque (eu) is an isolate
and it is an ergative language. English (en), Gothic
(got), Danish (da) and Swedish (sv) are Germanic
languages, and French (fr) and Romanian (ro) are
Romance languages (Indo-European). Finnish (fi),
Estonian (et) and Hungarian (hu) are Finno-Ugric
languages. Hebrew (he) is a Semitic language. Ba-
sic statistics are provided in Table 1.

Experimental Settings For the experiments we
use the train/dev/test data provided by UD 2.0.
Basic statistics about the data are reported in the
appendix. Lemmas and forms are embedded in
150 dimensions, while Morphological attributes
are embedded in 50 dimensions, because they are
much less numerous (less than 100). All embed-
dings are induced on their language respective train
set only using a context window of size 1 (i.e. the
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da en et eu fi fr got he hu ro sv
Train 4383 12543 2263 5396 12217 14553 3387 5241 910 8043 4303
POS 17 17 16 16 15 17 14 16 16 17 16
Feats 44 35 58 69 88 36 40 48 73 59 39
F/L 1.44 1.39 1.60 2.32 2.19 1.38 2.44 1.83 1.46 2.03 1.59
F/iL 2.80 2.76 3.35 4.29 4.68 3.15 4.20 3.39 3.03 3.76 2.91
HPE 1.07 1.12 0.55 0.51 0.57 0.87 0.60 1.01 0.60 0.71 0.84

Table 1: Basic datasets statistics. The first line gives the number of train sentences for each language.
The second and third give the number of part-of-speech and of morphological attribute values for each
language. The fourth and fifth lines reports forms per lemma ratios. Last line gives the HPE.

da en et eu fi fr got he hu ro sv

Lem OH 58.47 67.05 44.96 60.27 56.06 70.93 60.63 65.70 47.32 68.69 61.30
Emb 68.33 75.21 59.23 69.59 66.90 71.90 71.14 72.52 51.04 72.83 73.27

Form OH 56.92 65.83 41.36 57.67 51.50 70.35 58.68 67.08 44.35 67.2 58.54
Emb 70.64 75.13 57.36 65.64 60.38 76.05 68.72 72.68 55.06 73.21 72.72

Morph OH 73.76 76.27 71.21 73.81 75.58 78.67 76.88 77.65 69.67 76.57 76.42
Emb 73.27 76.17 70.20 73.21 73.33 78.79 76.37 76.95 69.38 76.32 76.02

Table 2: UAS scores for parsers using lemmas (Lem), word forms (Form) or morphological attributes
(Morph) representations as features. For each type, we report results using one-hot representation (OH)
and results using embeddings (Emb).

directly preceding and following words).
Parsers are trained for 10 iterations using ei-

ther lemma, form or morphological representa-
tions, and we pick the best iteration on the basis
of UAS on the development set.

While we used gold lemmas as provided in the
corpora, we ran two experiments for morpholog-
ical attributes, one with gold attributes and one
with predicted attributes. Morphological attributes
are predicted with a simple multinomial logistic
regression per attribute (POS, Tense, Case, Gen-
der...), where we add a special undef value (ex-
cept for POS) to represent the lack of an attribute
(e.g., nouns have no Tense in English). The mod-
els predict attribute values for the center word of
trigrams represented by feature vectors encoding
word prefixes and suffixes of length 1, 2 and 3,
word length and capitalization. We used the lo-
gistic regression implemented in the Scikit-Learn
(Pedregosa et al., 2011) library with the default set-
tings. It can output an argmaxed decision or a soft-
maxed decision, thus we tried both as input to the
parser. The argmaxed decision gives a vector of ze-
ros and ones, while the softmaxed decision gives a
continuous vector with each each attributes sum-
ming to one (the probability assigned to each pos-
sible value for Gender like Masculine, Feminine,

Neuter and Undef must sum to one). Then those
vectors are used unchanged for the one-hot repre-
sentation or passed through an embedding matrix
for the embedding representation.

Results For clarity, we focus on comparing re-
sults using form embeddings and gold morpholog-
ical representations. They are given in Table 2. Be-
cause the analysis carries to the labeled case, we
stick to unlabeled scores (UAS) for the analysis. A
more complete table is provided in the appendix as
well as a complete labeled accuracy score (LAS)
table. Morphological complexity measures are
also reported.

One-hot gold morphological attributes consis-
tently outerperform form embeddings. This is ex-
pected since forms embedding were trained on
much fewer data than usually considered neces-
sary. However, improvements are not consistent
across languages, ranging from 1.14 point for En-
glish to 15.20 points for Finnish. While those dif-
ferences are not explained by morphological pro-
ductivity alone (Figure 1a), a measure of prefer-
ential attachment gives a good account of them
(Figure 1b). Those inconsistencies become even
more striking, considering results using predicted
attributes. We notice that despite a general drop
of performance of 5-12 points, predicted attributes
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Figure 1: Accuracy differences (y-axis) between parsers using form embeddings and parsers using one-
hot attributes, with respect to morphological complexity (x-axis). Red dots represent the gold attributes
scores and blue squares the predicted attributes scores.

still perform significantly better than form em-
beddings for those morphologically rich languages
that have an HPE lower than 0.65 as depicted on
Figure 1b.

Figures 1a and 1b plot the differences in parsing
scores. For each language, the red dot corresponds
to the score difference between using form embed-
dings and gold attributes one-hot representations,
and the blue square corresponds to the score differ-
ence between using the same form embeddings and
predicted attributes softmax representations (the
complete scores are given in the appendix). Fig-
ure 1a plots those differences with regard to the
form per inflected lemma ratio (F/iL) and Figure
1b plots those differences with regard to the head
POS entropy (HPE).

Both Figures show trends. Score differences
seem to increase with F/iL and decrease with HPE.
But while the F/iL plot suffers outliers (Hungarian,
Estonian and Romanian), the HPE plot shows a
clear boundary between languages benefiting fully
from morphological information (even predicted)
and those benefiting primarily from reducing data
sparsity. While Hebrew seems to be an outlier, it
might be due to its annotation style, where attached
prepositions, articles and possessive markers are
treated as independent words rather than morpho-
logical inflection as other languages do, thus artifi-
cially increasing the parsing accuracy with a lot of
trivial dependencies.

This shows that indeed, HPE is a good measure

of the syntactic informativeness of a language mor-
phology, and that it can help deciding between en-
coding morphological information or just reducing
data sparsity. Furthermore, it seems to be link to
the distinction that Kibort and Corbett (2010) do
between morphosyntax and morphosemantic.

4 Conclusion

We have contributed a new measure of morpho-
syntactic complexity (HPE) that helps distinguish-
ing languages that use morphology for syntactic
purpose from languages that use morphology to
encode more semantic information. We showed
that this measure correlates much more with differ-
ences in parsing results using morphological rep-
resentations than the simple form per lemma ratio.
It could thus be used to help designing language
specific word representations.

It is worth mentioning that we focused here on
dependent marked head selection. It would be
interesting to have a similar measure for head-
marking situations with dependencies marked on
the governor. We leave it for future work.
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da en et eu fi fr got he hu ro sv
POS 87.37 87.24 84.49 86.09 86.14 90.60 90.44 90.93 88.43 90.64 89.23
Attributes 98.02 97.74 96.20 97.56 97.09 97.60 96.00 97.84 92.76 97.76 96.88
Form Emb 70.64 75.13 57.36 65.64 60.38 76.05 68.72 72.68 55.06 73.21 72.72

M
or

ph

Hard OH 64.69 69.32 57.16 64.51 64.33 72.82 69.94 71.60 61.80 71.36 67.99
Soft OH 65.43 71.36 58.76 67.02 66.84 73.29 70.86 72.75 61.91 72.03 69.48
Hard Emb 64.19 69.51 55.53 64.10 62.58 72.28 69.29 71.51 59.62 70.86 67.82
Soft Emb 65.33 70.75 57.24 66.18 65.04 73.18 70.46 71.85 60.64 71.34 68.60

Table 3: UAS scores for parsers using predicted morphological attributes. The two first rows are POS
and averaged attributes prediction accuracy. The third row reports UAS using form representations for
comparison purpose. Rows 4 to 7 give UAS using morphological representations, either one-hot or em-
bedding. Regressors output a probability distribution per morphological feature, we either use those soft
decision as input for the parser (Soft) or apply argmax first (Hard).

da en et eu fi fr got he hu ro sv

Lem OH 48.09 57.09 25.30 45.96 40.78 64.88 46.85 54.91 27.80 56.89 48.61
Emb 62.47 70.95 48.17 62.52 59.34 65.62 61.37 64.41 41.59 64.76 65.70

Form OH 45.12 54.97 21.29 40.53 34.59 61.95 45.19 55.82 25.60 53.83 45.00
Emb 65.09 71.20 45.79 57.42 52.67 70.81 59.35 66.92 44.30 65.13 64.93

Morph OH 69.19 72.32 64.06 68.19 71.00 73.92 71.04 72.66 64.31 68.94 69.97
Emb 68.71 72.22 62.81 67.30 68.70 73.96 70.41 71.77 63.45 68.76 69.69

Table 4: LAS scores for parsers using lemmas (Lem), forms (Form) or morphosyntactic attributes (Morph)
representations as features. Representations are either embeddings or one-hot.

da en et eu fi fr got he hu ro sv
Form Emb 65.09 71.20 45.79 57.42 52.67 70.81 59.35 66.92 44.30 64.13 65.93

M
or

ph

hard OH 58.33 62.64 43.80 55.81 54.42 66.66 59.73 63.74 52.41 62.10 60.29
soft OH 59.68 65.59 47.05 59.43 58.74 67.39 62.36 66.25 53.63 63.26 62.44
hard Emb 57.72 62.73 42.22 55.06 52.79 66.25 59.14 63.57 49.99 61.67 60.03
soft Emb 59.13 64.97 45.64 58.25 56.51 67.00 62.02 65.33 52.61 62.65 61.47

Table 5: LAS scores for parsers using predicted morpho-syntactic attributes. First row is LAS using form
representation. Rows 2 to 5 are LAS using morphological representation, either one-hot or embedding
and either hard decisions or soft decisions.

Appendix A: Supplementary Tables

Table 3 reports results for the predicted attributes
experiment. The POS and averaged attributes pre-
diction accuracies are given. Are also reported,
scores for the four representation regimes of pre-
dicted attributes. Predictions can be either prob-
ability distributions (Soft) or argmax (Hard) and
either used as such (OH) or passed through an em-
bedding (Emb).

Table 4 reports all the labeled accuracy scores

for parsers using either gold lemmas, forms
or gold attributes, either as one-hot vectors or as
dense embeddings.

Table 5 reports results for the predicted at-
tributes experiment. Are also reported, scores for
the four representation regimes of predicted at-
tributes as in table 4. Predictions can be either
probability distributions (Soft) or argmax (Hard)
and either used as such (OH) or passed through an
embedding (Emb).


