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Abstract

We propose a simple deep neural model for
nested named entity recognition (NER). Most
NER models focused on flat entities and ig-
nored nested entities, which failed to fully cap-
ture underlying semantic information in texts.
The key idea of our model is to enumerate all
possible regions or spans as potential entity
mentions and classify them with deep neural
networks. To reduce the computational costs
and capture the information of the contexts
around the regions, the model represents the
regions using the outputs of shared underly-
ing bidirectional long short-term memory. We
evaluate our exhaustive model on the GENIA
and JNLPBA corpora in biomedical domain,
and the results show that our model outper-
forms state-of-the-art models on nested and
flat NER, achieving 77.1% and 78.4% respec-
tively in terms of F-score, without any external
knowledge resources.

1 Introduction

Named entity recognition (NER) is a task of find-
ing entities with specific semantic types such as
Protein, Cell, and RNA in text. NER is generally
treated as a sequential labeling task, where each
token is tagged with a label that corresponds to its
surrounding entity. However, when entities over-
lap or are nested within one another, treating the
task as a sequential labeling task becomes diffi-
cult because an individual token can be included
in several entities and defining a label for each to-
ken can be difficult. For example, in the following
phrase from the GENIA corpus (Kim et al., 2004),
four levels of nested entities occur and the token
“IL-2” is a Protein on its own, and it is also a part
of two other Proteins and one DNA.

[[[[IL-2]Protein receptor]Protein (IL-2R) alpha
chain]Protein gene]DNA

NER has drawn considerable attention as the
first step towards many natural language pro-
cessing (NLP) applications including relation ex-
traction (Miwa and Bansal, 2016), event extrac-
tion (Feng et al., 2016), co-reference resolu-
tion (Fragkou, 2017; Stone and Arora, 2017), and
entity linking (Gupta et al., 2017). Much work on
NER, however, has ignored nested entities and in-
stead chosen to focus on the non-nested entities,
which are also referred to as flat entities. Only a
few studies target the nested named entity recog-
nition (Muis and Lu, 2017; Lu and Roth, 2015;
Finkel and Manning, 2009).

Recent successes in neural networks have
shown impressive performance gains on
flat named entity recognition in several do-
mains (Lample et al., 2016; Ma and Hovy, 2016;
Gridach, 2017; Strubell et al., 2017). Such models
achieve state-of-the-art results without requiring
any hand crafted features or external knowledge
resources. In contrast, fewer approaches have
emphasized the nested entity recognition problem.
Existing approaches to nested NER (Shen et al.,
2003; Alex et al., 2007; Finkel and Manning,
2009; Lu and Roth, 2015; Xu et al., 2017; Muis
and Lu, 2017) are mostly feature-based and
thus suffer from heavy feature engineering. In
this paper, we present a novel neural exhaustive
model that reasons over all the regions within a
specified maximum size. The model represents
each region using the outputs of bidirectional long
short-term memory (LSTM) by combining the
boundary representation of a region and inside
representation that simply treats all the tokens in
a region equally by taking the average of LSTM
outputs corresponding to tokens inside the region.
It then classifies regions into their entity types or
non-entity. Unlike the existing model that relies
on token-level labels, our model directly employs
an entity type as the label of a region. The model
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does not rely on any external knowledge resources
or NLP tools like part-of-speech taggers. We
evaluated our model on the GENIA and JNLPBA
corpora in the biomedical domain and the model
achieved 77.1% and 78.4% respectively in terms
of F-score, which are the new state-of-the-art
performances on the corpora.

2 Neural Exhaustive Model

The proposed model exhaustively considers all
possible regions in a sentence using a single neu-
ral network; we thus call the model neural exhaus-
tive model. Our model is built upon a shared bidi-
rectional LSTM layer. The model enumerates all
possible regions or spans that can include all the
nested entities. It then represent the regions by us-
ing the outputs of the LSTM layer and detect the
entities from the regions. The number of possible
regions depend on the predefined maximum size.
In this section, we describe the architecture of our
neural exhaustive model in detail, which is sum-
marized in Figure 1.

2.1 Word Representation

We represent each word by concatenating word
embeddings and character-based word representa-
tions. Pre-trained word embeddings are used to
initialize word embeddings (Chiu et al., 2016). For
the character-based word representations, we en-
code the character-level information of each word
following the successes of Ma and Hovy (2016)
and Lample et al. (2016) that utilized character
embeddings for the flat NER task. The embedding
of each character in a word is randomly initial-
ized. We feed the sequence of character embed-
dings comprising a word to a bidirectional LSTM
layer and concatenate the forward and backward
output representations to obtain the word repre-
sentations.

2.2 Exhaustive Combination using LSTM

Given an input sentence sequence X =
{x1, x2, ...xn}, where xi denotes the i-th word and
n denotes the number of words in the sentence se-
quence, the distributed embeddings of words and
characters are fed into a bidirectional LSTM layer
that computes the hidden vector sequence in for-
ward

−→
h =

{−→
h1,
−→
h2, . . . ,

−→
hn

}
and backward

←−
h ={←−

h1,
←−
h2, . . . ,

←−
hn

}
manners. We concatenate the

forward and backward outputs as hi =
[−→
hi;
←−
hi

]
,

where [; ] denotes concatenation.
With the LSTM output hi, our exhaustive model

shares the underlying representations of all possi-
ble regions by exhaustive combination. We gen-
erate all possible regions with the sizes less than
or equal to the maximum region size L. We use
a region(i, j) to represent the region from i to j
inclusive, where 1 ≤ i < j ≤ n and j − i < L.

2.3 Region Representation and Classification
We represent the region by separating the region
into the boundary and inside representations. The
boundary representation is important to capture
the contexts surrounding the region. We sim-
ply rely on the outputs of the bidirectional LSTM
layer corresponding to the boundary words of a
target region for this purpose. For the inside rep-
resentation, we simply average the outputs of the
bidirectional LSTM layer in the region to treat
them equally. We include the outputs for the
boundary words to guarantee that the inside rep-
resentation has corresponding outputs. In sum-
mary, we obtain the representation R(i, j) of the
region(i, j) as follows:

R(i, j) =

[
hi;

1

j − i+ 1

j∑
k=i

hk;hj

]
. (1)

We then feed the representation of each seg-
mented region to a rectified linear unit (ReLU) as
an activation function. Finally, the output of the
activation layer is passed to a softmax output layer
to classify the region into a specific entity type or
non-entity.

The exhaustive model represents all possible re-
gions based on maximum entity length and clas-
sify all of them. The overall number of classifi-
cations for each sentence in the exhaustive model
is in O(lmn), where l is a total number of words
in the sentence, m is the maximum entity length
and n is the total number of possible entity types.
Finkel and Manning (2009) and Alex et al. (2007)
proposed featured-based approaches for handling
nested NER. The time complexity of their mod-
els are expensive, i.e., cubic in the number of the
words in the sentence. The exhaustive approach is
fast since we run the LSTM once and the classifi-
cations can be performed in parallel on the combi-
nations created from the LSTM outputs.

The exhaustive model classify each region inde-
pendently unlike word-level taggers. This makes
the model flexible so that it can incorporate
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Figure 1: Architecture of the proposed neural exhaustive model. The model considers all possible regions
up to a maximum size, but we depict here only a small subset for brevity. “IL-2”, “IL-2 receptor”, “IL-2
receptor (IL-2R) alpha”, and “IL-2 receptor (IL-2R) alpha chain gene” are nested entities.

phrase-level dictionary information directly and
we can tune biases for each type unlike CRF. We
leave this evaluation to our future work.

3 Experimental Settings

We evaluated our exhaustive model on GE-
NIA1 (Kim et al., 2003) and JNLPBA2 (Kim et al.,
2004) datasets to provide empirical evidence for
the effectiveness of our model both in nested and
flat NER. Table 1 shows the statistics of GENIA
dataset.

Our model was implemented in Chainer3 deep
learning framework. We employed pre-trained
word embeddings that were trained on MEDLINE
abstracts (Chiu et al., 2016), which included 200-
dimensional embeddings of 2,231,686 vocabulary.
We used ADAM (Kingma and Ba., 2015) for
learning with a mini-batch size of 100. We used
the same hyper-parameters in all the experiments;
we set the dimension of word embedding to 200,
the dimension of character embedding to 25, the
hidden layer size to 200, the gradient clipping to
5, and the ADAM hyper-parameters to its default
values (Kingma and Ba., 2015).

1http://www.geniaproject.org/
genia-corpus/term-corpus

2http://www.nactem.ac.uk/tsujii/GENIA/
ERtask/report.html

3https://chainer.org/

Item Train Dev Test
Documents 1,599 189 212
Sentences 15,022 1,669 1,855
Split(%) 81 9 10
DNA 7,921 1061 1,283
RNA 730 140 117-
protein 29,032 2,338 3,098
cell line 3,149 340 460
cell type 6,021 563 617
outermost entity 42,462 4,020 4,942
nested level 4 3 3
entity avg. length 2.87 3.13 2.93
multi-token entity 33951 3554 4203
overall nested entity 8301 803 1202
overall entity 46,853 4,442 5,575

Table 1: Statistics of GENIA

To deeply understand the model parameters, we
compared the models in different regions. We
chose the maximum region size from 3, 6, 8 and
10. We also employed different region repre-
sentation. We tried only the boundary represen-
tation (boundary), only the inside representation
(inside), and our region representation (bound-
ary+inside).

We employed precision, recall, and F-score to

http://www.geniaproject.org/genia-corpus/term-corpus
http://www.geniaproject.org/genia-corpus/term-corpus
http://www.nactem.ac.uk/tsujii/GENIA/ERtask/report.html
http://www.nactem.ac.uk/tsujii/GENIA/ERtask/report.html
https://chainer.org/
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Model P(%) R(%) F(%)
Exhaustive Model 93.2 64.0 77.1
Ju et al. (2018) 78.5 71.3 74.7
Katiyar and Cardie 76.7 71.1 73.8
Muis and Lu (2017) 75.4 66.8 70.8
Lu and Roth (2015) 72.5 65.2 68.7
Finkel and Manning 75.4 65.9 70.3

Table 2: Performance comparison of the state-of-
the-art nested NER models on the test dataset.

Entity Level P(%) R(%) F(%)
Single-token 91.6 58.4 69.9
Multi-token 95.9 65.8 77.9
Top Level 92.7 69.8 79.3
Nested 94.3 59.3 72.7
All entities 93.2 64.0 77.1

Table 3: Performances of our model on different
entity level on the test dataset.

evaluate our model. We also compared the perfor-
mances for single-token v.s. multi-token entities
and top-level v.s. nested entities.

4 Results and Discussions

4.1 Nested NER

Table 2 shows the comparison of our model with
several previous state-of-the nested NER models
on the test dataset. Our model outperforms the
state-of-the-art models in terms of F-score. Our
results on Table 2 is based on bidirectional LSTM
with character embeddings and the maximum re-
gion size is 10.

Table 3 describes the performances of our
model on different entity levels on the test dataset.
The model performs well on multi-token and top-
level entities. This is interesting because they are
often considered difficult for sequential labeling
models.

Table 4 shows the performances on the five
entity types on the test dataset. We here show
the performance by Finkel and Manning (2009)
(F&M) for the reference. Our system performs
better than their model except for the RNA type.

4.2 Ablation Tests

We show the differences in the performance on the
development dataset to compare the possible sce-
narios of the proposed approach and to report the

Label P(%) R(%) F(%) F&M F(%)
DNA 92.6 58.7 71.8 65.2
RNA 98.8 57.1 72.4 74.7
cell line 94.6 53.1 67.9 64.0
cell type 88.4 70.0 78.1 67.1
protein 94.1 70.8 80.8 73.8

Table 4: Categorical performances on the GENIA
test dataset.

Region Ratio(%) P(%) R(%) F(%)
size = 3 89.6 92.9 69.8 79.5
size = 6 98.9 93.6 66.7 77.5
size = 8 99.4 93.7 66.5 77.6
size = 10 100 93.5 67.6 78.2

Table 5: Performance of our model with differ-
ent maximum region sizes on the development
dataset. Ratio refers to the coverage ratio of en-
tity mentions.

Setting P(%) R(%) F(%)
Bi-LSTM 94.1 65.7 77.1
Bi-LSTM + Character? 93.5 67.6 78.2
Boundary? 94.1 54.3 68.5
Inside? 93.2 46.4 61.2
Boundary+Inside? 93.5 67.6 78.2

Table 6: Performance of our model with different
model architectures on the development dataset. ?

indicates results using character embeddings.

Label P(%) R(%) F(%)
DNA 95.2 56.8 71.4
RNA 96.1 61.4 75.2
cell line 86.2 44.1 58.8
cell type 96.7 61.5 75.3
protein 97.1 72.2 82.6
overall 96.4 66.8 78.4

Table 7: Categorical and overall performances of
the JNLPBA test dataset.

importance of each component in our exhaustive
model.

Table 5 shows the coverage ratio and the per-
formance with different maximum region sizes.
Since the average entity mention length of GE-
NIA dataset is less than 4, the system can cover
almost all the entities for the maximum sizes of
6 or more. The longer maximum region size is



2847

desirable to cover all the mentions, but it requires
more computational costs. Fortunately, the per-
formance did not degrade with the long maximum
region size, despite the fact that it introduces more
out-of-entity regions.

Ablations on character embeddings in Table 6
also show the importance of character embed-
dings. It also shows that both the boundary infor-
mation and the inside information, i.e., average of
the embeddings in a region, are necessary to im-
prove the performance.

4.3 Flat NER

We evaluated our model on JNLPBA as a flat
dataset, where nested and discontinuous entities
are removed. Table 7 shows the performances of
our model on JNLPBA dataset. We compared our
result with the state-of-the-art result of Gridach
(2017) which achieved 75.8% in F-score, where
our model obtained 78.4% in terms of F-score.

5 Related Work

Interests in nested NER detection have increased
in recent years, but it is still the case that NER
models deals with only one flat level at a time.
Zhou et al. (2004) detected nested entities in a
bottom-up way. They detected the innermost flat
entities and then found other NEs containing the
flat entities as substrings using rules derived from
the detected entities. The authors reported an
improvement of around 3% in the F-score un-
der certain conditions on the GENIA corpus (Col-
lier et al., 1999). Katiyar and Cardie (2018) pro-
posed a neural network-based approach that learns
hypergraph representation for nested entities us-
ing features extracted from a recurrent neural net-
work (RNN). The authors reported that the model
outperformed the existing state-of-the-art feature-
based approaches.

Recent studies show that the conditional ran-
dom fields (CRFs) can significantly produce
higher tagging accuracy in flat (Athavale et al.,
2016) or nested (stacking flat NER to nested rep-
resentation) (Son and Minh, 2017) NERs. Ju
et al. (2018) proposed a novel neural model to ad-
dress nested entities by dynamically stacking flat
NER layers until no outer entities are extracted.
A cascaded CRF layer is used after the LSTM
output in each flat layer. The authors reported
that the model outperforms state-of-the-art results
by achieving 74.5% in terms of F-score. Finkel

and Manning (2009) proposed a tree-based rep-
resentation to represent each sentence as a con-
stituency tree of nested entities. All entities were
treated as phrases and represented as subtrees fol-
lowing the whole tree structure and used a CRF-
based approach driven by entity-level features to
detect nested entities. We demonstrate that the
performance can be improved significantly with-
out CRFs, by training an exhaustive neural model
that learns which regions are entity mentions and
how to best classify the regions.

6 Conclusion

This paper presented a neural exhaustive model
that considers all possible regions exhaustively for
nested NER. The model obtains the representation
of each region from an underlying shared LSTM
layer, and it represents the region by concatenat-
ing boundary representations of the region and in-
side representation that averages embeddings of
words in the region. It then classifies the region
into its entity type or non-entity. The model does
not depend on any external NLP tools. In the ex-
periment, we show that our model learns to detect
nested named entities from the generated mention
candidates of all possible regions. Our exhaustive
model outperformed existing models with a sig-
nificant margin in terms of F-score in both flat and
nested NER.

For future work, we would like to investigate the
use of region-level information. We also consider
modeling the dependencies between regions.
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