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Abstract

There have been several recent attempts to im-
prove the accuracy of grammar induction sys-
tems by bounding the recursive complexity
of the induction model (Ponvert et al., 2011;
Noji and Johnson, 2016; Shain et al., 2016; Jin
et al., 2018). Modern depth-bounded gram-
mar inducers have been shown to be more ac-
curate than early unbounded PCFG inducers,
but this technique has never been compared
against unbounded induction within the same
system, in part because most previous depth-
bounding models are built around sequence
models, the complexity of which grows ex-
ponentially with the maximum allowed depth.
The present work instead applies depth bounds
within a chart-based Bayesian PCFG inducer
(Johnson et al., 2007b), where bounding can
be switched on and off, and then samples trees
with and without bounding.! Results show that
depth-bounding is indeed significantly effec-
tive in limiting the search space of the inducer
and thereby increasing the accuracy of the re-
sulting parsing model. Moreover, parsing re-
sults on English, Chinese and German show
that this bounded model with a new inference
technique is able to produce parse trees more
accurately than or competitively with state-of-
the-art constituency-based grammar induction
models.

1 Introduction

Unsupervised grammar inducers hypothesize hi-
erarchical structures for strings of words. Us-
ing context-free grammars (CFGs) to define these
structures, previous attempts at either CFG param-
eter estimation (Carroll and Charniak, 1992; Sch-
abes and Pereira, 1992; Johnson et al., 2007b) or
directly inducing a CFG as well as its probabilities
(Liang et al., 2009; Tu, 2012) have not achieved

'"The public repository can be found at https://
github.com/lifengjin/dimi_emnlp18.

Finale Doshi-Velez
Harvard University
The Ohio State University finale@seas.harvard.edu

Timothy Miller
Boston Children’s Hospital &
Harvard Medical School
timothy.miller@childrens.harvard.edu

Lane Schwartz
Department of Linguistics

University of Illinois at Urbana-Champaign

lanes@illinois.edu

as much success as experiments with other kinds
of formalisms (Klein and Manning, 2004; Seginer,
2007; Ponvert et al., 2011). The assumption has
been made that the space of grammars is so big
that constraints must be applied to the learning
process to reduce the burden of the learner (Gold,
1967; Cramer, 2007; Liang et al., 2009).

One constraint that has been applied is recur-
sion depth (Schuler et al., 2010; Ponvert et al.,
2011; Shain et al., 2016; Noji and Johnson, 2016;
Jin et al., 2018), motivated by human cognitive
constraints on memory capacity (Chomsky and
Miller, 1963). Recursion depth can be defined in
a left-corner parsing paradigm (Rosenkrantz and
Lewis, 1970; Johnson-Laird, 1983). Left-corner
parsers require only minimal stack memory to pro-
cess left-branching and right-branching structures,
but require an extra stack element to process each
center embedding in a structure. For example, a
left-corner parser must add a stack element for
each of the first three words in the sentence, For
parts the plant built to fail was awful, shown in
Figure 1. These kinds of depth bounds in sentence
processing have been used to explain the relative
difficulty of center-embedded sentences compared
to more right-branching paraphrases like It was
awful for the plant’s parts to fail.

However, depth-bounded grammar induction
has never been compared against unbounded in-
duction in the same system, in part because most
previous depth-bounding models are built around
sequence models, the complexity of which grows
exponentially with the maximum allowed depth.
In order to compare the effects of depth-bounding
more directly, this work extends a chart-based
Bayesian PCFG induction model (Johnson et al.,
2007b) to include depth bounding, which allows
both bounded and unbounded PCFGs to be in-
duced from unannotated text.

Experiments reported in this paper confirm that
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Figure 1: Stack elements after the word the in a left-
corner parse of the sentence For parts the plant built to
fail was awful.

depth-bounding does empirically have the effect of
significantly limiting the search space of the in-
ducer. Analyses of this model also show that the
posterior samples are indicative of implicit depth
limits in the data. This work also shows for the
first time that it is possible to induce an accurate
unbounded PCFG from raw text with no strong
linguistic constraints. With a novel grammar-
level marginalization in posterior inference, com-
parisons of the accuracy of bounded grammar in-
duction using this model against other recent con-
stituency grammar inducers show that this model
is able to achieve state-of-the-art or competitive
results on datasets in multiple languages.

2 Related work

Induction of PCFGs has long been considered
a difficult problem (Carroll and Charniak, 1992;
Johnson et al., 2007b; Liang et al., 2009; Tu,
2012). Lack of success for direct estimation was
attributed either to a lack of correlation between
the linguistic accuracy and the optimization objec-
tive (Johnson et al., 2007b), or the likelihood func-
tion or the posterior being filled with weak local
optima (Smith, 2006; Liang et al., 2009). Much of
this grammar induction work used strong linguisti-
cally motivated constraints or direct linguistic an-
notation to help the inducer eliminate some local
optima. Schabes and Pereira (1992) use brack-
eted corpora to provide extra structural informa-
tion to the inducer. Use of part-of-speech (POS)

sequences in place of word strings is popular in the
dependency grammar induction literature (Klein
and Manning, 2002, 2004; Berg-Kirkpatrick et al.,
2010; Jiang et al., 2016; Noji and Johnson, 2016).
Combinatory Categorial Grammar (CCG) induc-
tion also relies on POS tags to assign basic cat-
egories to words (Bisk and Hockenmaier, 2012,
2013), among other constraints such as CCG com-
binators. Other linguistic constraints such as con-
straints of root nodes (Noji and Johnson, 2016),
attachment rules (Naseem et al., 2010) or acoustic
cues (Pate, 2013) have also been used in induction.

Depth-like constraints have been applied in
work by Seginer (2007) and Ponvert et al. (2011)
to help with the search. Both of these systems
are successful in inducing phrase structure trees
from only words, but only generate unlabeled con-
stituents.

Depth-bounds are directly used by induction
models in work by Noji and Johnson (2016), Shain
et al. (2016) and Jin et al. (2018), and are shown
to be beneficial to induction. Noji and John-
son (2016) apply depth-bounding to dependency
grammar induction with POS tags. However the
constituency parsing evaluation scores they report
are low compared to other induction systems. The
model in Shain et al. (2016) is a hierarchical se-
quence model instead of a PCFG. Although depth-
bounding limits the search space, the sequence
model has more parameters than a PCFG, there-
fore benefits brought by depth-bounding may be
offset by this larger parameter space.

Jin et al. (2018) also apply depth-bounding
to a grammar inducer and induce depth-bounded
PCFGs and show that the depth-bounded gram-
mar inducer can learn labeled PCFGs competitive
with state-of-the-art grammar inducers that only
produce unlabeled trees. However, because of
the cognitively motivated left-corner HMM sam-
pler used in the model, its state space grows expo-
nentially with the maximum depth and polynomi-
ally with the number of categories. This renders
the transition matrix and the trellis of the inducer
too big to be practical in exploring models with
higher depth limits, let alone unbounded models.
By using Gibbs sampling for PCFGs (Goodman,
1998; Johnson et al., 2007b), here described as the
inside-sampling algorithm, the state space of the
model proposed in this work grows only polyno-
mially with both the maximum depth and the num-
ber of categories. This allows experiments with
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more complex models and also achieves a faster
processing speed due to an overall smaller state
space.

3 Proposed model

The model described in this paper follows Jin
et al. (2018) to induce a depth-bounded PCFG by
first inducing an unbounded PCFG and then de-
terministically deriving the parameters of a depth-
bounded PCFG from it. The main difference be-
tween this model and the model in Jin et al. (2018)
is that they use the bounded PCFG to derive pa-
rameters for a factored HMM sequence model,
where a forward-filtering backward-sampling al-
gorithm (Carter and Kohn, 1996) can be used in
inference. In contrast, the model described in
this paper transforms the unbounded PCFG into a
bounded PCFG, and then uses the inside-sampling
algorithm (Goodman, 1998) to sample from the
posterior of the parse trees given the bounded
PCFG in inference. This section first gives an
overview of the model, then briefly reviews the
depth-bounding algorithm for PCFGs (van Schi-
jndel et al., 2013; Jin et al., 2018), and finally de-
scribes the inference.

As defined in Jin et al. (2018), a Chomsky nor-
mal form (CNF) unbounded PCFG is a matrix G
of binary rule probabilities with one row for each
of C parent symbols ¢ and one column for each of
C?+W combinations of left and right child sym-
bols a and b, which can be pairs of nonterminals
or observed words from vocabulary W followed by
null symbols L:

G= ZP(c—wzblc)(SC G, 06,7 (1)

a,b,c

where J. is a Kronecker delta (a vector with value
one at index ¢ and zeros elsewhere) and ® is a Kro-
necker product (multiplying two matrices” of di-
mension m X n and o X p into a matrix of dimen-
sion mo X np composed of products of all pairs of
elements in the operands). A deterministic depth-
bounding transform ¢ is then applied to G to create
a depth-bounded version Gp. A depth-bounded
grammar is composed of a set of side- and depth-
specific distributions Gy 4:

Gp= ), D,yGE" (2
se(1,2) de(1..D)

2or vectors in case n and p equal one

where side s € {1, 2} indicates left (1) or right (2)
child. Categories in Gp are made to be side- and
depth-specific using transforms D 4 and ES,d:3

Dg=06,064®1 (3a)
El,d:61®5d®1®52®5d®1 (3b)
E2i=0106410I06,®0;®1 (3¢)

The generative story of this model is as follows.
The model first generates an unbounded grammar
G from the Dirichlet prior. Distributions over ex-
pansions P(c — a b | ¢) of each category c in this
model are drawn from a Dirichlet with symmetric
parameter 3:

G ~ Dirichlet(B) 4)

Trees for sentences 1..N are each drawn from a
PCFG given parameters Gp = ¢(G):

71.~ ~ PCFG(Gp) 5

Each tree 7 is a set {t¢, 71, T2, T11,T12, 721, ...} Of
category labels 7, where 1 € {1,2}" is a Gorn ad-
dress specifying a path of left or right branches
from the root. Categories of every pair of left and
right children 7,1, 7,7 are drawn from a multino-
mial defined by the grammar Gp and the category
of the parent 7,:

Tyl T2 ~ Multinomial((ST”T Gp) (6)

where Pg,(ab|w) =Pg,(ab| L) =[a,b=1,1]
for w € W, and [-] is an indicator function.

In inference, a Gibbs sampler can be used to it-
eratively draw samples from the conditional pos-
teriors of the unbounded grammar and the parse
trees. For example, at iteration ¢:

G'~ PG| 1] y. 01 . B) ()
) ®)

3 3 t
Ty~ PE NG O

where o, denotes the terminals in 7. These distri-
butions will be defined in Section 3.2.

3.1 Depth-bounding a PCFG

This section summarizes the depth-bounding func-
tion ¢ for PCFGs described in van Schijndel et al.
(2013) and Jin et al. (2018). Depth-bounding es-
sentially creates a set of PCFGs with depth- and
side-specific categories where no tree that exceeds

3Note that this correctly stipulates depth increases for left
children of right children.
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its depth bound can be generated by the bounded
grammar. Because depth increases when a left
child of a right child of some parent category per-
forms non-terminal expansion, the probability of
such expansions at the maximum depth limit as
well as non-depth-increasing expansions beyond
the maximum depth limit must be removed from
the unbounded grammar. Following van Schijndel
et al. (2013) and Jin et al. (2018), this can be done
by iteratively defining a side- and depth-specific
containment likelihood hg)d for left- or right-side
siblings s € {1,2} at depth’d € {1..D} at each iter-
ation i € {1..I}, as a vector with one row for each
nonterminal or terminal symbol (or null symbol
1) in G, containing the probability of each sym-
bol generating a complete yield within depth d as
an s-side sibling:

O _
h® =0 (9a)
po _ [Gaes, + hiVehl) ifd<D+1
L4 o ifd>D+1
(9b)
o1 ifd=0
W =!{caes, + h P ehY) ifo<d<D
2.d ~ L 1,d+1 2.d =
0 ifd > D
(9¢)

where ‘T” is a top-level category label at depth
zero. Following previous work, experiments de-
scribed in this paper use I = 20.

A depth-bounded grammar G, 4 can then be de-
fined to be the original grammar G reweighted and
renormalized by this containment likelihood:

Gdiag1®s, + h{”, ®h))

Gig= : - (10a)
’ (0]
hl,d
Gdiag1®s, + h{" ®h))
Goy = " (10b)
h2,d

3.2 Gibbs sampling of unbounded grammars
and bounded trees

As defined above, this model samples itera-
tively from the conditional posteriors of P(G |
To.N,Ory y-B) and P(to.n | Gp,o4, ) in infer-
ence, extending the Gibbs sampling algorithm
for PCFG induction introduced in Johnson et al.
(2007b) to depth-bounded grammars. The below
equations will omit the superscript ¢ for the itera-
tion number of inference for clarity.

To sample from the conditional posterior of G,
itis necessary to first sum over all rule applications
in all sampled trees:

CD = Z Z 51,7 (6‘1',7] ®6T,,2)T

TET|. N T)ET

(1D

then remove side- and depth-specificity from cate-
gory labels:

C= Z Z Ds,dTCD Es,d
s d

A side- and depth-independent grammar is then
sampled from these counts, plus the pseudo-
count G:

(12)

G ~ Dirichlet(s + C) 13)
Inside-sampling (Goodman, 1998; Johnson
et al., 2007b) is then used to sample from the pos-
terior of trees P(to_n | Gp, 0, ). Given a depth-
bounded grammar and a sentence, this algorithm
first constructs the inside chart V € REXIXC where
L is the length of the sentence. A chart vector
Vi j1.c) for the span i, j where i < j < L in some
sentence w1z, is the likelihood Pg,(w;_; | ¢) of the
span for all side- and depth-specific categories c:

Viiji.cl =
Gp (6, ®61) =1
2k Gp (Viig1.c1® Virjr.cp) if j—i>1

Trees are sampled iteratively from the top down
by first choosing a split point k; ; for the current
span i, j such thati < k; ; < j:

ki j ~ Mul (Z Ok 5CTid.GD (Viik1.c1® Virji.cp)
k

(15)
The algorithm then samples pairs of category la-
bels ¢;y, ; and ¢y, ; j adjacent at this split point k; ;:

Cik> Ck,j ~ Mul (5;'1.(}0 diag(Viix1.c1® Vir,j1.c1) )

(16)

Empirically the sampler spends most of its time

constructing the inside chart. The model described

in this paper therefore efficiently computes the in-

side chart using matrix multiplication, which is
able to exploit GPU optimization.
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Figure 2: Example of matrix multiplication in place of
looping over break points for the span (0,5). Each chart
cell represents a likelihood vector for the span between
i and j where i is the leftmost delimiting index of the
span and j the rightmost. The arrows represent the or-
der in which the cells are stored in the chart matrices V
and V'.

Efficient inside score calculation

The complexity of the inside algorithm is cubic
on the length of the sentence because it has to it-
erate over all start points i, all end points j and
all split points k of a span. For a dense PCFG
with a large number of states, the explicit loop-
ing is undesirable, especially when it can be for-
mulated as matrix multiplication. The split point
loop is therefore replaced with a matrix multipli-
cation in order to take advantage of highly opti-
mized GPU linear algebra packages like cuBLAS
and cuSPARSE, whereas previous work explores
how to parse efficiently on GPUs (Johnson, 2011;
Canny et al., 2013; Hall et al., 2014).

Inside likelihoods are propagated using a
copy V’ of the inside likelihood tensor V with the
first and second indices reversed:

VE Jiel T Viijel a7
This reversal allows the sum over split points k €
{i+1, ..., j—1} to be calculated as a product of con-
tiguous matrices, which can be efficiently imple-
mented on a GPU:

Viiji.c1=Gp VGC(V[i,i+1..j—1,1..C]Tij,,-+1,_j_l,l,,c])
(18)
where vec(M) flattens a matrix M into a vector.

3.3 Posterior inference on constituents

Prior work (Johnson et al., 2007a) shows that us-
ing EM-like algorithms, which seek to maximize
the likelihood of data marginalizing out the latent
trees, does not yield good performance. Because
trees are the main target for evaluation, it may be
preferable to find the most probable tree struc-
tures given the marginal posterior of tree struc-
tures compared to finding the most probable gram-

mar. Some recent work (McClosky and Char-
niak, 2015; Keith et al., 2018) explores how to
use marginal distributions of tree structures from
supervised parsers to create more accurate parse
trees. Based on these arguments, this model per-
forms maximum a posteriori (MAP) inference on
constituents (PIoC) using approximate conditional
posteriors of spans to create final parses for evalu-
ation.

Formally, let O';:j be an MAP unlabeled span of
words in a sentence from a corpus o, with start
point i and end point j, and ok, 0 its possi-
ble children. This algorithm iteratively looks for
the best pair of children o7, O'Izj according to the
posterior of the children, using all posterior sam-
ples. The spans are sentence-specific, but the be-
low equations omit the sentence index for brevity:
*

l,j’ 0-)

* *
O} Ok j = argmax P(oix,okjlo
Cifs0k j

= arg max f P(Tiks 04, G | 07, 0) dG

Tik:Ok,j
~ arg max P(oik. 01 G | 07 0)
Tiks0k,j GNP(Gl(T)
(19)

where o is the training corpus. Starting from
the whole sentence oy, this algorithm finds the
best children for a span from the Monte Carlo
estimation of the marginal posterior distribution
of children for the span, and then continues to
split the found children spans. Because samples
from different runs at different iterations can be
used to approximate the span posteriors, the pro-
cess marginalizes out sampled grammars, whole-
sentence parse trees and constituent labels to only
consider split points for spans. In terms of input
and output, the PIoC algorithm takes in posterior
samples of trees for a sentence, and outputs an un-
labeled binary-branching tree.

There are a few benefits of doing posterior in-
ference on constituents. First, the distribution
POk okj | O'Zj, o) quantifies how much uncer-
tainty there is in splitting a span o ; at all possible
k’s. One way of using this uncertainty information
is to merge spans where uncertainty is high, ef-
fectively weakening or removing the constraint of
binary-branching from the grammar inducer. Sec-
ond, this algorithm produces trees that may not
be seen in the samples, potentially helping aggre-
gate evidence across different iterations within a
run and across runs. Third, the multimodal na-
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ture of the joint posterior of grammars and trees
often makes the sampler get stuck at local modes,
but doing MAP on constituents may allow infor-
mation about trees from different modes to come
together. If different grammars all consider cer-
tain children for a span to be highly likely, then
these children should be in the final parse output.
Finally, it is a nonparametric way of doing model
selection. As will be shown, model selection relies
on the log likelihood of the data, but the log like-
lihood of the data is only weakly correlated with
parsing accuracy. Performing PloC with multiple
runs can increase accuracy without depending too
heavily on log likelihood for model selection.

4 Model analysis and evaluation

The model described above has hyperparameters
for maximum depth D, number of categories C
and the symmetric Dirichlet prior 8. Following
Jin et al. (2018), this evaluation uses the first
half of the WSJ20 corpus as the development set
(WSJ20dev) for all experiments. However instead
of using the development set only to set the hyper-
parameters of the model, this evaluation also uses
it to explore interactions among parsing accuracy,
model fit, depth limit and category domain. The
first set of experiments explores various settings
of D in the hope of acquiring a better picture of
how depth-bounding affects the inducer. The sec-
ond set of experiments uses the value of D tuned
in the first experiments, and does PIoC on differ-
ent sets of samples to examine the effect it has
on parse quality. Optimal parameter values from
these first two experiments are then applied in ex-
periments on English (The Penn Treebank; Mar-
cus et al., 1993), Chinese (The Chinese Treebank
5.0; Xia et al., 2000) and German (NEGRA 2.0;
Skut et al., 1998) data to show how the model per-
forms compared with competing systems.

Each run in evaluation uses one sample of
parse trees from the posterior samples after con-
vergence. Preliminary experiments show that the
samples after convergence are very similar within
a run and their parsing accuracies differ very lit-
tle. This evaluation follows Seginer (2007) by
running unlabeled PARSEVAL on parse trees col-
lected from each run. Punctuation is retained in
the raw text in induction, and removed in evalua-
tion, also following Seginer (2007).

70+
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40+ Bl ~
| 2
301 mmm 3
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Figure 3: PARSEVAL scores for runs with different
depth limits. The difference of all PARSEVAL scores
between depth co and depth 2 is significant (p=0.017,
Student’s ¢ test).

4.1 Analysis of model behavior

The first experiment explores the effects of depth-
bounding on linguistic grammar quality. The hy-
pothesis is that depth-bounding limits the search
space of possible grammars, so the inducer will be
less likely to find low-quality local optima where
cognitively implausible parse trees are assigned
non-zero probabilities, because such local optima
would be removed from the posterior by limiting
the maximum depth of parse trees to a small num-
ber d.

The effect of depth-bounding

Figure 3 shows the effect of depth bounding us-
ing 60 data points of unlabeled PARSEVAL scores
from 20 different runs for each of three different
depth bounds: 2, 3, and co (unbounded). The
range of possible parsing accuracy scores is very
wide, as mapped out by the runs. Although the un-
bounded model is able to reach the performance
upper bound seen from the figure, most of the
time its results are in the middle of the range. By
bounding the maximum depth to 2, the sampler is
able to stay in the region of high parsing accuracy.
This may be because the majority of the modes in
the region of low parsing accuracy require higher
depth limits, and humans who produce the sen-
tences do not have access to those higher depth
limits. The difference between depth co and depth
2 is significant (p=0.017, Student’s ¢ test), show-
ing that depth-bounding does have a positive ef-
fect on the linguistic grammar quality of the in-
duced grammars. Data from depth 3 also shows
a positive trend of inducing better grammars than
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Figure 4: The correlation between data likelihood and
parsing accuracy of all 60 runs. Calculations show that
there is a significant (p = 0.007) positive correlation
(Pearson’s r=0.39) between data likelihood and parsing
accuracy at convergence for our model.

unbounded.

A purely right-branching baseline achieves an
F1 score of 48 on the WSJ20 development dataset.
A majority of induction runs perform better than
this baseline, which indicates that the PCFG in-
duction model with the inside-sampling algorithm
is able to find good solutions, most of the time
much better than the right-branching baseline.
This is especially interesting when the grammar is
unbounded with almost no other constraint, which
had previously been shown to converge to weak
local optima.

Correlation of model fit and parsing accuracy

Model fit, or data likelihood, has been reported
not to be correlated or to be correlated only
weakly with parsing accuracy for some unsuper-
vised grammar induction models (Smith, 2006;
Johnson et al., 2007b; Liang et al., 2009) when the
model has converged to a local maximum. Figure
4 shows the correlation between data likelihood
and parsing accuracy at convergence for all the
runs. There is a significant (p = 0.007) positive
correlation (Pearson’s r=0.39) between data likeli-
hood and parsing accuracy at convergence for our
model. This indicates that although noisy and un-
reliable, the data likelihood can be used as a metric
to do preliminary model selection.

The bounded unbounded PCFG

We also examine the distribution of tree depths in
unbounded runs. For a run, we compute the per-
centage of parse trees with a certain depth, and
then examine how these percentages vary across

Position in run
Il Convergence
Beginning of run

n 60
()]
g
-+
G 40
X
201 e
0- S T
1 2 3 4 5+

Depth

Figure 5: The usage of different depths for parse trees
in the samples from 20 runs with the unbounded gram-
mar.

different runs. Theoretically the possible maxi-
mum depth of a parse for a sentence is the sentence
length divided by 2. For example, a 20-word sen-
tence can have a parse of depth 10 because at least
two words are needed to create a new depth with
a center embedded phrase, but under most PCFGs
this maximally center embedded configuration is
not very likely. Figure 5 shows the percentage
of tree depths from samples in the beginning of
each unbounded run and at convergence. It shows
that at the beginning of the sampling process with
a random model sampled from the prior, the dis-
tribution of parse tree depths seems to be cen-
tered around depth 2 and 3, with non-negligible
probability mass at other depth levels. At con-
vergence, the distribution of parse tree depths is
very peaked with a large portion of the proba-
bility mass concentrated at depth 2. Given that
an unbounded PCFG has no constraint on depth,
this convergence of the marginal posterior distri-
bution of parse tree depth shows that the depth
limit seems to be a natural tendency in the data,
rather than an arbitrary preference of corpus anno-
tators.

4.2 Posterior uncertainty of constituents

Experiments were also conducted to determine
whether posterior inference on constituents (PIoC)
has any effect on parsing accuracy. These experi-
ments use 10 runs on WSJ20dev with depth 2 that
have the highest log-likelihoods for exploration.
In this data, some spans have a strikingly higher
degree of uncertainty than other spans. For exam-
ple, the posterior probability of splitting the phrase
the old story, into the old and story is 0.55, and the
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System Rec | Prec F1

Best 73.65 | 55.66 | 63.40
Best w/ PIoC 73.59 | 56.41 | 63.87
All w/ PIoC 72.99 | 59.21 | 65.38
All w/ PIoC w/o best | 73.00 | 59.06 | 65.29

Table 1: Development results for different systems us-
ing posterior inference on constituents (PIoC).

probability of splitting it into the and old story is
0.45. Some other spans like use old tools have vir-
tually no uncertainty in how the inducer evaluates
the splits. Many such spans with high uncertainty
are noun phrases, which are not annotated with
subconstituents in the Penn Treebank annotation.
The parser can therefore avoid precision losses by
not splitting constituents with 3 or 4 words if there
is large uncertainty in this posterior.* This exper-
iment only merges spans that would cover 3 or 4
words and leave merging spans with larger cover-
age to future work.

Table 1 shows parsing results on the WSJ20dev
dataset. The Best result is from an arbitrary sam-
ple at convergence of the oracle best run. The Best
with PloC is the same run, but with PIoC to ag-
gregate 100 posterior samples at convergence. All
with PloC uses 100 posterior samples from all of
the 10 chosen runs, and finally All with PloC with-
out best excludes the best run in PIoC calculation.

There is almost a point of gain in precision go-
ing from Best to Best with PloC with virtually no
recall loss, showing that the posterior uncertainty
is helpful in flattening binary trees. As more sam-
ples from the posterior are collected, as shown in
All with PloC without best, the precision gain is
even more substantial. This shows that with PIoC
there is no need to know which sample from which
run is the best. Model selection in this case is only
needed to weed out the runs with very low likeli-
hood.

4.3 Multilingual PARSEVAL

A final set of experiments compare the proposed
model with several state-of-the-art constituency
grammar induction systems on three different lan-
guages. The competing systems are CCL (Seginer,
2007)° and UPPARSE (Ponvert et al., 2011). We
also include the published results of DB-PCFG

“I.e. if the difference between the first and the second
highest posterior probabilities is smaller than 0.3.

Shttps://github.com/DrDub/cclparser

®https://github.com/eponvert/upparse

(Jin et al., 2018) on English for comparison.” The
corpora used are the WSJ20test dataset used in Jin
et al. (2018), the CTB20 (sentences with 20 words
or fewer from the Chinese Treebank) and NE-
GRA20 (sentences with 20 words or fewer from
the German NEGRA Treebank) datasets used in
Seginer (2007). All systems are trained and evalu-
ated on the same datasets to ensure fair and direct
comparison. Five different induction runs were
run on each dataset with the same hyperparame-
ters D=2,C=15,5=0.2 as tuned on the develop-
ment set, and three runs with the highest likeli-
hood at convergence were chosen for comparison
with other models. Parse trees were then calcu-
lated using PIoC as previously described, remov-
ing punctuation to calculate the unlabeled PARSE-
VAL scores with EVALB. Multiple runs of CCL
and UPPARSE on the same data yield the same
results.

Table 2 shows the unlabeled PARSEVAL scores
for the competing systems. The model described
in this paper shows strong performance in all lan-
guages. On English and Chinese, this model
achieves the new state-of-the-art recall and F1
numbers. On German, this model also achieves
the best recall scores among all models, showing
that more constituents found in the gold annotation
are discovered. It is worth noting that the CCL and
UPPARSE models do take advantage of additional
linguistic constraints, e.g. using punctuation as de-
limiters of constituents. Experiments described in
this paper show that this system can perform bet-
ter than or competitive with these existing models
without similar heuristics and constraints.

The model described in this paper performs rel-
atively poorly on precision due to the fact that
trees produced by this system are mostly binary-
branching with some constituents flattened by
PIoC. This issue is most evident on Negra, where
fully binary-branching trees have nearly twice as
many constituents as are annotated in gold. This
puts any system that produces binary-branching
trees under a precision celling of 0.51, and F1
celling of 0.675.

5 Conclusion

Experiments in this work confirm that depth-
bounding does empirically have the effect of limit-
ing the search space of an unsupervised PCFG in-

"We are not able to run DB-PCFG on the other languages
due to its substantial resource requirements.
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System WSJ20test CTB20 NEGRA20
Rec | Prec | Fl Rec | Prec | Fl1 Rec | Prec | Fl
CCL 61.7 | 60.1 | 60.9 | 353 | 39.2 | 37.1 | 444 | 27.2 | 33.7
UPPARSE | 40.5 | 47.8 | 439 | 33.8 | 44.0 | 38.2 | 55.5 | 41.9 | 47.7
DB-PCFG | 70.5 | 53.0 | 60.5 - - - - - -
this work | 73.1 | 55.6 | 63.1 | 43.8 | 35.1 | 38.9 | 59.1 | 31.2 | 40.8

Table 2: PARSEVAL scores for different constituency grammar induction systems.

ducer. Analysis of a depth-bounded model demon-

John Canny, David Hall, and Dan Klein. 2013.

strates desirable engineering properties, includ-
ing a significant correlation between parsing accu-
racy and data likelihood, and interesting linguis-
tic properties such as implicit bounding for un-
bounded grammars. This paper also introduces the
Posterior Inference on Constituents technique for
model selection and shows for the first time that it
is possible to accurately induce a PCFG with no
strong universal linguistic constraints. Compar-
isons of the proposed model with other state-of-
the-art constituency grammar inducers show that
this model is able to achieve state-of-the-art or
competitive results on datasets in multiple lan-
guages.
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