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Abstract

We provide a comprehensive analysis of the
interactions between pre-trained word embed-
dings, character models and POS tags in a
transition-based dependency parser. While
previous studies have shown POS information
to be less important in the presence of char-
acter models, we show that in fact there are
complex interactions between all three tech-
niques. In isolation each produces large im-
provements over a baseline system using ran-
domly initialised word embeddings only, but
combining them quickly leads to diminishing
returns. We categorise words by frequency,
POS tag and language in order to systemati-
cally investigate how each of the techniques
affects parsing quality. For many word cat-
egories, applying any two of the three tech-
niques is almost as good as the full combined
system. Character models tend to be more im-
portant for low-frequency open-class words,
especially in morphologically rich languages,
while POS tags can help disambiguate high-
frequency function words. We also show that
large character embedding sizes help even for
languages with small character sets, especially
in morphologically rich languages.

1 Introduction

The last few years of research in natural language
processing (NLP) have witnessed an explosion in
the application of neural networks and word em-
beddings. In tasks ranging from POS tagging
to reading comprehension to machine translation,
a unique dense vector is learned for each word
type in the training data. These word embeddings
have been shown to capture essential semantic
and morphological relationships between words
(Mikolov et al., 2013), and have precipitated the
enormous success of neural network-based archi-
tectures across a wide variety of NLP tasks (Plank
et al., 2016; Dhingra et al., 2017b; Vaswani et al.,

2017).

When task-specific training data is scarce or the
morphological complexity of a language leads to
sparsity at the word-type level, word embeddings
often need to be augmented with sub-word or part-
of-speech (POS) tag information in order to re-
lease their full power (Kim et al., 2016; Sennrich
et al., 2016; Chen and Manning, 2014). Initialis-
ing vectors with embeddings trained for a different
task, typically language modelling, on huge un-
labelled corpora has also been shown to improve
results significantly (Dhingra et al., 2017a). In de-
pendency parsing, the use of character (Ballesteros
et al., 2015) and POS (Dyer et al., 2015) models
is widespread, and the majority of parsers make
use of pre-trained word embeddings (Zeman et al.,
2017).

While previous research has examined in de-
tail the benefits of character and POS models in
dependency parsing and their interactions (Balles-
teros et al., 2015; Dozat et al., 2017), there has
been no systematic investigation into the way
these techniques combine with the use of pre-
trained embeddings. Our results suggest a large
amount of redundancy between all three tech-
niques: in isolation, each gives large improve-
ments over a simple baseline model, but these im-
provements are not additive. In fact combining
any two of the three methods gives similar results,
close to the performance of the fully combined
system.

We set out to systematically investigate the
ways in which pre-trained embeddings, char-
acter and POS models contribute to improving
parser quality. We break down results along
three dimensions—word frequency, POS tag, and
language—in order to tease out the complex inter-
actions between the three techniques. Our main
findings can be summarized as follows:
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• For all techniques, improvements are largest
for low-frequency and open-class words and
for morphologically rich languages.

• These improvements are largely redundant
when the techniques are used together.

• Character-based models are the most effec-
tive technique for low-frequency words.

• Part-of-speech tags are potentially very effec-
tive for high-frequency function words, but
current state-of-the-art taggers are not accu-
rate enough to take full advantage of this.

• Large character embeddings are helpful for
morphologically rich languages, regardless
of character set size.

2 Related Work

Chen and Manning (2014) introduced POS tag
embeddings: a learned dense representation of
each tag designed to exploit semantic similari-
ties between tags. In their greedy transition-based
parser, the inclusion of these POS tag embeddings
improved labelled attachment score (LAS) by 1.7
on the English Penn Treebank (ETB) and almost
10 on the Chinese Penn Treebank (CTB). They
also tested the use of pre-trained word embeddings
for initialisation of word vectors, finding gains of
0.7 for PTB and 1.7 for CTB.

Dyer et al. (2015) in their Stack Long Short-
Term Memory (LSTM) dependency parser, show
that POS tag embeddings in their architecture im-
prove LAS by 0.6 for English and 6.6 for Chi-
nese. Unlike Chen and Manning (2014), they do
not use pre-trained word embeddings for initialisa-
tion, instead concatenating them as a fixed vector
representation to a separate randomly-initialised
learned representation. This leads to improve-
ments in LAS of 0.9 and 1.6 of English and Chi-
nese, respectively.

Following on from the work of Dyer et al.
(2015), Ballesteros et al. (2015) introduced the
first character-based parsing model. They found
that a model based purely on character informa-
tion performed at the same level as a model using
a combination of word embeddings and POS tags.
Combining character and POS models produced
even better results, but they conclude that POS
tags are less important for character-based parsers.
They also showed that character models are par-
ticularly effective for morphologically rich lan-
guages, but that performance remains good in lan-
guages with little morphology, and that character

models help substantially with out-of-vocabulary
(OOV) words, but that this does not fully explain
the improvements they bring. The use of pre-
trained embeddings was not considered in their
work.

Kiperwasser and Goldberg (2016), in the
transition-based version of their parser based on
BiLSTM feature extractors, found that POS tags
improved performance by 0.3 LAS for English and
4.4 LAS for Chinese. Like Dyer et al. (2015), they
concatenate a randomly-initialised word embed-
dings to a pre-trained word vector; however in this
case the pre-trained vector is also updated during
training. They find that this helps LAS by 0.5–0.7
for English and 0.9–1.2 for Chinese, depending on
the specific architecture of their system.

Dozat et al. (2017), building on the graph-based
version of Kiperwasser and Goldberg (2016), con-
firmed the relationship between character models
and morphological complexity, both for POS tag-
ging and parsing. They also examined the im-
portance of the quality of POS tags on parsing,
showing that their own tagger led to better parsing
results than a baseline provided by UDPipe v1.1
(Straka et al., 2016).

3 The Parser

We use and extend UUParser1 (de Lhoneux et al.,
2017a; Smith et al., 2018), a variation of the
transition-based parser of Kiperwasser and Gold-
berg (2016) (K&G). The K&G architecture can be
adapted to both transition- and graph-based depen-
dency parsing, and has quickly become a de facto
standard in the field (Zeman et al., 2017). In a
K&G parser, BiLSTMs (Hochreiter and Schmid-
huber, 1997; Graves, 2008) are employed to learn
useful representations of tokens in context. A
multi-layer perceptron (MLP) is trained to predict
transitions and possible arc labels, taking as in-
put the BiLSTM vectors of a few tokens at a time.
Crucially, the BiLSTMs and MLP are trained to-
gether, enabling the parser to learn very effective
token representations for parsing. For further de-
tails we refer the reader to Nivre (2008) and Kiper-
wasser and Goldberg (2016), for transition-based
parsing and BiLSTM feature extractors, respec-
tively.

Our version of the K&G parser is extended with
a SWAP transition to facilitate the construction

1https://github.com/UppsalaNLP/
uuparser

https://github.com/UppsalaNLP/uuparser
https://github.com/UppsalaNLP/uuparser
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of non-projective dependency trees (Nivre, 2009).
We use a static-dynamic oracle to allow the parser
to learn from non-optimal configurations at train-
ing time in order to recover better from mistakes
at test time, as described in de Lhoneux et al.
(2017b).

In this paper we experiment with a total of eight
variations of the parser, where the difference be-
tween each version resides in the vector represen-
tations xi of word types wi before they are passed
to the BiLSTM feature extractors (see Section 3
of Kiperwasser and Goldberg (2016)). In the sim-
plest case, we set xi equal to the word embedding
er(wi):

xi = er(wi)

The superscript r refers to the fact that the word
embeddings are initialised randomly at training
time. This is the setup in our BASELINE system.

For our +CHAR system, the word embedding
er(wi) is concatenated to a character-based vector,
obtained by running a BiLSTM over the characters
ch1:m of wi:

xi = er(wi) ◦ BiLSTM(ch1:m)

In the +POS setting, the word embedding is in-
stead concatenated to an embedding p(wi) of the
word’s universal POS tag (Nivre et al., 2016):

xi = er(wi) ◦ p(wi)

This scenario necessitates knowledge of the POS
tag of wi; at test time, we therefore need a POS
tagger to provide predicted tags.

In another version of our parser (+EXT), pre-
trained embeddings are used to initialise the word
embeddings.2 We use the superscript t to distin-
guish these from randomly initialised vectors:

xi = et(wi)

We use the embeddings that were released as part
of the 2017 CoNLL Shared Task on Universal De-
pendency Parsing (CoNLL-ST-17) (Zeman et al.,
2017). Words in the training data that do not have
pre-trained embeddings are initialised randomly.
At test time, we look up the updated embeddings
for all words seen in the training data; OOV words
are assigned their un-updated pre-trained embed-
ding where it exists, otherwise a learnt OOV vec-
tor.

2This strategy proved more successful in preliminary ex-
periments than others for incorporating pre-trained embed-
dings discussed in Section 2.

In our COMBINED setup, we include pre-trained
embeddings along with the character vector and
POS tag embedding:

xi = et(wi) ◦ BiLSTM(ch1:m) ◦ p(wi)

The three remaining versions of the vector xi con-
stitute all possible combinations of two techniques
of pre-trained embeddings, the character model
and POS tags. We refer to these versions of the
parser as −EXT, −CHAR, and −POS, respectively.

4 Experimental setup

4.1 Data

We ran our experiments on nine treebanks from
Universal Dependencies (Nivre et al., 2016)
(v2.0): Ancient Greek PROIEL, Arabic, Chinese,
English, Finnish, Hebrew, Korean, Russian and
Swedish. Inspired partially by de Lhoneux et al.
(2017c), these treebanks were chosen to reflect a
diversity of writing systems, character set sizes,
and morphological complexity. As error analysis
is carried out on the results, we perform all exper-
iments on the dev data sets.

Table 1 shows some statistics of each treebank.
Of particular note are the large character set sizes
in Chinese and Korean, an order of magnitude big-
ger than those of all other treebanks. The high
type-token ratio for Finnish, Russian and Korean
also stands out; this is likely due to the high mor-
phological complexity of these languages.

Treebank Sentences TTR Chars
Ancient Greek 14864 1019 0.15 179
Arabic 6075 909 0.10 105
Chinese 3997 500 0.16 3571
English 12534 2002 0.07 108
Finnish 12217 1364 0.26 244
Hebrew 5241 484 0.11 53
Korean 4400 950 0.46 1730
Russian 3850 579 0.30 189
Swedish 4303 504 0.16 86

Table 1: Treebank statistics. Number of sentences
in train and dev sets, type-token ratio (TTR), and
character set size.

4.2 Parser settings

The parser is trained three times for each language
with different random seeds for 30 epochs each.
At the end of each epoch we parse the dev data
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Word embedding size 100
Character embedding size 500
Character BiLSTM output size 100
POS tag embedding size 20

Table 2: Embedding sizes.

and calculate LAS. For each training run, results
are averaged over the five best epochs for each lan-
guage. In this way, we attempt to make our results
more robust to variance due to randomness in the
training procedure.3 Our macro-averaged scores
are based on a total of 135 different epochs (3 ran-
dom seeds × 5 best epochs × 9 languages).

Table 2 shows the embedding sizes we found
to produce best results in preliminary work and
which we use in all experiments in Section 5. Note
our unusually large character embedding size; we
will discuss this in more detail in Section 6. We
use predicted UPOS tags from the system of Dozat
et al. (2017) for experiments with POS tags,4 other
than in Section 7 where we compare results with
different taggers and gold POS tags, in order to
set a ceiling on the potential gains from a perfect
POS tagger. For all other hyperparameters we use
default values (Smith et al., 2018).

4.3 Analysis
The hypothesis underlying our choice of analysis
is that the three techniques under study here—pre-
trained embeddings, character vectors and POS
tag embeddings—affect words differently depend-
ing on their frequencies, POS tags, and the lan-
guage of the sentence. We do not claim this to
be an exhaustive list; many other dimensions of
analysis are clearly possible (dependency relation
would be another obvious choice for example), but
we believe that these are likely to be three of the
most informative factors. In the frequency and
POS tag cases, we want to examine the overall
contribution to LAS of words from each category.
We expect changing the representation of a token
to affect how likely it is to be assigned the correct
head in the dependency tree, but also how likely
it is to be assigned correctly as the head of other
words. We thus introduce a new metric for this
part of the analysis: the head and dependents la-
belled attachment score, which we refer to as HD-

3Changing the random seed has been shown to produce
results that appear statistically significant different in neural
systems (Reimers and Gurevych, 2017).

4Available at
https://web.stanford.edu/˜tdozat/.

LAS.
When calculating HDLAS, the dependency

analysis for a given token is only considered cor-
rect if the token has the correct labelled head and
the complete set of correctly labelled dependents.
This is a harsher metric than LAS, which only
considers whether a token has the correct labelled
head. Note that when calculating HDLAS for all
tokens in a sentence, each dependency relation is
counted twice, once for the head word and once
for the dependent. It only makes sense to use this
metric when analysing individual tokens in a sen-
tence, or when grouping tokens into different cat-
egories across multiple sentences.

4.3.1 Frequency
In this analysis, we first label each token in the dev
data for each language by its relative frequency
in the train data, with add-one smoothing.5 Fre-
quency categories are created by rounding the log
relative frequency down to the nearest integer. We
calculate the HDLAS for each frequency category
for each language, before macro-averaging the re-
sults across the nine languages to produce a final
score for each frequency class.

4.3.2 POS tag
In this case, we label each word from the dev data
by its gold POS tag, before calculating HDLAS
for each category and taking the macro average
across languages. Here the total number of to-
kens in each category varies across several orders
of magnitude: the most common category NOUNs
make up 26.0% of all words, while the smallest
class SYM represents just 0.1%. For this reason,
and to make our graphs more readable, we do not
show results for the six smallest categories: INTJ,
NUM, PART, SCONJ, SYM, and X.

4.3.3 Language
Here we consider LAS directly for each language;
the HDLAS metric used in the previous two sec-
tions is not relevant as all tokens in a given sen-
tence are assigned to the same category deter-
mined by the language of the sentence.

5 Results

Table 3 gives the LAS for each of the eight sys-
tems described in Section 3. We observe that pre-

5 The smoothing ensures that OOV tokens, those that ap-
pear in dev but not train, are not assigned zero frequency;
this alleviates the problem of taking log(0) in the subsequent
conversion to log relative frequency.

https://web.stanford.edu/~tdozat/
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BASELINE 67.7 COMBINED 81.0
+EXT 76.1 −EXT 79.9
+CHAR 78.3 −CHAR 79.2
+POS 75.9 −POS 80.3

Table 3: Mean LAS across nine languages for
a baseline system employing randomly-initialised
word embeddings only, compared to three sepa-
rate systems using pre-trained word embeddings
(+EXT), a character model (+CHAR), and POS
tags (+POS). Scores are also shown for a com-
bined system that utilises all three techniques and
corresponding systems where one of the three
techniques is ablated (−EXT, −CHAR and −POS).

trained embeddings (+8.4), the character model
(+10.6) and POS tags (+8.2) all give large im-
provements in LAS over the baseline system. The
combined system is the best overall, but the im-
provement of 13.3 LAS is far from the sum of its
components. Employing two of the techniques at
a time reduces LAS by only 0.7–1.8 compared to
the combined system.

5.1 Frequency

Fig. 1 and Fig. 2 compare systems by word fre-
quency. As expected, accuracy improves with fre-
quency for all systems: the parser does better with
words it sees more often during training. There
is a levelling off for the highest frequency words,
probably due to the fact that these categories con-
tain a small number of highly polysemous word
types.

Fig. 1 demonstrates a clear trend in the im-
provement achieved by each of the individual
techniques over the baseline, with larger gains

Figure 1: BASELINE system compared to pre-
trained embeddings (+EXT), character model
(+CHAR) and POS tags (+POS).

Figure 2: COMBINED system compared to ablated
systems where pre-trained embeddings (−EXT),
character models (−CHAR) and POS tags (−POS)
are removed.

for lower frequency words. This confirms a re-
sult from Ballesteros et al. (2015), who found
that character models help substantially with OOV
words. We can generalise this to say that charac-
ter models improve parsing quality most for low
frequency words (including OOV words), and that
this is also true, albeit to a slightly lesser effect,
of POS tags and pre-trained word embeddings. It
is notable however that HDLAS increases univer-
sally across all frequency classes: even the highest
frequency words benefit from enhancements to the
basic word representation.

What immediately stands out in Fig. 2 is that
for mid- and high frequency words, there is little
difference in HDLAS between different combina-
tions of two of the three techniques, and for the
highest frequency words this is at a level almost in-
distinguishable from the full COMBINED system.
The slight improvements we see for COMBINED

in Table 3 compared to the three ablated systems
thus principally also come from the low-frequency
range.

5.2 POS tags
In Fig. 3 systems are compared by POS tag. We
observe a universal improvement across all POS
tags for each of the three variations of the system
compared to the baseline. However, it is notable
that the biggest gains in HDLAS are for open word
classes: NOUNs, VERBs and ADJs. As these
make up a large overall proportion of words, these
differences have an overall relatively large impact
on LAS.

For the most frequent POS categories NOUN
and VERB we again see a clear victory for the
character model (note that while these POS cat-
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egories are frequent, they contain a large num-
ber of low-frequency words). Overall the charac-
ter model succeeds best for the open-class POS
categories, while having the right POS tag is
marginally better for closed-class categories such
as DET, CCONJ, and AUX. It is interesting that
the character model is not as strong for PROPN,
despite the fact that these are open-class low-
frequency words; for these words pre-trained em-
beddings are the best single technique. This may
be due to the fact that the rules governing the com-
position of names at the character level are differ-
ent from other words in the language.

It is perhaps surprising that the advantage of
POS tag embeddings is not greater when it comes
to auxiliary verbs, for example, where the distinc-
tion from main verbs can be difficult and crucial
for a correct syntactic analysis. The reason prob-
ably lies in the fact that this distinction is equally
difficult for the POS tagger. We will investigate
this further in Section 7.

Figure 3: Comparison by POS tag of BASELINE

system to +EXT, +CHAR, and +POS. Tags are
sorted by frequency.

5.3 Language

Fig. 4 compares the systems by language. Once
again improvement is universal for each system
compared to the baseline. There are however sub-

Figure 4: Comparison by language of BASELINE

system to +EXT, +CHAR, and +POS.

stantial differences between languages. The three
biggest overall improvements are for Finnish, Ko-
rean and Russian, with a particularly notable in-
crease in the Korean case. This suggests that the
baseline model struggles to learn adequate repre-
sentations for each word type in these languages.
These are the three languages we identified in Sec-
tion 4.1 as having high type-token ratios in their
training data. It is also notable that the character
model becomes more important compared to other
methods for these three languages. In fact, despite
the overall superiority of the character model (see
Table 3), it is only the best single technique for
4 of the 9 languages, the three already mentioned
plus Ancient Greek.

6 Character Embedding Size

All results with character models observed thus
far make use of a character embedding of dimen-
sion 500. This value is large compared to typ-
ical sizes used for character models (Kim et al.,
2016; Ballesteros et al., 2015). A common belief
is that larger character embedding sizes are justi-
fied for languages with larger character set sizes
such as Chinese: in other words, the embedding
size should be related to the number of entities be-
ing embedded (Shao, 2018).

In Table 4, we show how LAS varies with a
few values of this hyperparameter when averaged
across our nine-language sample. We see a steady



2717

BASELINE 67.7 −CHAR 79.2
+CH-24 76.8 +CH-24 80.5
+CH-100 77.7 +CH-100 80.6
+CH-500 78.3 +CH-500 81.0

Table 4: Mean LAS across nine languages for
BASELINE system compared to systems with char-
acter vectors of different sizes. Comparison also
shown for systems employing pre-trained word
vectors and POS tag embeddings.

improvement in LAS as the character embedding
size increases, both when compared to a baseline
with randomly initialised word embeddings only
and when compared to a system that also em-
ploys pre-trained word vectors and POS tag em-
beddings.6

It is particularly interesting to break down the
effects here by language. In Table 5 we show re-
sults for Chinese, Finnish, Korean and Russian. It
is particularly striking that the larger character em-
beddings do not help for Chinese; the score for
the largest character embedding size is actually
marginally lower than a baseline without a char-
acter model at all. This is despite the fact that a
small character embedding improves LAS, albeit
marginally, suggesting that there is some useful in-
formation in the characters even when pre-trained
embeddings and POS tags are present. Conversely,
the large character models are very effective for
Finnish, a treebank with a character set less than a
tenth of the size of Chinese (see Table 1).

−CHAR +CH-24 +CH-100 +CH-500
Chinese 76.0 76.1 75.9 75.8
Finnish 81.9 83.7 83.8 84.7
Korean 70.1 78.0 78.2 79.4
Russian 82.0 81.4 81.5 82.5

Table 5: Comparison by language of different char-
acter embedding sizes.

We claim therefore that character set size is not
in fact a good metric to use in determining char-
acter embedding sizes. Our tentative explanation
is that while languages like Finnish have relatively
small character sets, those characters interact with

6Note that for character embeddings of dimension 24, we
use an output size for the character BiLSTM of 50, for char-
acter embeddings of dimension 100, we use an output size of
75, and for character embeddings of dimension 500, we use
an output size of 100. We checked in separate experiments
that the improvements are not simply due to the increase in
output size.

each other in much more complex ways, thus re-
quiring larger embeddings to store all the neces-
sary information. While there are many characters
in Chinese, the entropy in the interactions between
characters appears to be smaller, enabling smaller
character embeddings to do just as good a job.

It is also worth noting from Tables 4 and 5 that,
in the presence of POS tags and pre-trained em-
beddings, the improvement gained from increas-
ing the character embedding size from 24 to 100
is small (0.1 LAS for Finnish, 0.2 for Korean, 0.1
for Russian; 0.1 on average across the nine tree-
banks). This perhaps gives the impression of di-
minishing returns; that going even larger is likely
to lead to ever smaller improvements. This may be
the reason that smaller character embeddings have
generally been preferred previously. However, we
in fact observe a much greater gain when increas-
ing from 100 to 500 (0.9 for Finnish, 1.2 for Ko-
rean, 1.0 for Russian; 0.4 on average across the
nine treebanks), suggesting that very large charac-
ter embeddings are effective, and particularly use-
ful for morphologically rich languages.

7 POS tagger

In this section we apply our POS tag analysis to
the effect of the POS tagger used to produce tags
at test time. We compare three setups: firstly using
tags predicted by UDPipe (Straka and Straková,
2017), which was the baseline model for CoNLL-
ST-2017, secondly using tags predicted by the
winning Stanford system (Dozat et al., 2017), and
thirdly using gold tags. Note that for the Stanford
system, we train on gold tags and use predicted
tags at test time, while for UDPipe we train on a
jackknifed version of the train data with predicted
tags that was released as part of CoNLL-ST-2017.

BASELINE 67.7 −POS 80.3
UDPipe 73.4 UDPipe 80.2
Stanford 75.9 Stanford 81.0
Gold 78.4 Gold 83.8

Table 6: Mean LAS across nine languages for
BASELINE system compared to systems with POS
tags predicted by different systems. Compari-
son also shown for systems employing pre-trained
word vectors and a character vector.

Table 6 shows how LAS varies with the differ-
ent POS taggers when averaged across the nine-
language sample. We see a clear improvement
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Figure 5: Comparison by POS tag of POS taggers.

from UDPipe to Stanford and then from Stanford
to gold tags over the baseline system. This par-
tially confirms results from Dozat et al. (2017),
where the Stanford tagger was found to improve
parsing results significantly over the UDPipe base-
line. More surprising perhaps is the result when
comparing to the −POS system, which also makes
use of pre-trained word embeddings and a char-
acter model. Here, results do not improve at all
by adding predicted tags from UDPipe. Stanford
tags do give an improvement of 0.7 LAS over
−POS, but this is a long way from the improve-
ment of 8.2 LAS we see when adding them on top
of BASELINE. Gold tags do however still give a
big improvement over −POS (3.5 LAS), suggest-
ing strongly that both UDPipe and Stanford strug-
gle with the decisions that would be most benefi-
cial to parsing accuracy.

In Fig. 5 we present the parsing results bro-
ken down by POS tag for the various POS tag-
gers. It is particularly notable that results when
tagging with UDPipe are no better than for −POS,
which does not use POS tags at all, across most
categories, and particularly for the closed-classes
ADP, PRON, DET, CCONJ and AUX. Stanford
tags do marginally better, but access to gold tags
is particularly important in these cases; we see a
particularly striking improvement when ADPs and
AUXs are correctly tagged over an already strong

baseline.

8 Parser speed

It should be noted that increasing the character
embedding size and character BiLSTM output di-
mension as in Section 6 slows down the parser
during training and at test time. We found no
noticeable difference in speed between the base-
line system and versions of the parser with smaller
character embedding sizes (24/100), with approx-
imately 20 sentences per second being processed
on average during training and 65 sentences per
second parsed at test time on the Taito super clus-
ter.7 There was however a discernible difference
when the character embedding size was increased
to 500, with only 12 sentences processed per sec-
ond during training and 44 during testing.

Adding a POS tag embedding makes no appre-
ciable difference to parser speed,8 but necessitates
a pipeline system that first predicts POS tags (as-
suming gold tags are unavailable). The applica-
tion of pre-trained embeddings, meanwhile, re-
quires expensive pre-training on large unlabelled
corpora. Loading these embeddings into the parser
takes time and can occupy large amounts of mem-
ory, but does not directly impact the time it takes
to process a sentence during training or parsing.

9 Conclusions and Future Work

In this article we examined the complex interac-
tions between pre-trained word vectors, character
models and POS tags in neural transition-based
dependency parsing. While previous work had
shown that POS tags are not as important in the
presence of character models, we extend that con-
clusion to say that in the presence of two of the
three techniques, the third is never as important.
The best system, however, is always a combina-
tion of all three techniques.

We introduced the HDLAS metric to capture the
overall effect on parsing quality of changes to the
representation of a particular word. We found that
all three techniques produce substantial improve-
ments across a range of frequency classes, POS
tags, and languages, but the biggest improvements
for all techniques were for low-frequency, open-
class words. We suggest that this goes some way

7https://research.csc.fi/
taito-supercluster

8Note that the POS tag embedding we use is small relative
to the other components of the word type representation (see
Table 2).

https://research.csc.fi/taito-supercluster
https://research.csc.fi/taito-supercluster
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to explaining the redundancy between the three
techniques: they target the same weaknesses in the
baseline word-type level embedding.

We confirmed a previous result that the char-
acter model is particularly important for morpho-
logically rich languages with high type-token ra-
tios, and went on to show that these languages also
benefit from larger character embedding sizes,
whereas morphologically simpler languages make
do with small character embeddings, even if the
character set size is large.

POS tag embeddings can improve results for
difficult closed-class categories, but our current
best POS taggers are not capable of making the
distinctions necessary to really take advantage of
this. The strength of pre-trained embeddings is
that they are trained on much larger corpora than
the task-specific data; the use of character mod-
els and POS tag embeddings however seems to al-
low us to generalise much better from smaller data
sets, as each character and each POS tag is nor-
mally seen many times, even if each word type is
rare.

We saw that increasing the character embedding
size slows the parser down; whether this trade-
off is worthwhile will depend on the application
in question. If accuracy is all that matters, we
recommend using a fully combined system with
large character embeddings in tandem with POS
tags and pre-trained embeddings. Where speed is
more important, it may be worth considering a sys-
tem that employs a smaller character embedding
and does without POS tags, using just pre-trained
embeddings.

In future work it would be interesting to investi-
gate whether the patterns observed here also hold
true for other types of models in dependency pars-
ing; possible variations to examine include alter-
native character models such as convolutional neu-
ral networks, joint tagging-parsing models, and
graph-based parsers.
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ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A Multilingual
Treebank Collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC’16).

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual Part-of-Speech Tagging with
Bidirectional Long Short-Term Memory Models and
Auxiliary Loss. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 412–418.

Nils Reimers and Iryna Gurevych. 2017. Reporting
Score Distributions Makes a Difference: Perfor-
mance Study of LSTM-networks for Sequence Tag-
ging. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Process-
ing, pages 338–348.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725.

Yan Shao. 2018. Segmenting and Tagging Text with
Neural Networks. Ph.D. thesis, Uppsala University.

Aaron Smith, Bernd Bohnet, Miryam de Lhoneux,
Joakim Nivre, Yan Shao, and Sara Stymne. 2018. 82
Treebanks, 34 Models: Universal Dependency Pars-
ing with Multi-Treebank Models. In Proceedings of
the CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies.

Milan Straka, Jan Hajic, and Jana Straková. 2016. UD-
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